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Abstract: Fixing carbon dioxide as a polymer material is an effective and environmentally beneficial
approach for reducing the harm of CO2 greenhouse gas. In this paper, carbon dioxide and cyclohexene
oxide were used as co-monomers, and a chiral binuclear cobalt complex with a biphenyl linker
was employed as the catalyst to successfully prepare a poly(cyclohexenylene carbonate) with high
stereoregularity. The influence of catalyst structure, CO2 pressure, and operating temperature on
the copolymerization rate and polymer structure were systematically investigated. Optimal catalyst
structure and operating conditions were determined, resulting in an excellent poly(cyclohexenylene
carbonate) with a stereoregularity as high as 93.5%. Performance testing revealed that the polyester
had a molecular weight of approximately 20 kg/mol, a glass transition temperature of 129.7 ◦C,
an onset decomposition temperature of 290 ◦C, and a tensile strength of 42.8 MPa. These results
demonstrate high thermal stability and mechanical strength, indicating the potential for expanding
the applications of aliphatic polycarbonate materials.

Keywords: carbon dioxide; cyclohexene oxide; poly(cyclohexenylene carbonate); asymmetric copoly-
merization; dinuclear cobalt complex

1. Introduction

In recent years, with the excessive use of fossil resources, there has been a continuous
and significant increase in CO2 emissions, leading to severe environmental issues [1–3].
Under this background, the reduction and capture utilization of CO2 have garnered
widespread attention in the industry [4–7]. In fact, CO2 is not only a typical greenhouse gas
but also a renewable C1 resource with abundant sources and a low cost, making it highly
valuable for various applications. Currently, several valuable methods and technologies for
CO2 utilization have been explored, including application as a supercritical solvent and
refrigerant [8,9], food preservatives [10], and raw materials for preparation of urea [11],
methanol [12], isocyanate [13], methane [14], CO-rich syngas [15], and polycarbonates,
etc. [16]. Among these utilization pathways, the preparation of aliphatic polycarbonates
using CO2 and epoxides as monomers provided a feasible approach with good application
prospects for the fixation and high-value utilization of carbon dioxide [17,18]. Aliphatic
polycarbonates (APC), compared to traditional aromatic polycarbonates (PC), usually have
better biodegradability and biocompatibility and can be widely used as surgical sutures,
bone fixation materials, and drug release carriers in biomedical emerging fields [19–21].

Under catalytic action, polycarbonates can be directly prepared through the alternat-
ing copolymerization of carbon dioxide and epoxides. Compared to traditional methods
such as direct phosgene condensation [22], ester exchange [23], and ring-opening of cyclic
carbonates [24], this approach has advantages of abundant and inexpensive raw materi-
als, simple synthetic process, and high operational safety, making it more promising for
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practical application. Currently, commonly used catalysts are organic compounds of transi-
tion metals (Zn, Co, Mn, etc.), including metal alkyls [25], metal carboxylates [26], metal
porphyrins [27], metal diimine complexes [28], and SalenM(III)X (M = Cr, Al, Co), etc. [29].
Among these various catalysts, SalenM(III)X has attracted more significant attention in
recent years. Compared to Al and Cr ions, Co ion has a more favorable electronic structure
and acidity [30], making it better suited for the copolymerization of carbon dioxide and
epoxides. Among them, SalenCo(III)X catalysts have been applied in the preparation of
isotactic poly(propylene carbonate) (PPC) due to their excellent catalytic performance and
simple preparation process. However, being a flexible molecular structure, PPC has some
limitations in practical applications, including weak mechanical strength, low glass transi-
tion temperature (Tg < 40–50 ◦C), and poor weather resistance [31]. Relevant studies have
shown that introducing rigid cyclic groups into the main chain of polycarbonate can restrict
the free movement of segments, significantly increasing the rigidity of the molecular chains
and the intermolecular interaction forces, which can effectively improve the mechanical
strength and thermal resistance, etc. [32,33].

