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Abstract: Biofilm-associated infections exert more severe and harmful attacks on human health since
they can accelerate the generation and development of the antibiotic resistance of the embedded
bacteria. Anti-biofilm materials and techniques that can eliminate biofilms effectively are in urgent
demand. Therefore, we designed a type I photosensitizer (TTTDM) with an aggregation-induced
emission (AIE) property and used F-127 to encapsulate the TTTDM into nanoparticles (F-127 AIE
NPs). The NPs exhibit highly efficient ROS generation by enhancing intramolecular D–A interaction
and confining molecular non-radiative transitions. Furthermore, the NPs can sufficiently penetrate
the biofilm matrix and then detect and eliminate mature bacterial biofilms upon white light irradiation.
This strategy holds great promise for the rapid detection and eradication of bacterial biofilms.

Keywords: aggregation-induced emission; type I photosensitizer; biofilm; bacterial imaging;
anti-biofilm materials

1. Introduction

Bacteria are ubiquitous and they hold strong connections with our health. Some
bacteria can cause infections [1,2]. Pathogenic bacterial infections are seriously threatening
to public health. Moreover, many infections can also indirectly promote the occurrence and
progression of other diseases, such as cancer and tuberculosis [3–5]. Notably, bacteria can
self-aggregate and form an interactable community called a biofilm [6–9]. Biofilms refer
to the intricate three-dimensional aggregation of bacteria attached to a surface and that
are buried inflexibly in an extracellular polymeric substance (EPS) matrix [10]. Generally,
the EPS matrix is composed of secreted polymers such as polysaccharides, extracellular
DNA (e-DNA), proteins, and amyloidogenic proteins [11–13]. Bacterial biofilms can be
formed in diverse environments, and biofilm-associated infections exert more severe and
harmful attacks on human health since they can accelerate the generation and development
of the antibiotic resistance of the embedded bacteria [14,15]. In addition, the biofilm matrix
offers a protective layer for the bacteria from pH fluctuations, nutrient deficiency, and
mechanical forces, leading to superbug concerns [16–18]. Therefore, anti-biofilm materials
and techniques are in urgent demand.

During the past decades, abundant anti-biofilm strategies have been proposed, investi-
gated, and developed. Antibiotics are the most frequently and widely adopted strategy for
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the treatment of biofilm-related infections. However, compared with planktonic bacteria,
an up to 1000-fold antibiotic dosage is required to eradicate the bacterial cells swathed in
the biofilm [19]. And the extensive use of antibiotics has led to more severe multi-drug
resistance generation, leading to a shortage of applicable antibiotic pipelines [20,21]. Conse-
quently, other non-antibiotic anti-biofilm strategies have been developed, such as cationic
polymer brushes [22], herbal active compounds [23], proteases and DNase [24], antimi-
crobial peptide (AMP) [25], and photoactive materials [26]. Unlike antibiotics, instead of
targeting a specific metabolic pathway, those antimicrobial agents can attack multiple sites
on bacterial structures [27,28]. They can kill bacteria through blocking DNA replication,
altering bacterial gene expression, denaturing enzymes, or damaging bacterial membranes.
Recently, extracts from plants were reported to regulate biofilm formation and break down
existing biofilms by inhibiting the quorum-sensing pathway [29]. However, the molecular
structures of plant-derived extracts with anti-biofilm activity are hard to identify and hinder
further applications. Some enzymes can be utilized as a certain biofilm-dispersing agent
such as polysacchradelyases and DNases that are able to disrupt extracellular polysaccha-
ride substances and digest DNA in the matrix [30,31]. However, it is still challenging for
enzymes to differentiate bacterial infection sites from normal living tissues. Antimicrobial
peptide and polymer brushes can be utilized for fighting against bacteria through the
membrane disruption mechanism of their cationic portions [32]. Although these novel ma-
terials played a significant role in defeating biofilms, they suffered from tedious synthesis,
complicated protocols, and limited antifouling abilities. Therefore, anti-biofilm materials
with simpler preparation procedures, higher stabilities in physiological environments, and
universal anti-biofilm abilities are required.

