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Abstract: Neurotransmitters like dopamine (DA), serotonin (SRT), γ-aminobutyric acid (GABA)
and acetylcholine (ACh) are messenger molecules that play a pivotal role in transmitting excita-
tion between neurons across chemical synapses, thus enabling complex processes in the central
nervous system (CNS). Balance in neurotransmitter homeostasis is essential, and altered neurotrans-
mitter levels are associated with various neurological disorders, e.g., loss of dopaminergic neurons
(Parkinson’s disease) or altered ACh synthesis (Alzheimer’s disease). Therefore, it is crucial to
possess adequate tools to assess precise neurotransmitter levels, and to apply targeted therapies.
An established in vivo model to study neurotoxicity is the model organism Caenorhabditis elegans
(C. elegans), as its neurons have been well characterized and functionally are analogous to mammals.
We have developed a liquid chromatography–tandem mass spectrometry (LC-MS/MS) method
including a sample preparation assuring neurotransmitter stability, which allows a simultaneous
neurotransmitter quantification of DA, SRT, GABA and ACh in C. elegans, but can easily be applied
to other matrices. LC-MS/MS combined with isotope-labeled standards is the tool of choice, due to
its otherwise unattainable sensitivity and specificity. Using C. elegans together with our analytically
validated and verified method provides a powerful tool to evaluate mechanisms of neurotoxicity,
and furthermore to identify possible therapeutic approaches.

Keywords: mass spectrometry; liquid chromatography; neurotransmitters; neurodegenerative
diseases; C. elegans

1. Introduction

Neurotransmitters are messenger molecules transmitting excitation between neurons
across chemical synapses, which enable the brain to sense perceptions and coordinate com-
plex behavior [1]. Here, the most important neurotransmitters, dopamine (DA), serotonin
(SRT), γ-aminobutyric acid (GABA) and acetylcholine (ACh) will be discussed, as their
dysregulation, among others, is associated with several neurological diseases. DA regu-
lates body movement control, as well as memory function and cognition [2,3]. The most
common DA-associated neurodegenerative disorder is Parkinson’s disease (PD), which is
associated with the progressive loss of dopaminergic neurons in the substantia nigra [4] and
is characterized, among other things, by the presence of alpha-synuclein inclusions (Lewy
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Bodies) [5]. SRT acts as a neurohormone controlling the function of several peripheral
organs and modulates mood, cognition, sleep, learning and anxiety [6,7]. Hypofunction of
serotonergic neurons is associated with depression, and disturbances in SRT levels lead to
anxiety disorders [7]. GABA, among other functions, regulates blood pressure and heart
rate. In addition, it binds to receptors at inhibitory synapses, thus decreasing neuronal
excitability [8]. The balance between excitation and inhibition is a requisite for proper
neural function; as a consequence, a disequilibrium contributes to neurodegeneration [9].
The cholinergic system, including in particular the neurotransmitter ACh, is known to be
required for a variety of critical physiological activities, such as attention, learning and
memory [10]. A decreased activity of choline acetyltransferase (ChAT) and the subsequent
altered ACh synthesis are correlated with an increased formation of ß-amyloid (Aβ) plaques
in the brains of patients with Alzheimer’s disease (AD) [11]. Furthermore, a deficiency of
ChAT, choline uptake and ACh secretion are concomitant symptoms of neuronal loss asso-
ciated with learning deficits and memory loss [12]. Therefore, the analysis of basal levels of
neurotransmitters is an essential tool for neurotoxicity assessment, especially in terms of
neurodegenerative diseases such as PD and AD. In addition, neurotransmitter ratios are of
great interest, as they interact and depend on each other, and in most neurodegenerative
diseases the entire neurotransmitter system is disturbed [13,14]. In brief, it is crucial to
have the ability to determine which neurotransmitter(s) are impaired, in order to apply
targeted therapies.

Neurotransmitter quantification in mouse tissue, such as the brain [15] or cerebrospinal
fluid [16], can be employed to assess the neurodegenerative potential of chemical or phys-
ical agents that may be harmful, as well as to identify therapeutic strategies. However,
animal experiments provoke great ethical debate, requiring novel model organisms to
substitute and complement animal experiments for testing neurodegenerative potentials.
For this purpose, zebrafish (Danio rerio), flies (Drosophila melanogaster) and worms are
commonly used [17,18]. The nematode Caenorhabditis elegans (C. elegans) constitutes a dis-
tinguished in vivo model featuring a well-elucidated nervous system. All neurons are well
characterized and mapped over the worm body, and they are structurally and functionally
similar to mammals [19]. Furthermore, in C. elegans, orthologs are present for 60–80%
of human genes related to various diseases, including neurodegenerative disorders [20].
Therefore, C. elegans is a well-established model organism in the field of neurotoxicity and
neurodegeneration. In addition, worms are easily genetically manipulated, providing a
variety of mutants, especially for PD [21,22] and AD [23,24].

Neurotoxicity in C. elegans is predominantly assessed by behavioral assays. Commonly
performed assays include that of the basal slowing response, which examines dopamine-
dependent behavior in the presence of food [25], the determination of serotonin-dependent
pharyngeal pumping [26], the synaptic transmission at neuromuscular junctions using
the aldicarb-induced paralysis assay [27] and the assessment of functional changes in
locomotion [25]. Additionally, genetically modified worms with fluorescence tags in
neurons have been used to study neurodegeneration via fluorescence microscopy [28,29].
However, these techniques have the limitation, among others, of not being able to quantify
absolute neurotransmitter levels. Furthermore, the majority of assays, such as that of basal
slowing, are focused on a solitary neurotransmitter, in this case, DA. Other assays, namely
those of locomotion, are mediated by several neurotransmitters, such as acetylcholine and
dopamine; these provide broader outcomes, but can be problematic in interpretation. So
far, only Schumacher et al. have assessed DA and SRT [30], but, to date, GABA and ACh
have not been quantified in C. elegans. Therefore, a method is required for the simultaneous
quantification of multiple neurotransmitters in C. elegans.