From the perspective of structure-property relationships in aliphatic polycarbonates,
cyclohexene oxide, with a rigid hexagonal structure, has outstanding advantages among
similar epoxides. Therefore, research on the alternating copolymerization of carbon dioxide
and cyclohexene oxide has been conducted to develop a new, excellent polycarbonate
material named poly(cyclohexenylene carbonate) (PCHC), which is of great significance
for promoting the application of aliphatic polycarbonates [34,35]. However, cyclohexene
oxide exhibits relatively low reactivity compared with other epoxides, and conventional
mononuclear cobalt catalysts have difficulty achieving the desired results [36–38]. In this
study, based on the bimetallic synergistic catalytic mechanism, a novel dinuclear cobalt
catalysts was prepared and used for the alternating copolymerization of carbon dioxide
and cyclohexene oxide (Figure 1). A novel PCHC material with high stereoregularity
was successfully synthesized. In addition, the thermodynamic and mechanical properties
were also tested, and the influence of stereoregularity on these properties is preliminarily
discussed based on these results.
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Figure 1. Structure of mononuclear and dinuclear cobalt complexes.

2. Results and Discussion
2.1. Catalytic Activity of Catalysts

Catalysts have a significant impact on the efficiency of polymerization reactions, the
molecular weight and distribution of polyesters, as well as the selectivity of their stereo
structures. The catalytic results of different catalysts are shown in Table 1.

It can be seen from Table 1 that the catalytic activity of binuclear cobalt complexes was
significantly higher than that of mononuclear cobalt complexes. A possible reason is that
the rigidly connected biphenyl groups maintain an appropriate distance between the two
cobalt atoms, achieving good synergistic catalytic effects [39]. Excellent catalytic activity
can be realized without the use of bis(triphenylphosphine)iminium chloride (PPNCl) as a
co-catalyst, which makes the catalytic system simpler. On the other hand, mononuclear
cobalt complex catalysts exhibited almost no catalytic activity in the polymerization reaction
without the co-catalyst PPNCl.

Axial coordinating ions have a significant impact on the electronic properties of the
central cobalt ion, thereby affecting the catalytic activity [40]. When the coordinating
ions were 2,4-dinitrophenoxide, 3,5-bis(trifluoromethyl)phenoxide, and trichloroacetic
acid ion, etc., both mononuclear and dinuclear cobalt complexes exhibited relatively high
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catalytic activity and stereochemical selectivity. The reason may be that these ions all
have strong electron-withdrawing abilities, which can keep the central cobalt atom in an
electron-deficient state and maintain a stable Co(III) structure, resulting in a high and
persistent catalytic activity. Conversely, when the weak nucleophiles ClO4

− acted as an
axial coordinating ion, it basically lacked the ability to catalyze the copolymerization
reaction and could not even generate polymers. Although NO3

− has some nucleophilic
ability, its ease of losing electrons may cause part of Co(III) ions to be reduced to Co(II) ions
and became inactive, leading to relatively lower catalytic activity [41].

Table 1. Result of copolymerization catalyzed by different catalysts (P = 2.0 MPa, T = 25 ◦C).

Entry Catalyst CHO/Cat/PPNCl
(Molar Ratio)

Time
(h)

TOF
(h−1)

Mn
(kg/mol)

PDI
(Mw/Mn)

ee
(%)

1 IIa 1000/1/1 3 137 19.2 1.24 74.2
2 IIa 1000/1/0 3 133 18.3 1.19 72.5
3 IIb 1000/1/0 3 126 8.4 1.20 67.3
4 IIc 1000/1/0 3 84 19.8 1.22 53.3
5 IId 1000/1/0 3 58 10.9 1.31 37.3
6 IIe 1000/1/0 3 92 11.7 1.23 63.9
7 IIf 1000/1/0 12 3 — — —
8 Ia 500/1/0 6 — — — —
9 Ia 500/1/1 6 73 13.2 1.27 51.1
10 Ib 500/1/1 6 69 13.9 1.27 53.7
11 Ic 500/1/1 6 58 12.1 1.28 48.7
12 Id 500/1/1 6 34 6.6 1.41 41.1

2.2. Influence of Operation Conditions

Operating conditions, especially the pressure of CO2 and temperature, have a sig-
nificant impact on the alternating copolymerization reaction rate of carbon dioxide and
cyclohexene oxide, as well as the molecular weight and distribution of the polycarbonate
products. In this study, the polymerization results under different reaction pressure and
temperature conditions were investigated using the most effective dinuclear cobalt complex
IIa as a catalyst under the same material ratio and reaction time. The results are shown in
Table 2.

Table 2. Results of copolymerization catalyzed by IIa under different pressures and temperatures.

