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Abstract: Herein, we demonstrate the supramolecular assemblies from a bifunctional ligand on
Au(111), towards engineering two-dimensional (metal-) organic multilevel nanostructures. The
bifunctional ligand employed, including two Br atoms and one carboxylic terminal, offers multiple
bonding motifs with different configurations and binding energies. These bonding motifs are highly
self-selective and self-recognizable, and thus afford the formation of subunits that contribute to
engineering multilevel self-assemblies. Our scanning tunneling microscopy experiments, in com-
bination with the density functional theory calculations, revealed various hydrogen, halogen and
alkali-carboxylate bonding motifs dictating the different levels of the assemblies. The multilevel
assembly protocol based on a judicious choice of multiple bonding motifs guarantees a deliberate
control of surface-confined (metal-) organic nanostructures. Our findings may present new opportu-
nities for the fabrication of complex two-dimensional (metal-) organic nanostructures with potential
in applications of functionally diverse nanomaterials.

Keywords: two-dimensional supramolecular self-assembly; metal-organic coordination; surface;
scanning tunneling microscopy; density functional theory

1. Introduction

On-surface supramolecular (metal-coordination) self-assembly based on noncova-
lent chemical interactions (e.g., hydrogen, halogen and metal-organic coordination bond-
ing) has become an important strategy in the bottom-up engineering of low-dimensional
nanostructures [1–7]. Because of the high selectivity, reversibility and directionality of non-
covalent interactions, the judicious choice of multiple noncovalent bonding motifs allows
one to deliberately control the thermodynamic and kinetic processes of a self-assembly and
to create complex nanostructures, affording a variety of structural and chemical properties.
For instance, the secondary building units (SBUs) approach has been developed to engi-
neer a large number of three-dimensional porous metal–organic frameworks with various
pores sizes, geometries and functionalities [8,9]. The strategy of hierarchical self-assembly,
bestowing multiple noninterfering interactions involved, has succeeded in constructing
complex multilevel nanoarchitectures [10–12].

Nevertheless, the use of multiple (or multifunctional) ligands brings out multiple
bonding motifs, which often have different configurations and binding energies. The
corresponding self-assembly may proceed with the competition and collaboration of distinct
bonding motifs, which interfere in the assembly processes and thus result in unwanted by-
products. The rational design of the target multilevel nanoarchitectures is a huge challenge.
A comprehensive understanding of the thermodynamic and kinetic processes driven by
the multiple bonding motifs involved at the single-molecule level is necessary.
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Herein, we have investigated the two-dimensional multilevel assemblies out of
the bifunctional organic ligand DBA (2, 5-dibromobenzoic acid), and the assemblies as-
sisted with alkali halides on Au(111). The ligand has one carboxylic (COOH) and two
Br terminals, which offer multiple bonding motifs to the corresponding assemblies, in-
cluding COOH· · ·COOH [13–18], Br· · ·H hydrogen bonding [19–22], Br· · ·Br halogen
bonding [20,23] and alkali-COO ionic coordination bonding [24–26]. Based on the ma-
jor bonding motifs, the resulting first-level subunits afford distinct configurations and
functional terminals, which determine the topologies of the resultant multilevel nanoarchi-
tectures. Scanning tunneling microscopy (STM) experiments, in combination with density
functional theory (DFT) calculations, revealed that the emerging bonding motifs coexisted,
competed and collaborated in the different levels of the self-assembled structures and finally
generated various (metal-) organic nanostructures. Furthermore, by using two different al-
kali halides (NaCl and CsCl), we have explored the configurational adaptability [26–28] and
the size effect of alkali coordination complexes [26,29–31], and have achieved a reversible
structural conversion for the Cs-coordination assemblies. Our findings present new oppor-
tunities for the fabrication of complex two-dimensional (metal-) organic nanostructures
with potential in applications of functionally diverse nanomaterials.

