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Abstract: The aim of this work is to effectively combine the advantages of polymer and ceramic
nanoparticles and improve the comprehensive performance of lithium-ion batteries (LIBs) diaphragm.
A flexible film composed of electro-spun P(VDF-HFP) nanofibers covered by a layer of mesoporous
silica (P(VDF-HFP)@SiO2) was synthesized via a sol–gel transcription method, then used as a scaffold
to absorb organic electrolyte to make gel a electrolyte membrane (P(VDF-HFP)@SiO2-GE) for LIBs.
The P(VDF-HFP)@SiO2-GE presents high electrolyte uptake (~1000 wt%), thermal stability (up to
~350 ◦C), ionic conductivity (~2.6 mS cm−1 at room temperature), and excellent compatibility with
an active Li metal anode. Meanwhile, F-doping carbon/silica composite nanofibers (F-C@SiO2)
were also produced by carbonizing the P(VDF-HFP)@SiO2 film under Ar and used to make an
electrode. The assembled F-C@SiO2|P(VDF-HFP)@SiO2-GE|Li half-cell showed long-cycle stability
and a higher discharge specific capacity (340 mAh g−1) than F-C@SiO2|Celgard 2325|Li half-cell
(175 mAh g−1) at a current density of 0.2 A g−1 after 300 cycles, indicating a new way for designing
and fabricating safer high-performance LIBs.

Keywords: composite materials; electro-spun nanofiber; gel electrolyte; carbonaceous anode;
lithium-ion batteries

1. Introduction

With the increasing demand for large-scale energy storage devices and portable elec-
tronic devices, energy storage components with a high energy density, such as lithium-ion
batteries, zinc-ion batteries, zinc-air batteries, as well as supercapacitors, have been boom-
ing [1–4]. For lithium-ion batteries, besides the optimization of the composition and
structure of electrode materials, many efforts have been exerted to enhance the perfor-
mance of electrolyte/separator membranes [5,6]. Compared with commercial polyolefin
separators, membranes made by poly(vinylidene fluoride) (PVDF) and its copolymers,
especially, poly(vinylidene fluoride-co-hexafluoropropylene)(P(VDF-HFP)), showed su-
perior safety property, shape flexibility, and scale ability because of their special chemical
characteristics [7,8]. Moreover, ceramic fillers such as TiO2, SiO2, and ZnO have often
been compounded with polymer membranes to improve their ionic conductivity, mechan-
ical strength, and thermal stability [9,10]. However, the inhomogeneous dispersion of
inorganic fillers in the polymer matrix results in a sharp decrease in the compatibility of
the two phases, affecting the practicability of separator membranes [11]. Therefore, to
improve the comprehensive properties of polymer/ceramic composite separators, technical
enhancement and structural modification are necessary and feasible [12–15]. For example,
Guo et al. [13] prepared a composite membrane by covering both sides of a commercial PP
membrane with SiO2/P(VDF-HFP) composite coating. The thin 700 nm ceramic/polymer
coating layer avoided obstructing ion conduction and significantly improved the thermal
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stability of the diaphragm. Wang et al. [14] reported an electro-spun PVDF-HFP composite
nanofiber membrane. The three-dimensional network structure composed of nanofibers
provides a large number of pores. In addition, proper doping of AgNWs@SiO2 and single-
ion conducting polymer electrolyte could obtain a greater liquid electrolyte adsorption
rate, hence improving the mechanical properties and thermal stability. Zhang et al. [15]
prepared electro-spun PVDF-HFP nanofiber membranes doped with functionalized silica
nanoparticles. The uniformly dispersed nano-particles in the polymer matrix effectively
promote the mechanical and electrical properties of the composite electrolyte, and the
introduction and fixing of anionic groups in the electrolysis of the gel polymer make the
assembled symmetrical lithium batteries show a high lithium-ion migration number and
excellent lithium plating/stripping performance.