Photodynamic therapy (PDT) is an emerging clinical treatment method owing to
its superior merits such as its spatial-temporal controllability, high efficiency, and non-
invasiveness [33]. The PDT technique also shows promising treatment abilities towards
drug-resistant bacteria and biofilms. Basically, reactive oxygen species (ROS) can be gener-
ated by photosensitizers upon light irradiation and can then kill bacteria or destroy biofilms
by interacting with the bacteria or key components and causing oxidative damage to the
vital cellular components of the bacteria [22]. Thus, the efficiency of photosensitizers plays
an important role in PDT. However, conventional photosensitizers such as porphyrins and
rose bengal suffer from the aggregation-caused quenching (ACQ) effect due to their strong
π–π interaction in aggregates [34]. Because strong π–π stacking can greatly accelerate
the non-radiative decay of the exciton, it thereby reduces the efficiency of intersystem
crossing (ISC) and ROS generation. The ACQ phenomenon can not only lead to reduced
fluorescence signals but also cause compromised photosensitization efficiencies at high
concentrations or aggregate states. Fortunately, photosensitizers with aggregation-induced
emission (AIE) characteristics can address these issues [35]. Under light irradiation, the AIE
PSs, in their triplet excited state, transfer energy to the surrounding O2 to generate singlet
oxygen [36]. The 1O2 production efficiency is highly dependent on the amount of O2 in the
surrounding area, thus the PDT outcome of the type II PSs is extremely hindered by tissue
oxygenation. On the contrary, the type I PSs produce free radicals in a different mechanism.
A hydrogen or electron transfer process occurs between the triplet excited states of PSs and
the substrate, which can interact instantaneously with O2, or other molecules to produce
superoxide radicals, hydroxyl radicals, and other oxygen-related radicals [37–39]. In other
words, type I PSs show that less oxygen-dependent properties are better alternatives for
anti-biofilm treatment.

Furthermore, an efficient ISC process is widely recognized as one of the key factors
for effective ROS generation. The construction of molecules with high electron donor
(D)–acceptor (A) strength usually represents an effective strategy to accelerate the ISC
process owing to the decreased singlet–triplet energy gap caused by separating the highest
occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO)
distribution [40]. In this contribution, we designed and synthesized a type I AIE PS by intro-
ducing strong electron donor and electron acceptor pairs with a π-bridge. The strong donor
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and acceptor system can greatly separate the HOMO–LUMO distribution to decrease ∆Est.
Meanwhile, the strong electron withdrawing unit can also significantly shift the molecule
emission to the near-infrared region. To enhance the penetration ability of the hydrophobic
molecule into the biofilm, we encapsulated the AIE PSs using a biocompatible polymer
F-127. Moreover, the restriction of intramolecular motion in the aggregate state can signifi-
cantly enhance ROS generation efficiency by prohibiting energy dissipation. F-127 AIE NPs
showed high ROS generation ability compared with the commercial photosensitizer rose
bengal. In our work, F-127-encapsulated AIE NPs can also act as a fluorescent biomarker
for biofilm. Due to their electrically neutral properties, F-127 AIE NPs can interact better
with the biofilm matrix compared with individual bacteria. With the help of F-127 AIE NPs’
initial photosensitizing ability, the labeled biofilm can be ablated upon light irradiation
through PDT (Figure 1).
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biofilm imaging and ablation.

2. Result and Discussion
2.1. Molecular Design and Synthesis

In general, the integration of strong electron donating–accepting groups into the
conjugated fluorophores could greatly facilitate intramolecular charge transfer (ICT) and
enhance D–A strength, thus resulting in high ROS generation efficiency as well as longer
absorption and emission wavelengths [41]. As depicted in Scheme 1, the target compound
possessed a conjugated D–A structure. The synthetic route of the designed compound
was presented in Scheme 1. The tetraphenylethene derivative 1-(4-bromophenyl)-2,2-bis(4-
methoxyphenyl)-1-phenylethene was utilized as the starting material. Compound 1 was
synthesized using Buchwald–Hartwig coupling with aniline using Pd2(dba)3 and tri-tert-
butylphosphine as a catalyst/ligand combination in toluene with an 80% yield. Then, the
bis-arylamine 1 reacted with 1-bromo-4-iodobenzene, copper(I) iodide, and potassium
hydroxide in C-N coupling, delivering compound 2 in a 79% yield. Next, compound 2
underwent the Suzuki reaction with 5-formyl-2-thiopheneboronic acid to give compound
3 in a yield of 90%. By condensing compound 3 with 2-(3,5,5-trimethyl-2-cyclohexen-1-



Molecules 2023, 28, 5368 4 of 13

ylidene) in ethanol, the target molecule 4 (TTTDM) was obtained in a good yield of 87%.
The structure of the TTTDM and intermediates were fully characterized using 1H NMR,
high-resolution mass spectra (HRMS) in the Supporting Materials.
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Scheme 1. Synthetic route of TTTDM.