2. Results and Discussion
2.1. Self-Assembly of DBA on a Pristine Au(111)

DBA molecules were self-assembled into a multilevel network structure, namely DBA-
I, on a pristine Au(111) surface held at room temperature (RT)—see the STM overview in
Figure 1a. The high-resolution STM topographic image (Figure 1b) depicts the unit cell
with parameters: a = 3.29 nm, b = 1.45 nm and θ = 90◦; the vector a is in alignment with the
substrate vectors <1−10>. The individual molecule has two bright terminals representing
Br atoms, while the carboxylic group appears in a lateral protrusion close to one of the
Br terminals. Thus, each DBA is presented in an asymmetric shape; see the two outlined
molecules in Figure 1c. Due to the relatively low catalytic activity of the Au(111) surface [32],
DBA presumably maintained intact at this experimental condition. Accordingly, we have
proposed a tentative structural model for DBA-I, where a three-level assembly scheme is
presented; see Figure 1d. The first level of the assembly includes the formation of molecular
dimers, where each two DBA monomers are interconnected through the two carboxylic
groups. The resulting O-H· · ·O distance in the dimeric unit measures 2.7 Å, falling in
the range of the typical cyclic hydrogen bond [13,16]. The DBA dimers, with two differ-
ent prochiral configurations, constitute the first-level subunits. Towards the second-level
assembly, the four dimers are interconnected mainly through complementary Br· · ·H-C
hydrogen bonds (green dotted lines), measuring a Br· · ·H distance of 2.5–3.1 Å [19,20,22].
Our tentative model also suggests Br· · ·Br (red dotted lines) and O· · ·H (black dotted
lines) bonds joining the second-level subunit (see the summary of complementary bonding
motifs in Table S1 in Supporting Information (SI)). Finally, these second-level subunits
(i.e., the aggregates of four dimers) are further interconnected mainly by the outmost Br
terminals, which constitute complementary bonding motifs, including Br· · ·H-C, Br· · ·Br,
Br· · ·O (blue dotted lines) and O· · ·H (black dotted lines). The resulting extended two-
dimensional supramolecular assembly constitutes the third-level superstructure. In short,
the COOH· · ·COOH, Br· · ·H-C (or O· · ·H) and Br· · ·Br bonding motifs coexist on surface,
which, however, emerge in different structural subunits and afford a three-level supramolec-
ular assembly. Note that we have assigned the dimeric unit assisted by COOH· · ·COOH as
the first-level subunit, because the bonding motif is of high directionality and orthogonality,
and solely emerges in dimeric units. Distinct from COOH· · ·COOH, the configuration of
Br· · ·Br, O· · ·H and Br· · ·H-C bonding is highly adaptable, and thus they are assigned as
complementary bonding motifs in the high-level assemblies.
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Figure 1. The self-assembled structure, namely, DBA-I, out of DBA on Au(111). (a) Large-scale STM 
image (50 nm × 50 nm; U = −1.2 V, I = 0.2 nA). (b) High-resolution STM image (10 nm × 10 nm; U = 
−1.2 V, I = 0.2 nA). The parameters of the unit cell: a = 3.29 nm, b = 1.45 nm and θ = 90°. (c) The 
topographic details of DBA monomers (2.5 nm × 2.5 nm; U = 1.2 V, I = 0.2 nA). (d) The multilevel 
assembly of DBA-I. The green, black, red and blue dotted lines represent Br⋯H, O⋯H, Br⋯Br and Br
⋯O bonding motifs, respectively. The red outline denotes one 2nd-level subunit in the DBA-I assem-
bly. Colors: Br, yellow; O, red; C, grey; H, white. 