Another way to enhance the comprehensive performance of secondary batteries is to
improve the interfacial contact of the separator and solid electrode [16–24]. For example,
Zhou et al. [21] reported that a 2 wt% LiF-coated garnet Li6.5La3Zr1.5Ta0.5O12 (LLZT)
surface could effectively isolate air and water, thus greatly reducing the generation of the
lithium-ion insulation layer and decreasing the interfacial resistance of composite LLZT
nanoparticles/electrode. Shen et al. [22] prepared a new integrated separator/positive
electrode by applying Zeolitic Imidazolate Framework-4 (ZIF-4)/PVDF slurry directly onto
the Li[Ni1/3Co1/3Mn1/3]O2 positive electrode. The organic/inorganic hybrid composite
diaphragm showed good thermal stability, a high absorption rate of liquid electrolyte, and
low interfacial resistance between the electrode and the separator. Wang et al. [23] applied
an in situ solid polymer layer directly onto the anode surface. The flexible conductive
polymer layer doped with lithium salt acted as an excellent anode protection film, effectively
improving the safety of the battery. More importantly, this solid polymer electrolyte
closely bonded with the electrode, resulting in low interface impedance of less than 100 Ω.
However, the abovementioned methods usually focus on the coating modification, ignoring
the enhancement of the structural compatibility of the solid electrolyte/solid electrode.

In this work, we provided a facile way to fabricate a high-performance separator as
well as improve interfacial contact between the solid separator and solid electrodes. A
composite film composed of P(VDF-HFP) nanofibers covered by a layer of mesoporous
silica (denoted as P(VDF-HFP)@SiO2) was fabricated through electrospinning followed
by sol–gel preparation. It was then applied as a separator as well as scaffold to absorb
organic electrolyte to make quasi-solid-state electrolyte (usually referring to gel electrolyte,
GE) for LIBs. Meanwhile, F-doping carbon/silica composite nanofibers (F-C@SiO2) were
also gained by carbonizing P(VDF-HFP)@SiO2 composite film. The electrochemical tests
showed that the P(VDF-HFP)@SiO2 separator presented high electrolyte uptake, ionic
conductivity, and excellent compatibility with active Li metal, and the F-C@SiO2 was
a promising LIBs anode material. The assembled F-C@SiO2|P(VDF-HFP)@SiO2-GE|Li
half-cell exhibited superior electrochemical performance as expected.

2. Results and Discussion
2.1. P(VDF-HFP)@SiO2 Composite Nanofiber Film

The morphology and structure of the obtained electro-spun P(VDF-HFP) nanofibers
and P(VDF-HFP)@SiO2 composite nanofibers are showed by their FE-SEM and TEM images
(Figure 1a–d). The P(VDF-HFP) nanofibers with a diameter of about 350 nm have a smooth
surface, uniform size, and are stacked together to make a three-dimensional network
film. After sol–gel preparation, silica layers with an average thickness of 50 nm adhere
to the surfaces of P(VDF-HFP) nanofibers tightly. TGA analysis (Figure S1a) discloses
that the starting decomposition temperature of P(VDF-HFP)@SiO2 membrane is 350 ◦C,
proving excellent thermal stability. The thermal dimensional stability of P(VDF-HFP)@SiO2
membrane was tested and compared with Celgard 2325 and P(VDF-HFP) membranes,
as is displayed in Figure 1e. After being stored at 140 ◦C for 1 h, Celgard 2325 showed
obvious thermal shrinkage behavior, while the size of P(VDF-HFP) and P(VDF-HFP)@SiO2
membranes changed only a little. At the temperature of 170 ◦C, Celgard 2325 shrank
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further, P(VDF-HFP) showed serious shrinkage, while P(VDF-HFP)@SiO2 changed only
slightly. This result shows that the coating of the SiO2 layer can effectively reduce thermal
shrinkage of the polymer diaphragm, thereby inhibiting the battery short circuit problem
and improving the battery’s safety.
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Figure 1. (a–c) FE-SEM, (d) TEM images of (a) P(VDF-HFP) and (b–d) P(VDF-HFP)@SiO2 composite
nanofibers and (e) optical photos of corresponding shrinkage before and after heat treatment of
Celgard 2325, P(VDF-HFP), and P(VDF-HFP)@SiO2 composite membrane.