Entry Temperature
(◦C)

Pressure
(MPa)

TOF
(h−1)

Mn
(kg/mol)

PDI
(Mw/Mn)

ee
(%)

1 25 2.0 133 19.2 1.19 72.5
2 25 3.0 142 19.5 1.17 83.6
3 25 4.0 166 20.1 1.16 93.5
4 35 2.0 187 19.5 1.22 65.1
5 35 3.0 251 21.1 1.19 80.8
6 35 4.0 318 21.8 1.17 88.1
7 45 2.0 287 20.3 1.22 65.2
8 45 3.0 354 22.7 1.19 76.3
9 45 4.0 462 24.6 1.18 84.6

Fi n(CHO): n(CHO): n(IIa) = 1000, Time = 3 h.

From Table 2, it can be observed that the variations in temperature and CO2 pressure
had a significant impact on the polymerization reaction. At room temperature (25 ◦C),
increasing the CO2 pressure from 2.0 MPa to 4.0 MPa resulted in an increase in TOF from
133 h−1 to 166 h−1, indicating a significant improvement in catalyst effect. Additionally,
the ee value of the polycarbonate increased from 72.5% to 93.5%, indicating an enhanced
stereo-regularity and greater specificity of the polymerization reaction. As for temperature,
although raising the reaction temperature can also significantly increase the TOF of the
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catalyst—for instance, at a CO2 pressure of 2.0 MPa, increasing the temperature from 25 ◦C
to 45 ◦C could elevate the TOF to 2.16 times the original value—the stereo-regularity of
the polyester inevitably decreased in some extent. This is because the energy difference
between the two enantiomeric structures is small and at higher temperatures, the rate of
the unfavorable reaction increases significantly, leading to increased randomness in the
polycarbonate and a decrease in ee value. Overall, high pressure and low temperature
conditions are more favorable for obtaining highly stereo-regular PCHC.

2.3. Analysis of the Structure and Properties of PCHC
2.3.1. Stereo-Regularity

Besides determining the ee value of the hydrolysis products of PCHC, 13C NMR is also
a direct and effective means for assessing the stereo-regularity of PCHC [42]. The carbonyl
carbons of PCHC in different chemical environments exhibit distinctive chemical shifts in
the 13C NMR spectrum. Peaks at 153.45–153.50 ppm represents the syndiotactic structure,
while the peak at 153.65–153.70 ppm belongs to the isotactic structure. Furthermore, a
relatively larger peak area at 153.65–153.70 ppm indicates higher stereo-regularity of the
PCHC material. Figure 2 displays the 13C NMR spectra of two representative samples,
sample A (Table 1, Entry 4) and sample B (Table 2, Entry 3).
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Figure 2. Local magnification of the 13C NMR spectrum of different stereo-regularity PCHC.

From Figure 2, it can be observed that the signal strengths in 152.8–153.5 ppm and
153.65–153.70 ppm of sample A are not significantly different. As for sample B, the signal
of the meso structure carbonyl peak in the range of 153.45–153.50 ppm was relatively
weak, while the peak at 153.65–153.70 ppm corresponding to the isotactic structure car-
bonyl carbon was prominent, indicating the dominance of the isotactic structure in the
molecule. After hydrolyzing the two PCHC samples and measuring the excess enantiomer
content of the mixed alcohols using a chiral gas chromatography, the ee value was 53.3%
and 93.5% respectively, demonstrating that catalyst IIa has a more excellent asymmetric
catalytic effect.

2.3.2. Thermal Properties

To investigate the influence of stereo-regularity on PCHC material, sample A and
sample B were detected, respectively. The thermal gravimetric analysis (TGA) results are
shown in Figure 3.