The demands of such a technique are challenging, as the analysis must be specific
for the individual neurotransmitters and, on the other hand, requires good sensitivity, as
the basal levels of neurotransmitters are low. In addition, neurotransmitters display poor
stability. Methods do already exist to quantify neurotransmitters in a variety of matrices by
electrochemical detection [31,32], fluorescence detection [33,34] or fluorescent dyes [35–37].
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However, here, we opted for liquid chromatography–tandem mass spectrometry (LC-
MS/MS) as the preferred choice due to its high sensitivity and unmatched specificity, and
given its propensity to detect distinctive mass transitions of each analyte, and therefore,
its capacity for unequivocal identification. In addition, mass spectrometry allows the use
of isotope-labeled standards, which correspond analogously to their respective analyte
throughout the entire analytical procedure, from sample preparation to detection. The
combination of mass spectrometry and isotope-labeled standards of target analytes is a
top-notch technique for the analysis of several biological samples [38]. In recent years, a
handful of LC-MS/MS-based methods have been published to quantify neurotransmitters.
These refer almost exclusively to mouse [15,16] and rat [39,40] brain tissue and mostly do
not provide sufficient LOQs for neurotransmitter quantification in model organisms like
C. elegans. Only Tufi et al. present an LC-MS/MS analysis in zebrafish Danio rerio [41], while
Barata et al. published a method for neurotransmitter and related metabolites quantification
in Daphnia magna [42]. A tool for the simultaneous quantification of neurotransmitters,
especially GABA and ACh, in C. elegans with sufficient sensitivity has yet to be reported.

Here, we aim to present an established and validated LC-MS/MS-based method,
which allows the simultaneous quantification of neurotransmitters, specifically DA, SRT,
GABA and ACh, in C. elegans. A new extraction protocol assured stability and high recov-
ery for all four analytes. The use of isotope-labeled standards and LC-MS/MS analysis
in multiple-reaction-monitoring mode provided an unequivocal identification, as well as
specificity of all analytes and greater sensitivity compared to other techniques. As method
validation parameters, the linear range, limit of detection (LOD), limit of quantification
(LOQ), accuracy, recovery and precision were assessed. Further, we analyzed neurotrans-
mitter profiles of transgenic C. elegans strains with altered neurotransmitter homeostasis
and characterized their synaptic transmission by the aldicarb-induced paralysis assay in
order to corroborate the analytical LC-MS/MS data.

2. Results
2.1. Method Development for Neurotransmitter Quantification via LC-MS/MS

The aim of the chromatography was to establish a baseline-separated elution for all
analytes, as well as maximum sensitivity with subsequent mass spectrometric detection.
Different solvents (MeOH and ACN) were tested, with ACN demonstrating sharper peaks,
lower noise and quicker elution of all analytes when we used the YMC-Triart PFP column.
ACN modified with 10 mM FA resulted in a higher response compared to 5 mM FA. For
further optimization, the column temperature was varied (20–40 ◦C), with 30 ◦C leading
to the best result. A gradient of a total of 12 min (including equilibration) was generated
with the following retention times for all analytes and their respective deuterated internal
standards (used for internal calibration and unambiguous identification): GABA—2.50 min,
DA—5.92 min, ACh—7.22 min and SRT—8.38 min. The respective chromatograms of the
quantifiers of all analytes and all internal standards in a C. elegans matrix (wildtype) are
shown in Figure 1.

Ion source parameters were optimized with standard solutions using the Compound
Optimization software wizard of the Sciex Analyst Software (Version 1.7.2); they are listed
in the materials and methods Section 2.4. To determine mass-to-charge (m/z) ratios for the
precursor ions, standard solutions of the analytes and deuterated analytes were injected
and Q1 scans were performed. Fragment ion scans with varying intensity in collision
energy were conducted to determine the m/z ratios of the respective fragments. The aim
was to identify at least two MRM transitions for each analyte with optimal intensity. The
following mass transitions revealed the highest responses (Figure 1C–F) and were therefore
used as quantifiers: DA m/z 154 > 91, DAd4 m/z 158 > 95, SRT m/z 177 > 160, SRTd4 m/z
181 > 164, GABA m/z 104 > 69, GABAd6 m/z 110 > 73, ACh m/z 146 > 87 and AChd4 m/z
150 > 91. Quantifier precursor and fragment ion structures are stated in Figure 2. Further
mass transitions (qualifiers) are listed in Table 1.
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Figure 1. sMRM chromatograms of all analytes (A) and their respective deuterated internal standards
(B) (25 nM of DAd4, 25 mMSRTd4, 500 nM of GABAd6 and 25 nM AChd4) in C. elegans worm
homogenate (wildtype). (A,B) only the quantifier mass transitions (Table 1) of DA, SRT, GABA, ACh
and the accordant internal standards are presented. The most intensive mass transitions (listed in
Table 1) of DA (m/z 154 > 137 not found in matrix) (C), SRT (D), GABA (E) and ACh (F) are displayed
in matrix.

Table 1. sMRM parameters for DA, SRT, GABA, ACh and their respective internal standards. The
quantifiers are highlighted in bold. All transitions are single-protonated ions ([M + H]+).

Compound Q1 Q3 CE DP CXP Retention Time (min)

DA 154
137 15 30 15

5.92

119 25 30 15
91 32 30 15

DAd4 158
141 15 30 15
123 25 30 15
95 32 30 15

SRT 177
160 15 15 17

8.38
115 51 30 41

SRTd4 181
164 15 15 17
118 51 30 41

GABA 104
87 15 17 10

2.50

69 21 18 10
45 28 25 11

GABAd6 110
93 15 17 10
73 21 18 10
49 28 25 11

ACh 146
87 19 27 13

7.22
60 16 32 9

AChd4 150
91 19 27 13
60 16 32 9
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Figure 2. Chemical structures of precursors and their underlying fragment ions [M + H]+ (quantifiers)
for DA, SRT, GABA and ACh.