2.2. F-C@SiO2 Composite Nanofibers

When the P(VDF-HFP)@SiO2 film was heated in nitrogen at 700 ◦C, F-C@SiO2 compos-
ite nanofibers were obtained and displayed in Figure 2. Long P(VDF-HFP) nanofibers car-
bonized and broke to form shorter carbonaceous nanofibers. The EDS result (Figure 2b–e)
verifies the uniform distribution of C, F, Si, and O elements. The F-C@SiO2 composite com-
prises 63.3 wt% of F-doping carbon, as calculated from Figure S1b. The XPS results further
disclose the chemical composition of F-C@SiO2 composite nanofibers (Figure S2). The full
spectrum (Figure S2a) confirms the existence of four elements: C, O, Si, and F. In Figure S2b,
the peaks at 284.6 eV, 285.0 eV, and 286.2 eV correspond to C-C, C-F, and C-F3, respectively.
In Figure S2c, the peaks at 687.6 eV and 688.2 eV correspond to ionic F and semi-ionic F,
respectively. In Figure S2d, the peaks at 104.4 eV correspond to Si-O. Uniformly distributed
mesopores can be clearly observed on the surfaces of the fibers (Figure 2f). HR-TEM
(Figure 2h) and SAED images (Figure 2i) indicate that no large crystalline zones exist
in F-C@SiO2. In the WAXRD pattern (Figure S3a), a broad diffraction peak appears at
2θ = 21.5◦, which belongs to the (002) crystal plane of graphite, indicating that the degree
of crystallinity for carbon in the nanofibers is low. In the Raman spectrum (Figure S3b), D
and G bands were observed at 1339 cm−1 and 1584 cm−1, respectively. The IG/ID ratio
calculated by Gaussian fitting is about 0.84, further confirming that the carbon in F-C@SiO2
is mainly amorphous. Nitrogen adsorption–desorption isotherms and BJH pore size dis-
tribution plots of P(VDF-HFP)@SiO2 and F-C@SiO2 composite nanofibers are showed in
Figure S4. Two type IV curves with H3 hysteresis cycles confirm the existence of micro-
and mesopores, with a specific surface area and pore volume of 99.7 m2 g−1/0.277 cm3 g−1

and 285.1 m2 g−1/0.453 cm3 g−1, respectively. The coarse fiber surface and plenty of micro-
and mesopores within the composite nanofibers provide enough space for the holding of
electrolyte and ensure the rapid transfer of lithium ions.
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composite nanofibers.

2.3. P(VDF-HFP)@SiO2-Based Gel Electrolyte

When the P(VDF-HFP)@SiO2 film was cut into a 16 mm diameter wafer and used to
soak organic electrolyte (1M LiPF6 in 1:1 EC/DMC) till saturation, the P(VDF-HFP)@SiO2-
GE membrane was gained. The electrolyte uptake of the P(VDF-HFP)@SiO2 membrane
was calculated based on the mass difference in the membranes before and after sufficient
immersion in the liquid electrolyte according to the following formula,

Uptake (%) =
Ww − Wd

Wd
× 100 (1)

where Wd and Ww are the mass of the membrane before and after immersion in the liquid
electrolyte, respectively. The electrolyte uptake is 1000 wt%, much higher than the commer-
cial celgard 2325 membrane (~90 wt%) and many reported electro-spun P(VDF-HFP)-based
scaffolds (Table S1) [25–28]. The electrochemical properties of P(VDF-HFP)@SiO2-GE were
tested and are displayed in Figure 3. The ionic conductivity (σ) of P(VDF-HFP)@SiO2-
GE was investigated using AC impedance analysis on a stainless steel symmetrical cell
(SS|P(VDF-HFP)@SiO2-GE|SS), which can be further calculated by the formula,