From Figure 3, it can be observed that the two PCHC samples with different ee values
exhibited different initial decomposition temperatures (T-5w%), which were 280 ◦C and
290 ◦C, respectively. These values were significantly higher than that of PPC with a similar
molecular weight (217 ◦C). Additionally, both of them showed a narrow temperature
range of thermal decomposition, approximately 10 ◦C, indicating high purity and low
content of ether segments in the two samples. The DTG curves revealed that the maximum
decomposition temperatures (T-50w%) of the two PCHC samples were 300 ◦C and 309 ◦C,
respectively, with sharp exothermic peaks. These observations suggested that the PCHC
materials possess better thermal stability than PPC. Furthermore, PCHC with higher stereo-
regularity (ee value) exhibited superior thermodynamic properties, which can be attributed
to the more ordered molecular arrangement and stronger intermolecular forces.
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To validate this hypothesis, we conducted further analysis using differential scanning
calorimetry (DSC) on the two samples. The results are shown in Figure 4.
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According to the literature, PCHC tends to exhibit crystallization behavior when
the ee value exceeds 91% [43]. The study of DSC can provide valuable insights into the
crystallization behavior and thermal properties. For PCHC samples with an ee value of
53.3%, the stereo-regularity was relatively low, resulting in the absence of crystallization.
Therefore, in Figure 4a, only the glass transition temperature (Tg) can be observed. From
Figure 4b, it can be seen that the PCHC sample with an ee value of 93.5% indeed exhibits
crystallization behavior observed from second cooling curve. No crystallization peak
appears in the second heating curve; the reason is because crystallization has been induced
by the first heating program, so there was no crystallization peak appeared in the second
heating process, only a melting endotherm peak. However, since the stereo-regularity did
not reach 96–100%, a glass transition phenomenon still occurred with a value of 129.7 ◦C,
which is consistent with the findings reported in reference [43]. The enthalpy change of the
PCHC can be obtained by integrating the corresponding DSC curve with heating time [44].
The results revealed a distinct endothermic peak at a melting point of 224.9 ◦C, with a
melting enthalpy (∆Hm) of 20.691 J/g. During the cooling process, an exothermic peak
appeared around 182.6 ◦C, indicating the occurrence of crystallization, with a crystallization
enthalpy (∆Hc) of −17.312 J/g.
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2.3.3. Mechanical Properties

Mechanical properties are important characteristics of structural materials and have a
significant impact on their application fields and service life [45,46]. We conducted tensile
strength and elongation at break measurements on the PCHC samples with different ee
values (the samples with ee value of 53.3%, 72.5% and 93.5% were named PCHC-1, PCHC-2
and PCHC-3) and compared these values with those of the currently used PPC material.
The results are shown in Figure 5.
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From Figure 5, it can be observed that the comparative sample of PPC is a ductile
material with a high elongation at break of 136.3%. However, its tensile strength is low,
only 11.2 MPa, indicating a deficiency in material strength. In contrast, the PCHC material
prepared in this study, with the introduction of bulky hexagonal ring structures in the
main chain of polymer molecule, exhibited significantly improved strength and rigidity
compared to PPC. Even the low stereo-regularity PCHC with an ee value of only 53.3%
showed a high tensile strength of 33.0 MPa, nearly three times that of PPC material.
Meanwhile, the tensile strength increased significantly with the increase of the ee value,
eventually reaching 42.8 MPa. However, the elongation at break did not show significant
improvement, which may be attributed to the rigid nature of PCHC material. So, it can
be drawn that increasing the stereo-regularity of PCHC is beneficial for enhancing its
mechanical properties. However, it should be noted that PCHC is a rigid material with
poor deformability, exhibiting an elongation at break of only about 2.5%, and a relatively
brittle texture. If the properties of PCHC and PPC can be combined, it is possible to obtain
a composite polycarbonate material with both satisfactory strength and toughness.

3. Materials and Methods
3.1. Chemicals

Carbon dioxide, oxygen, and nitrogen were purchased from Henan Yuanzheng Special
Gas Co., Ltd. (Zhengzhou, China). Cyclohexene oxide was provided by Henan Shenma
Nylon Co., Ltd. (Pingdingshan, China). Anhydrous cobalt acetate, 3,5-bis(trifluoromethyl)
nitrophenol, 2-amino-4-nitrophenol, trichloroacetic acid, and 2,4-dinitrophenol bis(triphenyl
phosphine)ammonium chloride were all analytical grade and purchased from Shanghai McK-
lin Technology Co., Ltd. (Shanghai, China). Poly(propylene carbonate) (Mn = 100 kg/mol,
Tg = 49.8 ◦C) was obtained from Shenzhen Hongli Plastic Raw Material Co., Ltd. (Shen-
zhen, China). Other reagents and solvents were all analytical grade and were purchased
from Tianjin ChemiO Chemical Reagent Co., Ltd. (Tianjin, China). All raw materials
needed to be dried before use to reduce the moisture content. The 3,3′-diformyl-4,4′-
dihydroxy-1,1′-biphenyl and salicylaldehyde condensation product were prepared accord-
ing to references [47,48], respectively, and their structures were confirmed by FTIR and
NMR characterization (Figures S1–S6). The monometallic cobalt catalysts Ia–Id used for
comparison were prepared according to references [49,50].
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3.2. Synthetic Route
3.2.1. Catalyst of Dinuclear Cobalt Complexes

The preparation of the bimetallic catalyst started with materials (S,S)-cyclohexane-1,2-
diamine aldehyde condensation product and 3,3′-diformyl-4,4′-dihydroxy-1,1′-biphenyl
as starting reagents, and it underwent condensation, salt formation, oxidation, and ion
exchange to obtain the desired catalyst. The preparation route is shown in Figure 6.
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Figure 6. Synthetic route of dinuclear cobalt complex.