2.2. Sample Preparation and Neurotransmitter Extraction

Following optimization of the LC-MS/MS conditions, the method was applied to
C. elegans homogenates. The extraction of neurotransmitters was improved by optimizing
the composition of the applied extraction buffer. We tested the pH effect (acidic and neutral)
on the stability and recovery of all four analytes. Whereas DA seems to be stable only in
acidic pH, GABA shows the highest recovery in neutral pH. In contrast, both SRT and ACh
demonstrate no differences in recovery in acidic or neutral pH. In order to identify a suitable
compromise, various acids (perchloric acid and formic acid) and pH values (pH = 1–7) were
tested. A sufficient response of all four analytes was obtained by adding 2.5 mM perchloric
acid (pH = 4). In addition, we analyzed the impact of different amounts (10, 20 and 30%) of
organic modifiers (MeOH and ACN) in the extraction buffer. A higher response, especially
for GABA, was observed when we modified the buffer with 10% MeOH. The sample
extracts were purified by a Spin-X® Centrifuge Tube Filter 0.22 µm (Corning). The recovery
of the neurotransmitters as well as the protein content with and without purification steps
were determined, and showed statistically indistinguishable results.

2.3. Method Validation

Samples were spiked with DA, SRT and ACh from 0 to 500 nM and with GABA
from 0 to 10 µM. Linearity was observed for all analytes in the indicated range (Figure 3);
correlation coefficients are listed in Table 2.
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Figure 3. Calibration curves for all four neurotransmitters in the concentration range of up to 500 nM
for DA, SRT and ACh and up to 2500 nM for GABA. Correlation coefficients are stated in Table 2.

Table 2. Method validation parameters assessed in C. elegans matrix (wildtype). How parameters
were assessed is listed in Section 4.5.

DA SRT GABA ACh

Concentration in samples # 11.9 nM 2.2 nM 2.6 µM 38.8 nM

Correlation coefficient (R2) 0.9966 0.9939 0.9873 0.9993

Limit of detection (nM) 0.204 0.097 15.628 0.0009

Limit of quantification (nM) 0.679 0.324 52.094 0.0029

Recovery (%) 103 ± 2.7 64 ± 2.3 80 ± 4.1 56 ± 11.9
# analyte concentration of worm homogenates (3000 L4 stage worms in 150 µL extraction buffer) before pro-
tein normalization.
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The LOD was defined as LOD = 3×SDy/b (SDy = standard deviation of analyte
concentration in ≥12 blank measurements, b = slope of calibration curve), with 0.204 nM for
DA, 0.097 nM for SRT, 15.628 nM for GABA and 0.0009 nM for ACh. The LOQ was defined
as LOQ = 10×SDy/b, with 0.679 nM for DA, 0.324 nM for SRT, 52.094 nM for GABA and
0.0029 nM for ACh. Thus, the LOQs were far below the analyte concentrations in C. elegans
homogenates (3000 L4 stage worms in 150 µL extraction buffer), which were 11.9 nM of DA,
2.2 nM SRT, 2.6 µM GABA and 38.8 nM ACh (n ≥ 20). The LOQs underline the sensitivity of
the method and show that considerably less than 3000 worms can be used for the analysis.
The recovery of deuterated standards in matrix amounted to 103 ± 3% for DA, 64 ± 2% SRT,
80 ± 4% for GABA and 56 ± 12% for ACh, compared to deuterated standards in extraction
buffer only. This indicates sufficient recovery, as the loss of neurotransmitters during sample
preparation and analysis was always balanced by the respective deuterated standards.

Accuracy was determined in samples with low (25 nM), middle (250 nM) and high
(2500 nM) concentrations of all analytes and was within ± 20% of the nominal concentration
(Table 3). The variation in neurotransmitter quantification from eight samples on the same
day was defined as intraday precision and was 3.1% for DA, 6.1% for SRT, 3.4% for GABA
and 7.6% for ACh. The variation from eight samples analyzed on different days was defined
as interday precision and was 2.6% for DA, 14.0% for SRT, 3.2% for GABA and 1.8% for
ACh. Therefore, intra- and interday variations < 15% were considered both reliable and
reproducible due to high precision.

Table 3. Method validation parameters: accuracy for low, middle and high analyte concentrations
and intraday and interday precision. How parameters were assessed is listed in Section 4.5.

Accuracy [%] Precision [RSD%]

Low Middle High Intraday Interday

DA 114.8 ± 8.8 111.1 ± 7.9 112.7 ± 4.1 3.1 2.6

SRT 84.9 ± 1.3 85.6 ± 1.5 81.1 ± 1.8 6.1 14.0

GABA 95.3 ± 8.7 108.2 ± 5.2 116.4 ± 5.4 3.4 3.2

ACh 98.5 ± 4.9 96.6 ± 1.0 99.8 ± 0.6 7.6 1.8

2.4. Neurotransmitter Levels in Wildtype Worms and cat-2∆ and ace-1∆::ace-2∆ Deletion Mutants

By using the validated LC-MS/MS method, we investigated the impact of the genetic
background of C. elegans strains cat-2∆ and ace-1∆::ace-2∆ on neurotransmitter levels.
The deletion mutant cat-2∆ lacks the enzyme tyrosine hydroxylase, which catalyzes the
hydroxylation of tyrosine to L-DOPA (L-3,4-dihydroxyphenylalanine), the precursor of
DA [43]. Consequently, DA synthesis in cat-2∆ worms is restricted. C. elegans strain ace-
1∆::ace-2∆ displays a loss of acetylcholinesterase (AChE), which is the major enzyme to
hydrolyze ACh into acetic acid and choline [44]. As a result, this deletion mutant should
not be capable of degrading ACh.