2.2. Self-Assembly of DBA in the Presence of NaCl 
By customizing the configuration of the first-level subunit, one can design an alter-

native multilevel superstructure. To this end, we have co-deposited DBA and NaCl onto 
a Au(111) substrate held at RT, aiming to investigate the effect of alkali coordination in the 
assembly. An STM overview (Figure 2a) reveals a new structure (namely, DBA·Na-I) con-
sisting of two types of rows; see the yellow (row-I) and red (row-II) shaded ribbons. Both 
rows propagate along the direction at ±14° from substrate vectors <11−2>. The high-reso-
lution STM image (Figure 2b) reveals the unit cell with the parameters: a = 2.18 nm, b = 
1.77 nm and θ = 97°. As shown in the tentative structural model (Figure 2c), in row-I are 
the DBA dimeric subunits from the two intact DBA molecules paired by cyclic COOH⋯

COOH H-bonds with the measured bond length of 2.7 Å, which resembles that for DBA-
I. We noted that no protrusions representing Na atoms were resolved in our STM obser-
vation. Nevertheless, considering that the structure only emerged after the co-deposition 
of NaCl, we have proposed that Na atoms exist in DBA·Na-I, particularly in row-II. Pre-
vious reports documented that Na was invisible in STM images, presumably because of 
its electronic state [26,28,30]. In addition, we propose that the four DBAs are deprotonated 
because of the bonding with Na [25,33]. In row-II, the two Na atoms 4.4 Å apart are em-
braced by four adjacent DBA molecules. The surrounding O atoms are about 2.2–2.3 Å 
away from the Na atom. This structural model is also supported by our DFT simulation 
(vide infra). The 4DBA-2Na unit forms a subunit directed mainly by Na⋯COO ionic bond-
ing motifs. In addition, two Br⋯Br bonds (red dotted lines) assist the stabilization of a sub-
unit. Note that the charges of alkali ions and carboxylate groups are ignored, since the 
substrate may partially screen the adsorbates charges. In between these subunits, the Br⋯

Figure 1. The self-assembled structure, namely, DBA-I, out of DBA on Au(111). (a) Large-scale STM
image (50 nm × 50 nm; U = −1.2 V, I = 0.2 nA). (b) High-resolution STM image (10 nm × 10 nm;
U = −1.2 V, I = 0.2 nA). The parameters of the unit cell: a = 3.29 nm, b = 1.45 nm and θ = 90◦. (c) The
topographic details of DBA monomers (2.5 nm × 2.5 nm; U = 1.2 V, I = 0.2 nA). (d) The multilevel
assembly of DBA-I. The green, black, red and blue dotted lines represent Br· · ·H, O· · ·H, Br· · ·Br
and Br· · ·O bonding motifs, respectively. The red outline denotes one 2nd-level subunit in the DBA-I
assembly. Colors: Br, yellow; O, red; C, grey; H, white.