3.2.2. Poly(cyclohexenylene carbonate)

The preparation of isotactic poly(cyclohexene carbonate) involved carbon dioxide and
cyclohexene oxide as starting materials. Under the action of a chiral catalyst, the mixture
underwent alternating copolymerization under high-pressure conditions to obtain the
desired PCHC. The preparation route is shown in Figure 7.

Molecules 2023, 28, x FOR PEER REVIEW 7 of 13 
 

 

dinitrophenol bis(triphenylphosphine)ammonium chloride were all analytical grade and 
purchased from Shanghai McKlin Technology Co., Ltd. (Shanghai, China). 
Poly(propylene carbonate) (Mn = 100 kg/mol, Tg = 49.8 °C) was obtained from Shenzhen 
Hongli Plastic Raw Material Co., Ltd. (Shenzhen, China). Other reagents and solvents 
were all analytical grade and were purchased from Tianjin ChemiO Chemical Reagent 
Co., Ltd. (Tianjin, China). All raw materials needed to be dried before use to reduce the 
moisture content. The 3,3’-diformyl-4,4’-dihydroxy-1,1’-biphenyl and salicylaldehyde 
condensation product were prepared according to references [47,48], respectively, and 
their structures were confirmed by FTIR and NMR characterization (Figures S1–S6). The 
monometallic cobalt catalysts Ia–Id used for comparison were prepared according to 
references [49,50]. 

3.2. Synthetic Route 
3.2.1. Catalyst of Dinuclear Cobalt Complexes 

The preparation of the bimetallic catalyst started with materials (S,S)-cyclohexane- 
1,2-diamine aldehyde condensation product and 3,3’-diformyl-4,4’-dihydroxy-1,1’-
biphenyl as starting reagents, and it underwent condensation, salt formation, oxidation, 
and ion exchange to obtain the desired catalyst. The preparation route is shown in Figure 
6. 

 
Figure 6. Synthetic route of dinuclear cobalt complex. 

3.2.2. Poly(Cyclohexenylene Carbonate) 
The preparation of isotactic poly(cyclohexene carbonate) involved carbon dioxide 

and cyclohexene oxide as starting materials. Under the action of a chiral catalyst, the 
mixture underwent alternating copolymerization under high-pressure conditions to 
obtain the desired PCHC. The preparation route is shown in Figure 7. 

 
Figure 7. Synthetic route of stereoregular PCHC. 

3.3. Synthesis of Compounds 
3.3.1. Salen Ligand 

A 100 mL round-bottom flask equipped with a magnetic stir bar was placed in a low-
temperature cooling bath, and stirring was initiated. The temperature was controlled 
below 0 °C. 3,3′-diformyl-4,4′-dihydroxy-1,1′-biphenyl (0.24 g, 1.00 mmol), condensate of 
(S,S)-cyclohexane-1,2-diamine hydrochloride, and salicylaldehyde (0.485 g, 2.00 mmol) 
were dissolved in 60 mL of CH2Cl2. Then, triethylamine (0.55 mL, 4.00 mmol) and a small 
amount of 5A molecular sieve were added. The mixture was allowed to react at room 
temperature for 24 h and then filtered under vacuum. The filter cake was washed with an 
appropriate amount of CH2Cl2 before collecting the filtrate. The crude product was 
obtained by vacuum distillation of the filtrate and purified by column chromatography 

CHO

OH

OH

CHO

OH

N

NH3Cl Co(OAc)2

CH2Cl2

MX(M=H or Ag+ )

N N

OH HO

NN

HOOH
Co

N N

O O
Co

NN

OO

Co
N N

O O

X

Co
NN

OO

X

/ O2

CH2Cl2 CH3OH

IIa ~ IIf

O

O
C

O
O n m>>( (

OO O O

O
n m

+ CO2 +
Chiral catalyst

Figure 7. Synthetic route of stereoregular PCHC.