The analysis of dopamine levels (Figure 4A) revealed 2.18 ± 0.19 ng DA per mg
protein in wildtype worms and 2.26 ± 0.15 ng DA per mg protein in ace-1∆::ace-2∆ deletion
mutants. cat-2∆ worms displayed 0.11 ± 0.04 ng DA per mg protein or 0.54 nM DA in
sample extracts; thus, DA levels were significantly lower compared to wildtype worms.
This demonstrates that cat-2∆ worms do not suffer a total loss of DA, but nevertheless
present a very low level of DA, which is higher than the LOD, but lower than the LOQ.
As a result, cat-2∆ worms exhibited 95% less DA compared to wildtype worms. The
quantification of SRT revealed no differences in the deletion mutants used compared to
wildtype worms. SRT levels (Figure 4B) amounted to 0.067 ± 0.012 ng SRT per mg protein in
wildtype worms, 0.063 ± 0.006 ng SRT per mg protein in cat-2∆ worms and 0.067 ± 0.009 ng
SRT per mg protein in ace-1∆::ace-2∆ worms. Wildtype worms contained 196 ± 30 ng
GABA per mg protein (Figure 4C). Interestingly, cat-2∆ worms displayed a significantly
lower amount of 121 ± 9 ng GABA per mg protein, whereas the deletion mutant ace-
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1∆::ace-2∆ had the lowest amount of 104 ± 4 ng GABA per mg protein, which significantly
differed compared to wildtype worms. The next neurotransmitter we quantified was ACh
(Figure 4D); 6.24 ± 0.64 ng ACh was contained per mg protein in wildtype worms and
4.97 ng ACh per mg protein in cat-2∆ worms, representing a slight decrease, although it
was statistically indistinguishable from wildtype worms. In contrast, the deletion mutant
ace-1∆::ace-2∆ contained a significantly higher amount of ACh compared to wildtype
worms, with 113 ± 9 ng ACh per mg protein. Thus, ace-1∆::ace-2∆ worms contained
18-fold greater ACh levels compared to wildtype worms.
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Figure 4. Levels in ng per mg protein of dopamine (A), serotonin (B), GABA (C) and acetylcholine (D)
in L4 stage worms (wildtype, cat-2∆ and ace-1∆::ace-2∆) quantified via LC-MS/MS. Data presented
are mean values of n = 4 independent experiments + SEM. Statistical analysis using unpaired t-test.
Significance levels with α = 0.05: *: p ≤ 0.05 and ***: p ≤ 0.001 compared to wildtype worms.

2.5. Aldicarb-Induced Paralysis Assay

To investigate the consequences of our findings regarding the neurotransmitter quan-
tification of the two deletion mutants, cat-2∆ and ace-1∆::ace-2∆, compared to wildtype
worms, a classical applied behavioral assay was performed. Aldicarb is an AChE inhibitor,
which leads to an accumulation of ACh, and therefore to a persistent activation of muscles
followed by paralysis. The aldicarb-induced paralysis assay examines alterations in the
synaptic transmission of C. elegans [45]. Aldicarb resistance, compared to wildtype worms,
results in decreased synaptic transmission. By implication, aldicarb hypersensitivity leads
to increased synaptic transmission [46].

Results are presented in Figure 5 and demonstrate the paralysis rate in all three tested
worm strains over a time span of 240 min. The cat-2∆ strain showed an earlier onset of
paralysis compared to wildtype worms, with only 65% ± 14% of worms moving after
60 min (wildtype: 74% ± 7%) and 15% ± 8% after 120 min (wildtype: 22% ± 7%) when
exposed to aldicarb, but the difference did not attain statistical significance. ace-1∆::ace-2∆
worms, in contrast, showed significant aldicarb resistance compared to wildtype worms,
with 94% ± 2% of worms moving after 60 min and 45% ± 10% after 120 min of aldicarb
exposure. Taken together, these findings establish that the loss of AChE leads to reduced
synaptic transmission in C. elegans due to aldicarb resistance.
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against assay procedure times [min]. Data presented are mean values of n = 4 independent experi-
ments ± SEM. Statistical analysis using unpaired t-test. Significance levels with α = 0.05: *: p ≤ 0.05
compared to wildtype worms at the same time point.

3. Discussion

Tight regulation of the neurotransmitters is required to avoid adverse consequences of
deficiency or excess, since various neurological diseases are characterized by a disturbed
neurotransmitter homeostasis. Diseases associated with dysregulated neurotransmitters
include PD, AD or depression, among others [47]. In this context, it is important to un-
derline that in most clinical disorders, more than a single neurotransmitter is altered in
its homeostasis [48,49]. Therefore, we have developed an LC-MS/MS-based method to
simultaneously quantify multiple neurotransmitters within a single sample and run, which
allows the quantification of DA, SRT, GABA and ACh, as well as the identification of poten-
tial changes in neurotransmitter ratios. It is important to note that this, to our knowledge,
is the first method proposed to quantify multiple neurotransmitters, especially GABA and
ACh, in C. elegans. To verify the optimized and validated method, we took advantage
of the fact that C. elegans is easily genetically manipulated, and used worms that cannot
synthesize DA (cat-2∆) or degrade ACh (ace-1∆::ace-2∆), analyzed their neurotransmitter
profiles, and characterized their impacts on synaptic transmission by a further independent
assay, which refers to classically performed behavioral assays.