σ =
l

RbS
(2)
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where l is the electrolyte membrane thickness, Rb stands for the electrolyte bulk resistance
measured by EIS, and S is the cross-sectional area. The value of σ increases with tem-
perature due to a decrease in the ohmic resistance of the electrolyte, as is presented in
Figure 3a,b. The activation energy of Li+ conduction can be calculated from Figure 3b by
the Arrhenius equation:

σ = A exp
(
− Ea

RT

)
(3)

where A is the pre-exponential factor, Ea stands for the activation energy, T is the abso-
lute temperature, and R stands for the Boltzmann constant. The activation energy of ion
conduction is estimated to be 7.9 kJ mol−1. The ionic conductivity of P(VDF-HFP)@SiO2-
GE at 25 ◦C is 2.6 mS cm−1, which meets the minimum operating limit of LIBs at room
temperature (1 mS cm−1) [29,30]. As Figure 3c shows, the decomposition voltage of
P(VDF-HFP)@SiO2-GE at room temperature is 4.6 V, larger than commercial LIBs (4.5 V
vs. Li/Li+) [31], indicating that this nanofiber membrane possesses good electrochemical
stability. The charge–discharge performance of the assembled Li|P(VDF-HFP)@SiO2-
GE|Li cell was tested in the voltage range of 2.5–4.2V. A periodic constant current (0.1
and 0.5 mA cm−2) was applied to the cell, and the stripping/plating behavior of lithium
ions on the electrode surface was investigated by recording voltage changes, as shown
in Figure 3d. The voltage reduction at the beginning of the cycle derives from the po-
larization voltage formed by the concentration polarization inside the cell, and then the
voltage remains relatively stable, suggesting the formation of stable interfaces and benign
compatibility between the metallic Li foil and the P(VDF-HFP)@SiO2-GE membrane. The
LiFePO4|P(VDF-HFP)@SiO2-GE|Li cell can work well at different rates (0.1–2 C), as is
shown in Figure 3e. When the current density returns from 2 C to 0.1 C, the specific
discharge capacity of the cell almost completely recovers, showing excellent rate perfor-
mance. Subsequently, the same cell continues a long cycle test at 1 C and its discharge
capacity recovers and gains no obvious capacity loss till 1000 cycles (Figure S5), showing
excellent cycle stability. After 1000 stable cycles, the charge-transfer impedance of the cell
reduces from 680 Ω to 220 Ω (Figure S6), further demonstrating improved interface contact
conditions between the electrolyte and the electrode. Herein, the P(VDF-HFP)@SiO2-GE
membrane exhibited superior electrochemical characteristics such as higher ionic conduc-
tivity and a better capacity retention ratio after long cycles at a high rate than many reported
electro-spun P(VDF-HFP)-based gel electrolytes (Table S1), indicating that it could be a
prospective candidate for practical application in LIBs.

2.4. F-C@SiO2|P(VDF-HFP)@SiO2-GE|Li Battery

Using F-C@SiO2 to make the working electrode, metallic Li foil as the counter elec-
trode, and P(VDF-HFP)@SiO2-GE as the separator as well as quasi-solid-state electrolyte,
a CR2016 coin-type half-cell (F-C@SiO2|P(VDF-HFP)@SiO2-GE|Li) was integrated. Its
electrochemical behavior was tested and is shown in Figure 4. In the cyclic voltammogram
(Figure 4a) measured at 0.01–3.0 V with a scan rate of 0.1 mV s−1, the cathodic peak at
around 0.5 V is because of the decomposition of electrolyte and the formation of SEI film
on the fiber surface [32]. The almost coincided second and third cyclic curves indicate good
cyclic stability of the cell. The cycling performance of the F-C@SiO2 electrode at 0.2 A g−1