2.2. Photophysical Properties of TTTDM and F-127 AIE Nanoparticles

Firstly, the photophysical properties of TTTDM were investigated. Benefiting from
the enhancement of D–A strength, emission wavelengths of TTTDM reached the near-
infrared region (Figure 2A,B). The maximum emission peaked at 689 nm, implying the
possibility of near infrared (NIR) imaging. In addition, HOMO electron densities of TTTDM
were primarily distributed in methoxy-TPE and benzenamine moieties, while the LUMO
was localized over the other thiophene and cyano fragments (Figure S1), indicating the
separated HOMO–LUMO and typical D–A structural features.

The AIE characteristics of the compound were further studied by monitoring their
emission behaviors in THF/H2O mixtures with different water fractions. As shown in
Figure 2D–F, TTTDM only gave a weak fluorescence in a pure THF solution. When the
water fraction (f w) was increased from 0 to 60%, emission wavelengths were slightly red-
shifted. This could be attributed to an increase in the solvent polarity and TICT mechanism.
When f w reached over 60%, the fluorescence emission intensity enhanced dramatically,
indicating the typical AIE feature of this compound.

To improve its water solubility and biocompatibility, the relatively hydrophobic
TTTDM was encapsulated into nanoparticles via the nano-precipitation method using
an amphiphilic Pluronic F-127. Using dynamic light scattering (DLS), the average hydro-
dynamic diameter of F-127 AIE nanoparticles was determined to be ~108 nm (Figure 2C),
which is beneficial to efficient accumulation at the biofilm matrix for fluorescence imaging
and anti-biofilm PDT. Likewise, the F-127-encapsulated nanoparticles exhibited uniform
morphology as demonstrated in TEM images shown in Figure 2C. What is more, the zeta
potential was 0.3 mV, which is close to electrical neutrality.
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Figure 2. (A) Normalized absorption spectra of TTTDM and F-127 AIE NPs. (B) Normalized
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fractions (f w). (E) The plots of the relative emission intensity (I/I0) of TTTDM against f w. (F) Zeta
potential of F-127 AIE NPs.

2.3. ROS Generation Ability of F-127 AIE Nanoparticles

To verify our design strategy, the type I ROS generation capacities of TTTDM were
assessed. First of all, we evaluated the total ROS generation abilities of the commer-
cial photosensitizer rose bengal (RB) and F-127 AIE NPs. Then, a classic ROS indicator
dichlorodihydrofluorescein (DCFH), which can easily be oxidized using any type of ROS
to fluorescent dichlorofluorescein (DCF), was applied. In order to make the results more
reliable, we used the commercially available RB as a reference and also set a blank control
group with DCFH (5 µM) alone. As shown in Figure 3A, under the irradiation of white
light, the fluorescence intensity (525 nm) of DCF showed rapid growth in the presence
of F-127 AIE NPs (1 µM), which indicates the fast generation of ROS. After 14 min, the
emission intensity of DCF reached a plateau which was about 420-fold higher than the
initial intensity. In contrast, the emission intensity of DCF in the presence of RB (1 µM) also
showed a rapid enhancement in the first 2 min of white light eradiation, but after that, the
upward trend slowed down significantly and eventually stalled at nearly 120-fold higher
than the initial fluorescence intensity. Meanwhile, the irradiated solution with DCFH alone
showed no apparent enhancement in the emission intensity. The above results indicate
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that F-127 AIE NPs showed superior total ROS production efficiency when compared
with RB. In our theoretical calculation result, the calculated singlet–triplet energy gap of
TTTDM is relatively small. It is believed that the donor–acceptor strength contributed to the
significant generation of ROS (Figure S1). Furthermore, the ROS type that was generated
by F-127 AIE NPs was determined by other ROS indicators, including hydroxyphenyl fluo-
rescein (HPF) as an •OH indicator, dihydrorhodamine 123 (DHR123) as an O2