Our method for neurotransmitter quantification distinguishes itself from other pub-
lished MS-based methods given its advantages. First, only a low quantity of worms is
necessary for an analysis. Furthermore, there is only minimal sample preparation required,
as the extraction buffer has been optimized regarding pH and organic modifiers for all
analytes, so further time-consuming extraction steps are not required. The pH value of the
buffer used is particularly important for neurotransmitter extraction, since DA autoxidizes
easily at a neutral pH value [50], and extraction must therefore take place in an acidified
milieu. GABA, on the other hand, displayed the best extraction in the neutral to slightly
acidic pH range, with the result that we found a good compromise of pH = 4 for max-
imal extraction, which provides a higher overall sensitivity. The limits of detection for
all analytes in matrix are in the very low nM range, which is advantageous compared to
other LC-MS-based methods for the quantification of neurotransmitters in other matrices,
as well as in standard solutions only [39,41,51,52]. Tufi et al. present an LOQ for SRT of
1.7 nM in zebrafish Danio rerio, which is roughly comparable to our data, whereas for other
neurotransmitters like DA and GABA, two-digit nM quantification limits are displayed [41].
Huang et al. and Wang et al.’s LOQ for GABA in mice brain tissue is lower than that
presented by us at 10 nM; however, their LOQs for DA and SRT are above 1 nM, and thus
higher than those demonstrated in our study [15,51]. Olesti et al. demonstrate LOQs in the
two-digit nM range in rat plasma and brain homogenates [52], while in Blanco et al.’s study,
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the average values of DA and ACh in mouse cerebrospinal fluid are below the LOQ [16].
However, the sensitivity is increased enough in the presently evaluated method to quantify
the four neurotransmitters in a few 100 worms, which would allow high-throughput analy-
ses in order to identify, for example, neurotoxic or neuroprotective substances. The method
also offers high accuracy, as we use the respective isotope-labeled standards for each an-
alyte throughout the entire sample preparation to compensate for losses in recovery and
allow for an unequivocal identification of the neurotransmitters. The use of isotope-labeled
standards is also a special feature of this method, which is often unconsidered [15,40,53].
Another advantage that underlines the specificity of our method is the use of a tandem
mass spectrometer. The fragment pattern, characterized by the m/z ratios of the precursor
ion and fragment ions, is as unique as a fingerprint for each molecule [54] and enables us
to specifically identify our targeted analytes, rather than using retention times only. Other
types of detection, such as quantification by fluorescent dyes [35–37], are less specific than
the method described herein. Neurotransmitter quantification by HPLC with fluorescence
detection is also both less specific and less sensitive, since it is necessary to derivatize the
analytes into a fluorescent product. In addition, external calibration is commonly neces-
sary [33,34]. In addition, other methods, such as that proposed by Zhang et al., combine
precolumn derivatization with LC-MS/MS analysis to increase the specificity and sensitiv-
ity [55]. This provides LOQs in the single-digit nM range comparable to those produced
by our method, but an additional derivatization step must be performed, which bears a
further opportunity for error and takes another 30 min.

The roundworm C. elegans has become a prominent model organism and multipurpose
tool to study neurotoxicity. Since only very few neurodegenerative diseases are linked to
genetic factors, growing evidence strongly implicates environmental factors in their respec-
tive etiology. Therefore, the worm, with its existing neurodegenerative disease models
(mostly transgenic worms), offers the opportunity for testing potential neurodegenerative
substances and treatments, which may reflect or even accelerate the progression of neu-
rodegenerative disorders. The quantification of neurotransmitter levels allows for precise
identification of mechanisms that mediate neurotoxicity, and identifies putative targets
for efficient therapeutic approaches and neuroprotective strategies. A special feature of
C. elegans is its short life cycle, which allows a huge sample quantity in a short time period,
and in combination with the presented analysis offers an effective high-throughput method.
A further advantage of the worm is its completely sequenced genome, allowing its simple
genetic manipulation. As a result, especially for neurobehavioral assays, chemicals or
toxins are often not used as positive controls; rather, worms with specific mutations are. A
commonly used assay is the basal slowing response, which examines dopamine-dependent
behavior in the presence of food [25]. cat-2∆ worms are a popular positive control, since
they show reduced food sensing due to its deficiency in DA synthesis [56,57]. Mutations
of C. elegans are also often used to model neurodegenerative diseases like PD [21] and
AD [23]. Despite the extensive use of mutants of this worm in neurobehavioral assays, its
neurotransmitter profile has not been characterized, to our knowledge. Despite the usage of
behavioral assays and the microscopy of fluorescence-tagged neurons, only a few chromato-
graphic approaches have been carried out in C. elegans to quantify DA. Only Schumacher
et al. displayed a validated LC-MS/MS-based method to analyze DA and SRT in C. elegans,
but they excluded GABA and ACh [30], which are, however, essential for the investigation
of neurotoxicity [10,58]. Using our method, we were able to determine neurotransmitter
profiles in wildtype worms, as well as in cat-2∆ and ace-1∆::ace-2∆ worms. As suggested in
the literature, cat-2∆ worms had lesser DA levels compared to wildtype worms, which was
corroborated by our LC-MS/MS method. In addition, we could also identify altered GABA
levels. The same applied to ace-1∆::ace-2∆ worms, wherein we could detect increased ACh
levels as expected, but also reduced GABA levels, which underlines the interdependence
and homeostatic dependence of different neurotransmitters. Muñoz et al. demonstrated
interactions between the dopaminergic and serotonergic systems in PD [59]. Qi et al. re-
ported how different neurotransmitters modulate neurotransmitter balance, and therefore
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regulate the function of different brain regions [13]. This emphasizes the importance of
simultaneously quantifying multiple neurotransmitters, which has been achieved with this
LC-MS/MS-based method. In contrast, behavioral assays do not constitute quantitative
methods, but merely provide an insight into the consequences of an eventual neurotrans-
mitter dyshomeostasis. It is noteworthy that the combination of instrumental analytics
(especially mass spectrometry) and behavioral assays complement each other remarkably
well. Therefore, the worm strains mentioned above were subjected to the aldicarb-induced
paralysis assay in addition to neurotransmitter quantification.

Aldicarb, an AChE inhibitor, promotes the accumulation of ACh in locomotor neuro-
muscular junctions in C. elegans [60]. This results in hyperexcitability and excessive muscle
contraction, causing paralysis [61]. If a mutant strain displays higher ACh levels, it should
undergo paralysis faster. However, it has been shown that not only ACh itself is involved
in aldicarb-induced paralysis, but the entire cholinergic system. Upon aldicarb treatment,
mutants with impaired cholinergic function accumulate synaptic ACh at a slower rate,
resulting in slower paralysis, and therefore aldicarb resistance, compared to wildtype
worms [62].