3.3. Synthesis of Compounds
3.3.1. Salen Ligand

A 100 mL round-bottom flask equipped with a magnetic stir bar was placed in a
low-temperature cooling bath, and stirring was initiated. The temperature was controlled
below 0 ◦C. 3,3′-diformyl-4,4′-dihydroxy-1,1′-biphenyl (0.24 g, 1.00 mmol), condensate
of (S,S)-cyclohexane-1,2-diamine hydrochloride, and salicylaldehyde (0.485 g, 2.00 mmol)
were dissolved in 60 mL of CH2Cl2. Then, triethylamine (0.55 mL, 4.00 mmol) and a small
amount of 5A molecular sieve were added. The mixture was allowed to react at room
temperature for 24 h and then filtered under vacuum. The filter cake was washed with
an appropriate amount of CH2Cl2 before collecting the filtrate. The crude product was
obtained by vacuum distillation of the filtrate and purified by column chromatography
(dry loading; silica gel column; eluent: petroleum ether/ethyl acetate = 10/1), resulting in a
golden yellow powder compound with a yield of 85.6%. IR (KBr, cm−1) ν: 3455, 3241, 2932,
2740, 1649, 1498, 1456, 1276, 1145, 1035, 823, 759, 660; 1H NMR (CDCl3, 400 MHz) δ 13.61
(s, 2H), 13.13 (s, 2H), 8.38 (s, 2H), 8.23 (s, 2H), 7.22 (s, 2H), 7.13 (s, 2H), 6.89 (m, 2H), 6.85
(s, 2H), 6.76 (s, 2H), 3.62–3.55 (m, 2H), 3.32–3.26 (m, 2H), 2.02–1.81 (m, 4H), 1.80–1.51 (m,
4H), 1.50–1.31 (m, 12H). 13C NMR (DMSO-d6, 100 MHz) δ 162.8, 162.4, 160.8, 160.7, 132.7,
132.3, 130.5, 129.7, 120.2, 119.8, 119.6, 119.4, 118.8, 117.0, 67.6, 67.2, 32.9, 32.7, 24.2, 24.1. The
spectra of IR, 1H-NMR and 13C-NMR were listed in Figures S7–S9.

3.3.2. SalenCo(II) Complex

Under N2 protection, salen ligand (0.321 g, 0.50 mmol) and 5 mL of CH2Cl2 were
added to a 150 mL three-neck flask. Then, the flask was placed in a low-temperature
cooling bath with magnetic stirring. The solution of 0.18 g anhydrous cobalt acetate in
30 mL of CH3OH was slowly added dropwise to the flask within 20 min and stirred for
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30 min. Then, the precipitate was filtered out and washed with a small amount of CH3OH.
The filter cake was vacuum dried at 60 ◦C for 24 h, resulting in the formation of a brick-red
solid product with a yield of 93.1%. 1H NMR (CDCl3, 400 MHz) δ 8.38 (s, 2H), 8.23 (s, 2H),
7.22 (s, 2H), 7.13 (s, 2H), 6.89 (m, 2H), 6.85 (s, 2H), 6.76 (s, 2H), 3.62–3.54 (m, 2H), 3.32–3.25
(m, 2H), 2.02–1.80 (m, 4H), 1.80–1.51 (m, 8H), 1.50–1.32 (m, 4H). 13C NMR (DMSO-d6,
100 MHz) δ 164.6, 164.1, 136.4, 135.7, 132.5, 129.5, 128.7, 128.3, 128.1, 127.2, 125.1, 124.0,
117.1, 116.0, 51.7, 51.4, 30.1, 30.0, 23.8. The spectra of 1H-NMR and 13C-NMR were listed in
Figures S10 and S11.