2.2. Self-Assembly of DBA in the Presence of NaCl

By customizing the configuration of the first-level subunit, one can design an alterna-
tive multilevel superstructure. To this end, we have co-deposited DBA and NaCl onto a
Au(111) substrate held at RT, aiming to investigate the effect of alkali coordination in the
assembly. An STM overview (Figure 2a) reveals a new structure (namely, DBA·Na-I) consist-
ing of two types of rows; see the yellow (row-I) and red (row-II) shaded ribbons. Both rows
propagate along the direction at ±14◦ from substrate vectors <11−2>. The high-resolution
STM image (Figure 2b) reveals the unit cell with the parameters: a = 2.18 nm, b = 1.77 nm
and θ = 97◦. As shown in the tentative structural model (Figure 2c), in row-I are the DBA
dimeric subunits from the two intact DBA molecules paired by cyclic COOH· · ·COOH
H-bonds with the measured bond length of 2.7 Å, which resembles that for DBA-I. We
noted that no protrusions representing Na atoms were resolved in our STM observation.
Nevertheless, considering that the structure only emerged after the co-deposition of NaCl,
we have proposed that Na atoms exist in DBA·Na-I, particularly in row-II. Previous reports
documented that Na was invisible in STM images, presumably because of its electronic
state [26,28,30]. In addition, we propose that the four DBAs are deprotonated because of
the bonding with Na [25,33]. In row-II, the two Na atoms 4.4 Å apart are embraced by four
adjacent DBA molecules. The surrounding O atoms are about 2.2–2.3 Å away from the
Na atom. This structural model is also supported by our DFT simulation (vide infra). The
4DBA-2Na unit forms a subunit directed mainly by Na· · ·COO ionic bonding motifs. In
addition, two Br· · ·Br bonds (red dotted lines) assist the stabilization of a subunit. Note
that the charges of alkali ions and carboxylate groups are ignored, since the substrate
may partially screen the adsorbates charges. In between these subunits, the Br· · ·H-C and
Br· · ·O bonding motifs (green and blue dotted lines) assist in constituting row-II. Finally,
the two types of rows are mainly connected to each other by Br· · ·Br and Br· · ·H-C bonds
(see the red and green dotted lines).
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row-II (highlighted in red) emerged after a thermal annealing at 406 K to the sample; see 
the STM overview shown in Figure 2d. Considering that DBA can be evaporated at RT, 
we have proposed that the 406 K annealing led to the desorption of DBA. The reduced 
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sists of one 4DBA-2Na subunit and (Figure 2e) measures a = 1.77 nm, b = 1.50 nm, and θ = 
94°; a is in alignment with substrate vectors ±14° from <11−2> (as the same as DBA·Na-I). 
To interpret our STM results, we have carried out a DFT simulation according to our high-
resolution STM observations. The geometric optimized atomic structural model (Figure 
2f) gives a molecular supercell (√39 × √31)R95°, agreeing well with the experimental re-
sults. As indicated in Figure 2f, the Na pair acts as a dimetallic coordination center to link 
COO end groups belonging to the four nearest DBAs. These 4DBA-2Na complexes serve 
as the first-level subunits for the formation of DBA·Na-II, mainly via Br⋯H-C bonding 
motifs (green dotted lines), assisted simultaneously by the complementary Br⋯O halogen 
bonding (blue dotted lines); see details in Table S1 in the SI. Notably, the corresponding 
STM simulation (see Figure S1 in SI) produces depressions corresponding to the Na atoms, 
supporting our experimental observations. To summarize, by designing the first-level 
subunit through Na⋯COO bonding, we have achieved a two-level assembly of DBAs in 
the presence of NaCl, where Na⋯COO (and Br⋯Br) and Br⋯H-C (Br⋯O) bonding motifs 
emerge in different levels. In comparison with the first-level subunit for DBA-I, the 4DBA-

Figure 2. Self-assemblies of DBA in the presence of NaCl on Au(111). (a) An STM overview of
DBA·Na-I (30 nm × 30 nm; U = −0.5 V, I = 0.5 nA). Row-I and -II are highlighted in yellow and red,
respectively. (b) High-resolution STM image (8 nm × 8 nm; U = −0.5 V, I = 0.5 nA) showing the unit
cell: a = 2.18 nm, b = 1.77 nm and θ = 97◦. (c) The tentative structural model of DBA·Na-I. (d,e) STM
overview (30 nm × 30 nm; U = −0.9 V, I = 0.2 nA) and high-resolution (8 nm × 8 nm; U = −0.5 V,
I = 0.05 nA) images of DBA·Na-II. The parameters of the unit cell: a = 1.77 nm, b = 1.50 nm and
θ = 94◦. One row of 4DBA-2Na subunits is highlighted in red. (f) The DFT calculated structural
model of DBA·Na-II. The green, red and blue dotted lines in (c,f) represent Br· · ·H, Br· · · -Br and
Br· · ·O bonding motifs, respectively. Colors: Na, purple; Br, yellow; O, red; C, grey; H, white.