This is consistent with our data, where ace-1∆::ace-2∆ mutants showed a slower onset
of paralysis, which was also demonstrated by Oppermann and Chang [63]. Hypothetically,
it is not an increase in total ACh levels that leads to the onset of paralysis, but increased
ACh levels in the neuromuscular junction. Giles et al. [62] reported that worms with
disrupted inhibitory GABA function had a faster paralysis rate due to a loss of relaxation.
Thus, given the GABA deficiency, cat-2∆ worms should paralyze faster in the presence of
aldicarb compared to wildtype worms, which does not appear to be the case. It appears
that behavior is a not fully understood yet complex construct in C. elegans, and further
research is required to understand the underlying mechanisms of behavioral assays like
the aldicarb-induced paralysis assay. This underscores that the combination of behavioral
assays for C. elegans and the quantitative and validated methods such as the LC-MS/MS-
based method developed herein provide the means for altered functional characterization
along with its underpinning mechanisms. It is also noteworthy that the behavioral assays
mentioned are species-specific, in this case C. elegans-specific. However, our LC-MS/MS
method for the quantification of neurotransmitters is universally applicable and can be
applied to other model systems and tissues in the future with the eventual adaption of
sample preparation.

4. Materials and Methods
4.1. C. elegans Handling and Cultivation

C. elegans strains Bristol N2 (wildtype) and deletion mutants (∆) CB1112 (cat-2∆) and
GG201 (ace-1∆::ace-2∆) were obtained from the Caenorhabditis Genetics Center (CGC,
Minneapolis, MN, USA), which is funded by the National Institutes of Health Office
of Research Infrastructure Programs. Cultivation of C. elegans was maintained on 8P
agar plates coated with the Escherichia coli (E. coli) strain NA22 at 20 ◦C as previously
described [64,65]. To generate age-synchronous worm populations, gravid adults were
treated with bleach solution (1% NaOCl and 0.5 M NaOH) to release eggs, which were
allowed to hatch overnight in M9 buffer. Synchronous L1-stage larvae were placed on
nematode growth (NGM) agar plates coated with E. coli strain OP50 for 48 h to reach
L4 stage.

4.2. Neurotransmitter Standard Solutions

Dopamine hydrochloride (Alfa Aesar, Kandel, Germany) and 2-(3,4-dihydroxy-phenyl)ethyl-
1,1,2,2-d4-amine HCl (DAd4) (CDN Isotopes, Pointe-Claire, Canada) were dissolved in
200 mM HClO4 (Sigma-Aldrich, Steinheim, Germany), whereas γ-aminobutyric acid
(Sigma-Aldrich, Steinheim, Germany) and 4-aminobutyric-2,2,3,3,4,4-d6 acid (GABAd6)
(EQ Laboratories GmbH, Augsburg, Germany) stock solutions were prepared in 10%
methanol (MeOH) (LC-MS grade, Thermo Fisher Scientific, Waltham, MA, USA). Serotonin
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hydrochloride (Alfa Aesar), serotonin-α,α,β,β-d4 creatinine sulfate complex (SRTd4) (CDN
Isotopes, Pointe-Claire, Canada), acetylcholine chloride (Sigma-Aldrich, Steinheim, Ger-
many) and acetylcholine-1,1,2,2-d4 chloride (AChd4) (EQ Laboratories GmbH, Augsburg,
Germany) were dissolved in bidistilled water. The deuterated analogue of the respective
neurotransmitter was taken as an internal standard.

4.3. Sample Preparation and Neurotransmitter Extraction

Synchronous L4 stage wildtype, cat-2∆ and ace-1∆::ace-2∆ worms were washed off
from NGM agar plates using 85 mM NaCl + 0.01% Tween. The washing procedure was
repeated three times to ensure samples were free of E. coli. Of each respective strain,
3000 worms were pelletized in 50 µL 85 mM NaCl by centrifugation at 380 g, frozen in
liquid nitrogen and stored at −80 ◦C. Extraction buffer (2 mM sodium thiosulfate, 2.5 mM
HClO4, 10% MeOH LC-MS grade, 25 mM DAd4, 25 mM SRTd4, 25 mM AChd4 and 500 mM
GABAd6) was freshly prepared right before sample preparation. Samples were kept on
ice during sample preparation and extracted samples were analyzed immediately by LC-
MS/MS. In the first step, worm pellets were defrosted and 100 µL extraction buffer was
added, as well as zirconia beads (biolab products, Bebensee, Germany). To homogenize the
samples: 4× freeze–thaw cycles (1 min 37 ◦C, 1 min liquid nitrogen) followed by 4 × 20 sec
bead beating by usage of a Bead Ruptor (biolab products, Bebensee, Germany). After
centrifugation for 10 min at 16,060× g at 4 ◦C, 100 µL of the supernatant was transferred to
a Spin-X® Centrifuge Tube Filter 0.22 µm (Corning, Amsterdam, The Netherlands) and cen-
trifugation was repeated. An aliquot was transferred to a vial with insert and analyzed via
LC-MS/MS, while the rest was used for protein quantification for normalization measured
by bicinchoninic acid assay [66].

4.4. LC-MS/MS Parameters

All analyses were conducted using an Agilent 1290 Infinity II liquid chromatogra-
phy system (Agilent, Waldbronn, Germany) coupled with a Sciex QTRAP 6500+ triple
quadrupole mass spectrometer (Sciex, Darmstadt, Germany) interfaced with an electro-
spray ion source, which operated in positive ion mode. Chromatographic separation was
performed using a YMC-Triart PFP (pentafluorophenyl) column (3 µm, 3 × 150 mm) and
an additional precolumn (3 µm, 3 × 10 mm) of the same column material. The elution of
neurotransmitters was carried out with bidistilled water + 10 mM formic acid (FA) (LC-MS
grade, Thermo Fisher Scientific, Waltham, MA, USA) and acetonitrile (ACN) (LC-MS grade,
VWR, Darmstadt, Germany) + 10 mM FA. Three µL of the sample was injected. Analytes
were eluted with a flow of 0.425 mL min−1 from the column, which was pre-heated to
30 ◦C. Total run time was 12 min, which was divided in a gradient with 0% ACN for 3 min,
0 to 60% ACN for 6 min, 60 to 100% ACN for 0.5 min, 100% ACN for another 0.5 min, 100
to 0% ACN for 0.5 min and 0% ACN for re-equilibration for 1.5 min. Analysis was carried
out in scheduled multiple reaction monitoring (sMRM) mode with detection windows of
±40 sec of the respective retention times (Table 1). Ion source parameters optimization
was performed with standard solutions of DA, SRT, GABA and ACh using the Compound
Optimization software wizard of the Sciex Analyst Software (Version 1.7.2). The following
parameters were determined: ion spray voltage = 4000 V, curtain gas (N2) = 40 psi, nebu-
lizer gas = 60 psi, drying gas = 50 psi, collision (CAD) gas = medium, temperature = 600 ◦C,
entrance potential = 10 V. The dwell time for all analytes and deuterated standards was set
to 20 ms. Mass transitions for the analytes and internal standards as well as the respective
optimized collision energy (CE), declustering potential (DP) and collision cell exit potential
(CXP) are listed in Table 1.