is shown in Figures 4b and S7. The first charge and discharge capacities are 1514.2 and
465.1 mAh g−1, respectively. The irreversible capacity loss is related to the formation of
the SEI film and other lithiation reactions. After 300 cycles, a stable discharge capacity of
340 mAh g−1 is gained. It is interesting to find that the capacity of the cell using P(VDF-
HFP)@SiO2-GE is nearly twice of the cell using the commercial celgard 2325 separator,
which is probably related to the larger electrolyte absorption of the P(VDF-HFP)@SiO2
membrane and better interfacial contact between the P(VDF-HFP)@SiO2-GE and F-C@SiO2
electrode [33,34]. The rate behavior of the F-C@SiO2|P(VDF-HFP)@SiO2-GE|Li cell at
various current densities is displayed in Figure 4c. Capacities of 511.5, 355.6, 253.6, and
211.1 mAh g−1 at current densities of 0.1, 0.2, 0.5, and 1 A g−1 were achieved, respec-
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tively. When the current density returns to 0.2 and 0.1 A g−1, the recovery rate of the
capacity is higher than 90%. In the Nyquist plot (Figure 4d,e), after 300 cycles, the in-
terfacial impedance of the F-C@SiO2|P(VDF-HFP)@SiO2-GE|Li cell reduces from 255 Ω
to 70 Ω, while that of the F-C@SiO2|Celgard 2325|Li cell reduces from 365 Ω to 224 Ω.
P(VDF-HFP)@SiO2-GE shows better interfacial compatibility with the F-C@SiO2 electrode,
which is due to their similar structure and composition. In addition, the sharp reduction
in impedance suggests good electrical conductivity and a rapid charge transfer reaction,
benefitting lithium-ion insertion/extraction.
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before and after 300 cycles; (e) nyquist plots of F-C@SiO2|Celgard 2325|Li half-cell at the same
testing condition.

Herein, the integrated F-C@SiO2|P(VDF-HFP)@SiO2-GE|Li cell exhibited superior
electrochemical performance, which was reasonably ascribed to the deliberately designed
composition and structure as well as the enhanced interfacial contact between the electrodes
and gel electrolyte. As is known, the more similar the composition and structure of the
two phases, the better the compatibility between them is. The mesoporous SiO2-coated
nanofibers which exist both in the gel electrolyte and F-C@SiO2 electrode undoubtedly
improve the interfacial compatibility between them. Meanwhile, plenty of the mesopores
on the nanofibers greatly increase the electrolyte uptake, benefitting the interfacial contact
of the gel electrolyte (separator) and the metallic Li electrode. The hard SiO2 layer also
enhances the strength of the nanofiber membrane, lessening the risk of piercing through
by Li dendrite. As far as we know, this is the first report on assembling an electro-spun
nanofiber separator and its derivate carbonaceous electrode in one battery.

3. Experimental Section
3.1. Materials

Polyvinylidene-hexafluoropropylene (P(VDF-HFP), Mw = 455,000), and N,N-dimethy-
l-formamide (DMF, >99.9%) derive from Aladdin. LiFePO4 was purchased from Shanghai
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D&B Biotechnology Co., Ltd. (Shanghai, China). Vinyl carbonate (EC) and dimethyl
carbonate (DMC) were produced by Guotai Huarong Chemical New Materials Co., Ltd.
(Suzhou, China). Cetyl trimethyl ammonium bromide (CTAB, >98%) was acquired from
Bede Pharmaceuticals Ltd. (Harare, Zimbabwe). Tetraethyl orthosilicate (TEOS, >99.5%)
and acetone derive from Jiangsu Qiangsheng Functional Chemical Co., Ltd. (Suzhou,
China). Anhydrous ethanol (>99.7%) and ammonia (NH3·H2O, 25 wt%) were provided by
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Celgard 2325 was bought from
Suzhou Sukrain Instrument Co., Ltd. (Suzhou, China). All materials were used as received
without further purification.