Intuitively, DBA·Na-I is a mixture of two assembled subunits; the dimers in row-I have
appeared in DBA-I. Indeed, the pure phase (namely, DBA·Na-II) solely out of the row-II
(highlighted in red) emerged after a thermal annealing at 406 K to the sample; see the STM
overview shown in Figure 2d. Considering that DBA can be evaporated at RT, we have
proposed that the 406 K annealing led to the desorption of DBA. The reduced DBA/Na
ratio excluded row-I, which did not contain Na species. Now, the unit cell consists of one
4DBA-2Na subunit and (Figure 2e) measures a = 1.77 nm, b = 1.50 nm, and θ = 94◦; a is
in alignment with substrate vectors ±14◦ from <11−2> (as the same as DBA·Na-I). To
interpret our STM results, we have carried out a DFT simulation according to our high-
resolution STM observations. The geometric optimized atomic structural model (Figure 2f)
gives a molecular supercell (

√
39 ×

√
31)R95◦, agreeing well with the experimental results.

As indicated in Figure 2f, the Na pair acts as a dimetallic coordination center to link COO
end groups belonging to the four nearest DBAs. These 4DBA-2Na complexes serve as
the first-level subunits for the formation of DBA·Na-II, mainly via Br· · ·H-C bonding
motifs (green dotted lines), assisted simultaneously by the complementary Br· · ·O halogen
bonding (blue dotted lines); see details in Table S1 in the SI. Notably, the corresponding
STM simulation (see Figure S1 in SI) produces depressions corresponding to the Na atoms,
supporting our experimental observations. To summarize, by designing the first-level
subunit through Na· · ·COO bonding, we have achieved a two-level assembly of DBAs in
the presence of NaCl, where Na· · ·COO (and Br· · ·Br) and Br· · ·H-C (Br· · ·O) bonding
motifs emerge in different levels. In comparison with the first-level subunit for DBA-I, the
4DBA-2Na subunit has a distinct configuration and functional terminals, which, serving as
the first-level subunit, determines the morphology of the final DBA·Na-II assemblies.

2.3. Size Effect of Alkali Coordination Centers

To further explore the size effect of the alkali metals in the multilevel self-assembly, we
have co-deposited DBA with CsCl onto a Au(111) substrate held at RT. Interestingly, there
existed two assembled structures, namely, DBA·Cs-I and DBA·Cs-II (Figure 3), determined
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by the ratio of DBA to Cs (vide infra). Again, the two structures are presented in a three-
level organization. In particular, as shown in Figure 3a, DBA·Cs-I consists of two types
of rows, namely row-R (yellow) and row-S (red). Each row has the periodicity of 1.93 nm
along the substrate vectors <11−2> and includes the subunits with a solely prochiral
feature (R or S). Notably, both rows are stacked laterally in a random order, which leads
to a non-periodic arrangement in the direction along the substrate vectors <1−10>. The
missing dots (circles in Figure 3a) and a close look (Figure 3b) reveal that each two Cs atoms,
appearing in bright protrusions, serve as a bimetallic coordination center and anchor six
surrounding DBA molecules, forming a prochiral 6DBA-2Cs subunit; see the two frames
in yellow and red. Accordingly, we have performed DFT simulation, which renders an
optimized geometry for the atomic structural model of DBA·Cs-I structure; Figure 3c shows
a two-dimensional periodic assembly for the purpose of calculation. The individual Cs
atoms in each pair are 5.3 Å apart, and the distance from the surrounding O atoms is 3.2 Å.
Such a resultant first-level subunit resembles that in DBA·Na-II, where Na pairs afford the
coordination centers. However, because of the large vdW radii of Cs with respect to Na,
a high coordination number is obtained. The first-level subunit, 6DBA-2Cs, is stabilized
mainly by Cs· · ·COO bonding and assisted by complementary Br· · ·H-C and Br· · ·Br
bondings (green and red dotted lines). Since all COO terminals point towards the center
within a subunit, only Br terminals (and peripheral H atoms) remain available for the
high-level assembly. Thus, the second-level assembly, i.e., the row-R/-S, is established
solely by Br· · ·H bonding motifs. The two types of rows are alternatively stacked into the
third-level assembly, where Br· · ·H and Br· · ·Br bonding motifs stabilize the stacking; see
details in Table S1 in SI.
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of DBA·Cs-I (30 × 30 nm; U = −1.2 V, I = 0.05 nA). Rows-R and -S are highlighted in yellow and red, 
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Figure 3. Self-assembled structure of DBA in the presence of CsCl on Au(111). (a) An STM overview
of DBA·Cs-I (30 × 30 nm; U = −1.2 V, I = 0.05 nA). Rows-R and -S are highlighted in yellow and
red, respectively. (b) High-resolution STM image (10 × 10 nm; U = −1.2 V, I = 0.05 nA). (c) The
DFT calculated structure model of DBA·Cs-I. (d) The STM overview of DBA·Cs-II (20 nm × 20 nm;
U = −1.0 V, I = 0.2 nA). (e) High-resolution STM (6 nm× 6 nm; U =−1.2 V, I = 0.1 nA). The parameters
of the unit cell: a = 3.45 nm, b = 1.61 nm, θ = 90◦. (f) The DFT calculated structure model for DBA·Cs-II.
The red and green dotted lines in (c,f) represent Br· · ·Br and Br· · ·H bonds, respectively. Colors: Cs,
blue; Br, yellow; O, red; C, grey; H, white.