4.5. Method Validation

Method validation was carried out according the “ICH guideline Q2(R2) on validation
of analytical procedures” of the European Medicines Agency. Linear range, limit of detec-
tion (LOD), limit of quantification (LOQ), recovery, accuracy and intraday and interday
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precision were assessed for method validation. To investigate linear ranges, LODs and
LOQs, solutions with fixed amounts of matrix (wildtype) and deuterated internal standards
were added with neurotransmitter standards in a range of 0–500 nM for DA, SRT and ACh
and 0–10 µM for GABA, and analyzed twice. Peak areas of the analytes were normalized
to the respective internal standards, plotted against the added concentrations and after-
wards examined for linear correlation. Signal-to-noise ratios (S/N) were calculated using
Multiquant Software (Sciex, Version 3.0.3) and plotted against the added concentrations; the
slopes were determined subsequently. LOD and LOQ were defined as LOD = 3 × SDy/b
(SDy = standard deviation of analyte concentration in ≥12 blank measurements, b = slope of
calibration curve) and LOQ = 10 × SDy/b. To assess the recovery of the deuterated internal
standards in matrix, eight samples containing extraction buffer only and eight samples with
worm matrix in extraction buffer were analyzed. Recovery was defined as the ratio of the
area of internal standards with to that without matrix. For accuracy, matrix-free samples
with low (25 nM), middle (250 nM) and high (2.5 µM) amounts of all neurotransmitters
added along with 250 nM of deuterated standards were analyzed twelve times. Accuracy
was calculated in percent by how much of the neurotransmitters was actually detected. To
determine precision, intraday variation of eight wildtype worm samples pelletized and
analyzed on the same day, and interday variation of six wildtype worm samples, each
pelletized and analyzed on six different days, were assessed. Samples were normalized
for protein content for examination of intraday as well as interday precision. Precision is
stated as relative standard deviation in percent (RSD%) of the above-mentioned samples.

4.6. Aldicarb-Induced Paralysis Assay

Synchronous L1 stage worms were placed on NGM plates as mentioned above for
72 h until the young adult stage. The assay was performed based on Mahoney et al. [27]. In
brief, a 100 mM aldicarb (Sigma-Aldrich, Steinheim, Germany) stock solution was prepared
in 70% ethanol. For plates with 2 mM aldicarb, NGM agar was set up as previously
described [42,43] and added with aldicarb for desired concentration. Three mL portions
were poured into 3.5 cm petri dishes and stored at 4 ◦C. The plates were coated at the very
beginning of the experiment with 2 µL of E. coli strain OP50 to concentrate worms in the
middle of the plates. The assay was always performed as a blinded experiment. Of each
genotype, 20–25 worms were placed on an aldicarb-containing plate, which were left at
room temperature during the assay procedure. Every 60 min, the number of total and
paralyzed worms was counted. Worms were defined as paralyzed if they demonstrated no
movement after prodding carefully with a platinum wire against head and tail.

4.7. Statistics

Statistical analysis was performed using GraphPad Prism 6 (GraphPad Software,
La Jolla, CA, USA) via unpaired t-test. Significance levels with α = 0.05 are depicted as *:
p ≤ 0.05, **: p ≤ 0.01 and ***: p ≤ 0.001, compared to wildtype worms.

5. Conclusions

In summary, here (1) we developed a novel liquid chromatography–tandem mass
spectrometry (LC-MS/MS) method, which enables simultaneous neurotransmitter quantifi-
cation of dopamine (DA), serotonin (SRT), γ-aminobutyric acid (GABA) and acetylcholine
(ACh) in the nematode, C. elegans, an assay (2) which can readily be applied to other matri-
ces. (3) Furthermore, the LC-MS/MS method combined with isotope-labeled standards
provides exquisite sensitivity and specificity, (4) providing a validated analytical method
for the assessment of altered neurotransmission and neurotoxicity. Our analytical method
allows the quantification of neurotransmitters and their ratios as a convenient tool for
the identification of mechanisms that mediate neurotoxicity, and it should be helpful in
identifying possible putative therapeutic approaches and targets. Neurotoxicity assessment
in C. elegans is commonly carried out by behavioral assays, which provide a sensitive assay
for altered neurological behaviors, but are unable to characterize neurotransmitter levels.
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Other than C. elegans species-specific behavioral assays, our method is equally applicable
to other tissues and matrices.
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34. Şanlı, N.; Tague, S.E.; Lunte, C. Analysis of amino acid neurotransmitters from rat and mouse spinal cords by liquid chromatogra-
phy with fluorescence detection. J. Pharm. Biomed. Anal. 2015, 107, 217–222. [CrossRef] [PubMed]

35. An, J.; Chen, M.; Hu, N.; Hu, Y.; Chen, R.; Lyu, Y.; Guo, W.; Li, L.; Liu, Y. Carbon dots-based dual-emission ratiometric fluorescence
sensor for dopamine detection. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 243, 118804. [CrossRef]

36. Sun, F.; Zeng, J.; Jing, M.; Zhou, J.; Feng, J.; Owen, S.F.; Luo, Y.; Li, F.; Wang, H.; Yamaguchi, T.; et al. A Genetically Encoded
Fluorescent Sensor Enables Rapid and Specific Detection of Dopamine in Flies, Fish, and Mice. Cell 2018, 174, 481–496.e19.
[CrossRef] [PubMed]