3.2. Synthesis of Electro-Spun P(VDF-HFP)/Mesoporous Silica Composite Nanofiber Film and
F-Doped Carbon/Silica Composite Nanofibers

Electro-spun P(VDF-HFP) nanofiber film was synthesized according to previous
work [35]: P(VDF-HFP) particles (20 wt%) were dissolved in DMF/acetone solution
(v/v = 7:3) and stirred at 50 ◦C for 3 h to obtain uniform spinning solution. P(VDF-HFP)
nanofibers were produced by electrospinning. Regarding the experimental conditions, we
applied a positive voltage of 10 kV, negative voltage of −5 kV, collection distance of 15 cm,
injection speed of 0.08 mm s−1, and moderated at 40%. The collected nanofibers were dried
overnight in a 60 ◦C oven.

A total of 200 mg of CTAB was completely dissolved in 200 mL of EtOH/H2O solution
(EtOH/H2O = 1/100, v/v) at 40 ◦C. Then, 50 mg of above-prepared P(VDF-HFP) electro-
spinning film was immersed in the solution and stood for 2 min. After that, 1 mL of TEOS
followed by 0.1 mL of concentrated ammonia solution was added dropwise to the solution
and it was left to stand at 40 ◦C for 8 h. The as-prepared composite film was washed with
deionized water to remove the surface impurities, heated in ethanol with reflux for 12 h to
remove CTAB, and dried at 70 ◦C for 24 h. Finally, P(VDF-HFP)@SiO2 composite nanofiber
film was obtained.

The prepared P(VDF-HFP)@SiO2 composite nanofiber film was heated in nitrogen
at 700 ◦C at a rate of 10.0 ◦C/min for 6 h. After naturally cooling to room temperature,
F-doped carbon/silica composite nanofibers (designated as F-C@SiO2) were obtained. The
fabrication process for P(VDF-HFP)@SiO2 composite nanofiber membrane and F-C@SiO2
composite nanofibers was illustrated in Scheme 1.
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brane and F-C@SiO2 composite nanofibers.

3.3. Assembly of LiFePO4/Li and F-C@SiO2/Li Batteries and Electrochemical Tests

For the preparation of the LiFePO4 electrode, LiFePO4 (80 wt%) powder, acetylene
black (10 wt%), and PVDF (10 wt%) (total mass is 80 mg) were evenly dispersed in NMP
and stirred at room temperature for 5 h. The mixture was scraped onto aluminum foil,
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dried overnight in a 70 ◦C oven, and cut into 14 mm diameter rounds. Using the LiFePO4
electrode as the positive electrode, lithium metal as the counter electrode, and P(VDF-
HFP)@SiO2-GE as the separator, the LiFePO4/Li battery was assembled in a glovebox filled
with argon gas.

For the preparation of the F-C@SiO2 electrode, F-C@SiO2 (80 wt%) powder, acetylene
black (10 wt%), and PVDF (10 wt%) (total mass is 40 mg) were evenly dispersed in NMP
and stirred at room temperature for 5 h. The mixture paste was scraped onto copper foil,
dried overnight in a 70 ◦C oven, and cut into a 14 mm diameter wafer. Using the F-C@SiO2
electrode as the working electrode, lithium metal as the counter electrode, and P(VDF-
HFP)@SiO2-GE and Celgard 2325 as the separators, the F-C@SiO2|P(VDF-HFP)@SiO2-
GE|Li and F-C@SiO2|Celgard 2325|Li batteries were assembled in a glovebox filled with
argon gas.