3.3.3. SalenCo(III) Complexes

The preparation processes of SalenCo(III) complexes were similar with minor vari-
ations. Taking the preparation of catalyst IIa as an example here: In a 50 mL three-neck
flask, SalenCo(II) complex (0.151 g, 0.2 mmol) and 2,4-dinitrophenol (0.074 g, 0.4 mmol)
were dissolved in 30 mL of purified CH2Cl2. Dry oxygen was slowly introduced, and the
mixture was oxidized for 1–2 h. The solvent was then removed by rotary evaporation to
obtain the crude product. Then, the crude product was taken out and dissolved in a small
amount of ethyl ether, and a small amount of n-hexane was added to adjust polarity. The
mixture was placed at a low temperature and kept in the dark overnight. After filtration,
the precipitate was collected and vacuum dried at 60 ◦C for 12 h, resulting in a dark green
powder with a yield of 88.2%. 1H NMR (CDCl3, 400 MHz): δ 8.76 (s, 2H), 8.29 (s, 2H), 7.83
(s, 2H), 7.51 (m, 2H), 7.38–7.21 (m, 8H), 6.98–6.88 (m, 4H), 6.55 (d, 2H), 2.96–2.76 (m, 4H),
2.01–1.83 (m, 4H), 1.75–1.56 (m, 8H), 1.53–1.37(m, 6H). 13C NMR (DMSO-d6, 100 MHz) δ
162.6, 162.2, 159.3, 141.1, 140.8, 138.9, 138.7, 136.7, 136.3, 133.2, 133.1, 131.7, 131.5, 124.7,
124.5, 122.6, 122.4, 118.4, 118.2, 117.3, 117.1, 53.2, 52.8, 52.7, 27.1, 26.9, 26.8, 23.3, 23.1. The
spectra of 1H-NMR and 13C-NMR were listed in Figures S12 and S13.

3.3.4. Poly(cyclohexenylene carbonate)

The high-pressure reactor was placed in a drying oven and dried at 120 ◦C for 2 h.
Then, it was quickly removed while still hot, and it was sealed and evacuated under
vacuum. Nitrogen gas was introduced to replace the atmosphere. In a nitrogen-filled glove
box, a predetermined amount of catalyst and a certain proportion of cyclohexene carbonate
were weighed into a 250 mL iodine flask successively. After the catalyst dissolved, the
mixture was transferred to the high-pressure reactor using a syringe. CO2 was introduced
into the reactor until the set pressure was reached (2.0–4.0 MPa). The mixture was stirred
violently at a specific temperature for a certain time (controlling the conversion rate at
50–60%). Then, the mixture was cooled to room temperature, and CO2 was slowly released.
The mixture was transferred to a 200 mL single-neck flask, and the excessive cyclohexene
was removed by vacuum distillation. The precipitated solid in the flask was dissolved in a
small amount of chloroform, and a few drops of dilute hydrochloric acid (2 mol/L) were
added. The solution was then added to methanol and vigorously stirred to precipitate the
polymer. This process was repeated several times to remove the residue catalyst, resulting
in a white powder of PCHC after vacuum drying. The spectra of 1H-NMR was listed in
Figure S14.

3.4. Structure and Properties Analysis of PCHC
3.4.1. GPC Analysis

Molecular weight and its distribution of PCHC samples were analyzed using a PL-
GPC50 gel permeation chromatography instrument (Agilen, Santa Clara, CA, USA). THF
was used as the mobile phase at a flow rate of 1.00 mL/min, and the sample concentration
was 5 mg/mL (standard sample: polystyrene).

3.4.2. TG Analysis

Thermogravimetric analysis was carried using a TGA2 thermal analyzer (Mettler-
Toledo, Greifensee, Switzerland). A total of 5.0 mg of PCHC sample was put into an



Molecules 2023, 28, 5235 9 of 12

alumina crucible, which was heated from 25 ◦C to 600 ◦C with a heating rate of 10 ◦C/min
and a nitrogen flow rate of 20 mL/min.

3.4.3. DSC Analysis

DSC analysis was performed using a Netzsch STA-449-F1 differential scanning calorimeter
(Netzsch, Germany). The measurement was conducted under N2 atmosphere. The sample
was heated from 25 ◦C to 235 ◦C at a rate of 10 ◦C/min and held at 235 ◦C for 10 min
to eliminate the sample’s thermal history. Subsequently, the temperature was decreased
to 25 ◦C at a rate of 10 ◦C/min. Afterward, the second heating program was performed,
where the temperature was still increased from 25 ◦C to 235 ◦C at a rate of 10 ◦C/min but
without any holding time, and decreased from 235 ◦C to 25 ◦C at a rate of 10 ◦C/min. The
heat flow data were recorded and used to plot the heat flow curve.