•− indicator,
and 9,10-anthracenediyl bis(methylene)dimalonic acid (ABDA) as an 1O2 indicator. The
HPF can be served as an •OH indicator as its reaction product emits green fluorescence
centered at 515 nm. As shown in Figure 3B, HPF alone has almost no fluorescence intensity
enhancement at 515 nm after white light irradiation. However, the emission intensity of
HPF solution shows obvious enhancement in the presence of AIE NPs, which certifies
that F-127 AIE NPs have the capability to produce •OH via a type I process. Meanwhile,
Figure 3C indicates that F-127 AIE NPs are also capable of generating O2•− through a
type I process with a superior production rate and total quantity when compared with RB.
Furthermore, to exclude the contribution of 1O2 to ROS production, ABDA was used to
selectively detect 1O2. As shown in Figure 3D, under white light irradiation with different
times, the absorption peak at 378 nm of ABDA slightly decreased with F-127 AIE NPs or
nothing added, revealing the poor 1O2 generation ability. Taken together, F-127 AIE NPs
have superior total ROS generation efficiency than RB through the type I pathway, which
makes them a more competitive photosensitizer when utilized in hypoxia environments.
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2.4. Bacteria and Biofilm Imaging

Aiming to investigate the imaging ability of F-127 AIE NPs on planktonic bacteria
using confocal laser scanning microscopy (CLSM), P. aeruginosa was employed as the
preliminary representative bacteria. Bacteria-infected Luria–Bertani (LB) broth medium
was first added to a confocal dish with a glass coverslip at the bottom, providing a platform
for successive bacterial attachment, bacterial auto-aggregation, and biofilm formation.
After a certain incubation period, bacteria were stained with 80 µM F-127 AIE NPs for
60 min and imaged under a confocal microscope. As shown in Figure 4, red emission was
observed over the dense P. aeruginosa plaque, while very weak red emission was found for
bacterial individuals. What is more, the bacteria plaque morphology can be observed in
3D confocal images with the help of F-127 AIE NPs staining. The appearance of bacterial
plaque clumps is indicative of biofilm formation, which is regarded as a dynamic matrix
layer consisting of EPS; mainly, extracellular polysaccharides. Once F-127 AIE NPs were
attached to the biofilm surface, they then gradually diffused into the matrix environment,
as reflected by the fluorescent signal in Figure 4. In this case, F-127 AIE NPs were believed
to be trapped in the sticky dynamic bacterial-synthesized polymeric film, thus labeling the
biofilm area with red emission.
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P. aeruginosa stained with TTTDM (10 µM) and F-127 AIE NPs (10 µM) for 6 h taken under a confocal
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2.5. Anti-Biofilm Treatment

Encouraged by excellent ROS generation and selective targeting ability, the killing
capability of F-127 AIE NPs to P. aeruginosa biofilm was further examined. As presented in
Figure 5, after the treatment of P. aeruginosa with F-127 AIE NPs for 6 h, bacterial aggregation
with bright red emission was observed, while some individual bacteria were not labeled.
Meanwhile, it was found that the size of bacterial clumps enlarged with an increasing
F-127 AIE NP dose from 10 to 80 µM. Although bacterial auto-aggregation processes were
still poorly understood, it was generally regarded as a phenomenon that occurred under
external conditional changes, such as temperature fluctuation, nutrient starvation, and
other external stress [42]. The results suggested F-127 AIE NPs could act as an external
substance that drives the bacteria to initiate a series of protective mechanisms through
the auto-aggregation process. Inspired by the excellent performance of F-127 AIE NPs
in detecting and grouping bacteria, the anti-biofilm performance was further explored.
An amount of 80 µM of F-127 AIE NPs were incubated with P. aeruginosa mature biofilms
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and then treated with and without white light (40 mW cm−2) for 10 min. Crystal violet
(CV) staining was employed to quantify the biomass. CV is a basic dye, and it binds to
negatively charged surface molecules and polysaccharides in the extracellular matrix. As
the results show in Figure 6, F-127 AIE NPs together with white light irradiation could
significantly reduce the biomass of a biofilm when compared with NPs alone.
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Following the excellent performance of F-127 AIE NPs in biofilm imaging, CLSM was
also applied to confirm the biofilm inhibition ability with F-127 AIE NPs. As illustrated in
Figure 7, a layer of biofilm with red fluorescence from F-127 AIE NPs is observed for the
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dark group. However, merely a few cluster molecules are observed in the CLSM image
in the light group. Such obvious comparison demonstrated F-127 AIE NPs can efficiently
inhibit biofilm formation under phototoxicity. In addition, as shown in Figure S2 in the
Supporting Materials, dispersing the biofilms of the light group and dark group in PBS can
also clearly highlight the biofilm of the light group breaking up, while the biofilm of the dark
group is still in a turbid state. As shown in Figure S3, scanning electron microscopy (SEM)
images revealed biofilm morphology changes before and after photodynamic treatment
(Figure S3). The SEM results reflect that the treated bacteria exhibited rupture and uneven
morphology in comparison with the bacterial control group with a well-defined bacterial
shape and borders.
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3. Conclusions