Electrochemical tests were conducted with an electrochemical workstation (CHI660E,
CH Instruments, Austin, TX, USA), and galvanostatic charge/discharge tests were carried
out with LAND systems. The electrochemical impedance was acquired in a frequency
range from 0.01 Hz to 100 kHz at different temperatures with an AC amplitude of 5 mV. The
electrochemical stability window was measured using linear sweep voltammetry (LSV). The
potential was swept between open circuit voltage and 7.0 V (V vs. Li/Li+) with a scan rate
of 5.0 mV s−1. The interfacial compatibility between the P(VDF-HFP)@SiO2-GE membrane
and Li metal electrode was tested based on the charge/discharge cycling performance of
the symmetrical Li|P(VDF-HFP)@SiO2-GE|Li battery with a Land CT2001A cell tester at
room temperature.

3.4. General Methods

Field emission scanning electron microscopy (FE-SEM) was performed using a Hitachi
4800 instrument at 3.0 kV. Transmission electron microscopy (TEM) and high-resolution
TEM (HR-TEM) images, as well as selective area electron diffractions (SAED), were obtained
using an FEI TecnaiG220 at 200 kV. Wide angle X-ray diffraction (WAXRD) patterns were col-
lected with an X’Pert-Pro MPD X-ray diffractometer using Cu Kα radiation (λ = 0.154 nm).
Raman spectra were recorded using a Jobin Yvon Horiba HR 800 LabRAM confocal micro-
probe Raman system with Ar laser excitation (514.5 nm) and a power of 10 mW. Specific
surface area and pore-size distribution were determined based on the Brunauer–Emmett–
Teller (BET) and Barrett–Joyner–Halon (BJH) methods using N2 adsorption–desorption
isotherm measured by a Micromeritics Tristar II 3020 instrument. Thermogravimetric anal-
ysis (TGA) was performed on a Thermal Analysis TG/DTA 6300 instrument with a heating
rate of 10 ◦C min−1 under air from 25 ◦C to 800 ◦C. X-ray photoelectron spectroscopy (XPS)
was performed on a Pass Energy 100.0 eV, Al K Alpha.

4. Conclusions

In conclusion, P(VDF-HFP)@SiO2 composite nanofiber film was synthesized via elec-
trospinning followed by a sol–gel reaction. After carbonization, F-C@SiO2 composite
nanofibers were gained. Electrochemical characterization disclosed that P(VDF-HFP)@SiO2-
based gel electrolyte exhibited high ionic conductivity and thermal stability, while the F-
C@SiO2-based anode showed good Li-storage capacity. Because of the enhanced interfacial
contact between the electrodes and the gel electrolyte, the assembled F-C@SiO2|P(VDF-
HFP)@SiO2-GE|Li cell exhibited superior electrochemical performance. On account of the
economic raw materials, facile fabrication process, and good comprehensive properties,
this work has demonstrated a new design for safe next-generation LIBs.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules28145304/s1, Figure S1: TGA curve of (a) P(VDF-HFP)@SiO2
and (b) F-C@SiO2. Figure S2. The XPS curve of F-C@SiO2 composite nanofibers: (a) full spectrum,
(b) C 1s, (c) F 1s, (d) Si 2p orbital high-resolution spectrum. Figure S3: (a) WAXRD pattern and
(b) Raman spectrum of F-C@SiO2. Figure S4: (a) Nitrogen sorption isotherms and (b) BJH pore
size distribution plot calculated from the adsorption branch of P(VDF-HFP)@SiO2 and F-C@SiO2.
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Figure S5: Cycling performance of LiFePO4|P(VDF-HFP)@SiO2-GE|Li cell at 1 C. Figure S6: Nyquist
plots for the LiFePO4|P(VDF-HFP)@SiO2-GE|Li cell acquired in the frequency range of 10 Hz to
100 KHz before and after 1000 cycles at the current density of 1 C. Figure S7: The voltage profile
of the first three cycles of F-C@SiO2|P(VDF-HFP)@SiO2-GE|Li cell at current density of 0.2 A g−1.
Table S1: Comparison of ionic conductivity (σ), electrolyte adsorption rate, capacity and capacity
retention ratio of different gel electrolytes.
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