3.4.4. Determination of ee Value

A total of 120 mg of PCHC sample and 15 mL THF were added to a 100 mL round-
bottom flask. Then, 2 mL of methanol and 4 mL of 3 mol/L NaOH solution were added
after the PCHC dissolved. The mixture was stirred at room temperature for 8 h and the pH
of the solution was subsequently adjusted to neutral by adding a small amount of 2 mol/L
HCl. The aqueous phase was extracted with ethyl acetate (5 mL × 3). Then, the organic
phase was dried with anhydrous MgSO4 overnight. The solvent was removed by rotary
evaporation, and the residue was separated by column chromatography (silica gel column,
petroleum ether/ethyl acetate = 10/1). An amount of 79 mg of a mixture of chiral diols was
obtained after removing the solvent. The ee value of the chiral diols mixture was analyzed
using an Agilent HP 19091G-B213 chiral gas chromatograph. The operation conditions
were as follows: injection temperature of 250 ◦C, hydrogen flame detector temperature of
250 ◦C, vaporizer temperature of 260 ◦C, and programmed heating from 100 ◦C to 120 ◦C
with a heating rate of 10 ◦C/min. The ee values were calculated by the Equation (1).

ee =
[S, S]− [R, R]
[S, S] + [R, R]

× 100% (1)

where [S,S] and [R,R] are the mass content of (S,S)-enantiomer and (R,R)-enantiomer of 1,2-
cyclohexanediol, respectively. Since the absolute correction factors for the two components
are identical, the mass percentage content can be replaced by the percentage of peak area.
A typical chiral gas chromatogram is shown in Figure 8.
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3.4.5. Mechanical Performance Test

The mechanical properties of polyester were tested on a CMT6103 universal material
testing machine (ZWICK, Ulm, Germany) according to the reference [51]. At room tem-
perature, the PCHC sample was fully dissolved in a small amount of CH2Cl2. The viscous
liquid was then evenly spread in a rectangular mold and left to stand for the solvent to
evaporate under vacuum drying at 25 ◦C, resulting in a thin film whose thickness was
about 0.5 mm. The film was cut into uniform rectangular shapes of 1.0 cm × 6.0 cm. The
clamp distance was 50 mm, the test was conducted at a speed of 100 mm/min, and the
measurements were taken three times using three samples of the same specifications to
obtain an average value.

4. Conclusions

Starting from the bimetallic synergistic catalytic mechanism for alternating copoly-
merization of carbon dioxide and epoxides, a series of chiral bimetallic cobalt complexes
catalysts with different axial coordinating ions was designed and prepared for the alternat-
ing copolymerization of carbon dioxide and cyclohexene oxide to produce stereoregular
PCHC in this paper. The results revealed that catalysts with strong electron-withdrawing
coordinating ions exhibited better catalytic activity, enabling efficient alternating copoly-
merization at room temperature and ensuring a higher stereo-selectivity during the copoly-
merization process. It is also observed that high temperature and low pressure contribute
to the improvement of isotacticity. Subsequent property tests indicated that PCHC with
higher isotacticity exhibits improved thermodynamic and mechanical properties, with a
glass transition temperature of over 120 ◦C, which significantly expanded the temperature
range for the application of polycarbonates. Furthermore, the higher mechanical strength
of PCHC might provide an effective approach for improving the mechanical properties of
PPC. However, further in-depth research is needed to explore these aspects.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28135235/s1, Figure S1: FTIR spectrum of 3,3′-diformyl-
4,4′-dihydroxy-1,1′-biphenyl; Figure S2: 1H NMR spectrum of 3,3′-diformyl-4,4′-dihydroxy-1,1′-
biphenyl; Figure S3: 13C NMR spectrum of 3,3′-diformyl-4,4′-dihydroxy-1,1′-biphenyl; Figure S4:
FTIR spectrum of salicylaldehyde condensation product; Figure S5: 1H NMR spectrum of salicylalde-
hyde condensation product; Figure S6: 13C NMR spectrum of salicylaldehyde condensation product;
Figure S7: FTIR spectrum of the salen ligand; Figure S8: 1H NMR spectrum of the salen ligand;
Figure S9: 13C NMR spectrum of the salen ligand; Figure S10: 1H NMR spectrum of the salenCo(II)
complex; Figure S11: 13C NMR spectrum of the salenCo(II) complex; Figure S12: 1H NMR spectrum
of the salenCo(III) complex (IIa); Figure S13: 13C NMR spectrum of the salenCo(III) complex (IIa);
Figure S14: 1H NMR spectrum of PCHC.
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