In this work, we utilized a facile design strategy of intramolecular D–A interaction
enhancement designed TTTDM, which resulted in desirable efficient type I ROS generation
and fluorescence in the NIR region. The strategy solves the problem of type II PSs for
hypoxia-overcoming PDT, which is beneficial for biofilm eradiation. More importantly, the
F-127 AIE NPs can successfully stain biofilms and boost their auto-aggregation process.
With the help of good ROS generation ability, the labeled biofilm was ablated upon light
irradiation. As biofilm-embedded bacteria have strong drug resistance, this work provides
a sufficient method that can detect and eliminate biofilm-associated infection.

4. Experimental Sessions
4.1. Materials

All the solvents and reagents used in this work were of analytical grade. The bio-
logical chemical reagents 9, 10-anthracenediyl-bis (methylene)-dimalonic acid (ABDA),
2′,7′-dichlorodihydrofluorescein diacetate (H2DCF-DA), and crystal violet were offered
from aladdin Co. 2-(3,5,5-Trimethyl-2-cyclohexen-1-ylidene)propanedinitrile was pur-
chased from Macklin Biochemical Co., Ltd. (Shanghai, China) 1,1′-[2-(4-Bromophenyl)-
2-phenylethenylidene]bis[4-methoxybenzene] and Pluronic F-127 were customized from
Bidepharm Co., Ltd. (Shanghai, China) Aniline, Pd2(dba)3, Pd(dppf)Cl2, P(t-Bu)3, 1-bromo-
4-iodobenzene, malononitrile, and the solvents were purchased from J&K Co., Ltd. (Hong
Kong, China)

4.2. Instrument and Characterization
1H and 13C NMR spectra were measured on a Bruker AVANCE NEO 500 NMR spec-

trometer using CDCl3 as a solvent. High-resolution mass spectra were obtained using
a Xevo G2-XS Q-Tof mass spectrometer. UV–Vis absorption spectra were measured on
a PerkinElmer LAMBDA 465 spectrophotometer. Fluorescence emission spectra were
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recorded using a Techcomp FL970 spectrofluorometer. The hydrodynamic diameter of
F-127 AIE nanoparticles were determined through dynamic light scattering on a parti-
cle size analyzer Malvern Zetasizer Nano ZSP. Transmission electron microscopy (TEM)
investigations were carried out on a JEM-F200 microscope.

4.3. Synthesis and Purification
4.3.1. Synthesis of 1

A solution of 1,1′-[2-(4-bromophenyl)-2-phenylethenylidene]bis[4-methoxybenzene]
(2.35 g, 5 mmol), substituted aniline (6.5 mmol), tri-tert-butylphosphine (16.2 mg, 0.08 mmol),
Pd2(dba)3 (64 mg, 0.07 mmol), and sodium tert-butoxide (625 mg, 6.5 mmol) was refluxed
under nitrogen in dry toluene (30 mL) at 110 ◦C for 24 h. After cooling to room temperature,
the solvent was removed through evaporation under reduced pressure. Water (30 mL)
and chloroform (200 mL) were then added. The organic layer was separated and washed
with brine, dried over anhydrous MgSO4, and evaporated to dryness under reduced pres-
sure. The crude product was purified through column chromatography on silica gel using
hexane/chloroform (v/v = 5/1) as an eluent to afford compound 1. (Yield: 80%).

4.3.2. Synthesis of 2

Compound 1 (8.9 mmol) and 4-bromoiodobenzene (2.97 g, 10.6 mmol) were dissolved
in toluene (30 mL). After the solution was heated to 100 ◦C, CuI (0.15 g, 1.5 mmol) and
KOH (1.23 g, 22.0 mmol) were added under N2 purge. The mixture was refluxed for 48 h at
120 ◦C. After being cooled, the mixture was washed with H2O (50 mL) three times, and
the organic phase was dried over Na2SO4. After removal of the solvent, the residual was
purified on a silica gel column with ethyl acetate/petroleum (v/v = 1/40) as the eluent,
giving compound 2. (Yield: 75%).