37. Sun, J.; Feng, A.; Wu, X.; Che, X.; Zhou, W. Enhanced Tb(III) fluorescence on gelatin-coated silver nanoparticles in dopamine
detection. Talanta 2021, 231, 122334. [CrossRef]

38. Wu, J.; Wiegand, R.; LoRusso, P.; Li, J. A stable isotope-labeled internal standard is essential for correcting for the interindividual
variability in the recovery of lapatinib from cancer patient plasma in quantitative LC-MS/MS analysis. J. Chromatogr. B Analyt.
Technol. Biomed. Life Sci. 2013, 941, 100–108. [CrossRef] [PubMed]

39. Carreño, F.; Helfer, V.E.; Staudt, K.J.; Olivo, L.B.; Barreto, F.; Herrmann, A.P.; Rates, S.M.K.; Dalla Costa, T. Quantification of
neurotransmitters in microdialysate samples following quetiapine dosing to schizophrenia phenotyped rats using a validated
LC-MS/MS method. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020, 1155, 122282. [CrossRef] [PubMed]

40. Xu, H.; Wang, Z.; Zhu, L.; Sui, Z.; Bi, W.; Liu, R.; Bi, K.; Li, Q. Targeted Neurotransmitters Profiling Identifies Metabolic Signatures
in Rat Brain by LC-MS/MS: Application in Insomnia, Depression and Alzheimer’s Disease. Molecules 2018, 23, 2375. [CrossRef]

41. Tufi, S.; Leonards, P.; Lamoree, M.; de Boer, J.; Legler, J.; Legradi, J. Changes in Neurotransmitter Profiles during Early Zebrafish
(Danio rerio) Development and after Pesticide Exposure. Environ. Sci. Technol. 2016, 50, 3222–3230. [CrossRef]

42. Fuertes, I.; Barata, C. Characterization of neurotransmitters and related metabolites in Daphnia magna juveniles deficient in
serotonin and exposed to neuroactive chemicals that affect its behavior: A targeted LC-MS/MS method. Chemosphere 2021,
263, 127814. [CrossRef]

43. Daubner, S.C.; Le, T.; Wang, S. Tyrosine hydroxylase and regulation of dopamine synthesis. Arch. Biochem. Biophys. 2011, 508, 1–12.
[CrossRef]

44. McHardy, S.F.; Wang, H.-Y.L.; McCowen, S.V.; Valdez, M.C. Recent advances in acetylcholinesterase Inhibitors and Reactivators:
An update on the patent literature (2012-2015). Expert Opin. Ther. Pat. 2017, 27, 455–476. [CrossRef]

https://doi.org/10.1016/j.taap.2018.03.016
https://doi.org/10.1002/jat.3357
https://doi.org/10.3233/JPD-171258
https://www.ncbi.nlm.nih.gov/pubmed/29480229
https://doi.org/10.2174/1381612828666220915103502
https://www.ncbi.nlm.nih.gov/pubmed/36111767
https://doi.org/10.1242/dmm.046110
https://www.ncbi.nlm.nih.gov/pubmed/33106318
https://doi.org/10.3389/fragi.2022.916118
https://www.ncbi.nlm.nih.gov/pubmed/35821838
https://doi.org/10.1016/S0896-6273(00)81199-X
https://doi.org/10.1038/srep22940
https://doi.org/10.1038/nprot.2006.281
https://doi.org/10.1016/j.neuro.2020.01.003
https://doi.org/10.3389/fnmol.2021.780396
https://doi.org/10.1016/j.talanta.2015.05.057
https://doi.org/10.1016/j.jchromb.2005.01.008
https://doi.org/10.3390/biom9100624
https://doi.org/10.1016/j.jpha.2011.04.003
https://doi.org/10.1016/j.jpba.2014.12.024
https://www.ncbi.nlm.nih.gov/pubmed/25596498
https://doi.org/10.1016/j.saa.2020.118804
https://doi.org/10.1016/j.cell.2018.06.042
https://www.ncbi.nlm.nih.gov/pubmed/30007419
https://doi.org/10.1016/j.talanta.2021.122334
https://doi.org/10.1016/j.jchromb.2013.10.011
https://www.ncbi.nlm.nih.gov/pubmed/24189203
https://doi.org/10.1016/j.jchromb.2020.122282
https://www.ncbi.nlm.nih.gov/pubmed/32771966
https://doi.org/10.3390/molecules23092375
https://doi.org/10.1021/acs.est.5b05665
https://doi.org/10.1016/j.chemosphere.2020.127814
https://doi.org/10.1016/j.abb.2010.12.017
https://doi.org/10.1080/13543776.2017.1272571


Molecules 2023, 28, 5373 15 of 15

45. Oh, K.H.; Kim, H. Aldicarb-induced paralysis assay to determine defects in synaptic transmission in Caenorhabditis elegans.
Bio-protocol 2017, 7, e2400. [CrossRef]

46. Rand, J.B. Acetylcholine. WormBook 2007, 72, 362. [CrossRef]
47. Bhat, S.; El-Kasaby, A.; Freissmuth, M.; Sucic, S. Functional and Biochemical Consequences of Disease Variants in Neurotransmitter

Transporters: A Special Emphasis on Folding and Trafficking Deficits. Pharmacol. Ther. 2021, 222, 107785. [CrossRef]
48. Rizzi, G.; Tan, K.R. Dopamine and Acetylcholine, a Circuit Point of View in Parkinson’s Disease. Front. Neural Circuits 2017,

11, 110. [CrossRef]
49. Sanchez-Catasus, C.A.; Bohnen, N.I.; D’Cruz, N.; Müller, M.L.T.M. Striatal Acetylcholine-Dopamine Imbalance in Parkinson

Disease: In Vivo Neuroimaging Study with Dual-Tracer PET and Dopaminergic PET-Informed Correlational Tractography. J. Nucl.
Med. 2022, 63, 438–445. [CrossRef]
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