4.3.3. Synthesis of 3

A mixture of compound 2 (1.0 eq), (5-formylthiophen-2-yl) boronic acid (2.0 eq).
Pd(dppf)Cl2 (10 mol%), and K2CO3 (5.0 eq) were added in mixed solvent (MeOH/toluene,
v/v = 1/1). The reaction mixture was heated to 75 ◦C for 16 h. The reaction mixture
was then filtered, and the solvent was removed. The residue was dissolved in DCM and
washed using water. The combined organic layer was dried using MgSO4 anhydrous
and then filtered. Solvent was removed and the residue was purified through silica gel
chromatography, giving compound 3. (Yield: 55%).

4.3.4. Synthesis of 4

The mixture of compound 4 (1.0 eq) and 2-(3,5,5-Trimethyl-2-cyclohexen-1-ylidene)
propanedinitrile (2.0 eq) in dry EtOH was refluxed for 72 h at 78 ◦C. After being cooled,
the solvent was removed, and the residual was purified on a silica gel column with
dichloromethane/petroleum (v/v = 1/20) as the eluent. Pure AIEgens were obtained.
(Yield: 87%).

4.4. Preparation of F-127 AIE Nanoparticles

Pluronic F-127 (4 mg) and TTTDM (1 mg) were dissolved in THF (1 mL), respectively,
and then mixed uniformly after 2 min of sonication in a water bath. The mixtures of
TTTDM and F-127 were dispersed in ultrapure water (10 mL). After the THF evaporated,
the concentration of F-127 AIE nanoparcticles was obtained.

4.5. Detection of ROS Generation in Aqueous Solution

The commonly used DCFH–DA was used as an indicator to investigate the ROS
generation efficiency of AIEgens in aqueous solution. The pre-activated DCFH–DA solution
(DCFH, 40 µM) was added into the sample solution containing F-127 AIE NPs (0.2 µM).
Afterward, the mixed solutions were irradiated using white light (20 mW cm−2) over
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different time intervals. The fluorescence of the indicator at 525 nm triggered by AIEgen-
sensitized ROS was measured at the excitation of 488 nm.

4.6. Biofilm Culture

A single P. aeruginosa colony was transferred into 30 mL TSB medium followed by
vigorous agitation. An amount of 100 µL inoculated medium was placed into each well
of a 96-well plate then incubated at 37 ◦C for 7 days. A mushroom-like biofilm structure
could be found on the bottom of the well. For fluorescence imaging and SEM experiments,
the biofilms were cultured on cover glass using the same procedures.

4.7. Biofilm Dispersion Assay

An amount of 100 µL of the NPs at different concentrations was added into the wells.
Simultaneously, we used PBS and NP solution as the control group. Then, the biofilms were
incubated with the NPs for 6 h and, subsequently, irradiated with white light for 1 h. The
cells were fixed with methanol and then stained with 200 µL of 0.3% crystal violet (CV)
solution. After 30 min, the wells were vigorously rinsed at least four times with sterile PBS
to remove unbound dye, and 200 µL of 33% acetic acid was added to release the dye. The
biofilms were quantified using a microplate reader by measuring the absorbance after being
treated or not treated with the liposomes at 590 nm. Each concentration of material was
tested in five replicates, and three independent experiments were conducted for each group.
Simultaneously, the viability of biofilm cells was counted using the plate count method.

4.8. Fluorescence Imaging

The fluorescence imaging of the bacterial biofilm treated with F-127 AIE NPs under
white light irradiation was characterized through confocal laser scanning microscopy
(CLSM). P. aeruginosa biofilms were incubated with PBS, and F-127 AIE nanoparticles were
incubated with irradiation; then, a confocal microscope (Leica stellaris 8) was employed to
observe the bacteria in the biofilm.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules28145368/s1, Scheme S1. Synthesis of Type-I photosensitizer
TTTDM. 1H NMR Spectra of intermediate and TTTDM. Mass spectrum of TTTDM. Figure S1.
Theoretical calculation. Figure S2. Digital photos of biofilm samples. Figure S3. SEM images of
P. aeruginosa biofilms after treatment with different concentrations under light conditions (white light
30 mW cm−2 for 1 h). References [43,44] are cited in the supplementary materials.
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