As shown in Figure 3d, DBA·Cs-II is also a multilevel structure, which, however, is
based on a different first-level subunit. Several dots are also missing (circles in Figure 3d),
which presumably indicates the absence of Cs ions. Again, two types of rows are visible,
namely, row-R and -S, highlighted in yellow and red, respectively. Figure 3e depicts a
unit cell measuring a = 3.45 nm, b = 1.61 nm, and θ = 90◦, which contains two 4DBA-2Cs
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subunits with two distinct prochiral features (see the two frames in yellow and red). The
geometric optimized atomic structural model provides a well-consistent molecular super-
cell (
√

151 ×
√

31)-R90◦; see the black frame in Figure 3f. The model presents the first-level
subunit 4DBA-2Cs, where two Cs atoms (4.4 Å apart) are embraced by four DBAs through
Cs-O bonds (~3.1 Å). The same prochiral subunits are further interconnected, mainly
through complementary Br· · ·H-C and Br· · ·Br (green and red dotted lines) bonding, into
the second-level assemblies, i.e., the rows-R/-S. The final (third-level) assemblies involve
the stacking of the two rows, in which the complementary bonding is solely Br· · ·H-C; see
details in Table S1 in SI. In comparison with DBA·Na-II based on the 4DBA-2Na first-level
subunit, the 4DBA-2Cs subunit in DBA·Cs-II has the same stoichiometric ratio but features
deep indentations in its configuration. As shown in Figure 3e,f, such a configuration allows
the Br atoms, belonging to the nearest neighboring subunits, to mutually interact and form
more Br· · ·Br bondings. The presence of the two different first-level subunits suggests
a configurational adaptability for Cs· · ·COO bonding motifs. It is the configurational
adaptability that allows us to realize the structural conversion of the two Cs-coordination
assisted assemblies. In comparison with the first-level subunit in DBA-I that is stabilized by
COOH· · ·COOH, the first-level subunits in DBA·Na-II and DBA·Cs-I(-II) are all intercon-
nected mainly by alkali-carboxylate ionic bonding; they are further interconnected mainly
by Br· · ·H-C hydrogen bonding and assisted by Br· · ·Br and/or Br· · ·O halogen bonding
to form metal-organic multilevel supramolecular assembled structures.

2.4. Reversible Structural Conversion of DBA·Cs-I and -II, and DFT Calculation

We have observed the structural conversion between DBA·Cs-I and -II occurring at
room temperature. In a sequential deposition experiment (see Figure S2, in SI), we first
deposited 3 min DBA and 5 min CsCl to obtain the pure assembly of DBA·Cs-I; a following
deposition of 3 min CsCl gave DBA·Cs-II; after the deposition of 3 min more DBA, DBA·Cs-I
reappeared. Apparently, the high configurational adaptability of alkali coordination allows
us to modulate the structural conversion by adjusting the ratio of DBA and CsCl. Finally,
we annealed the sample to 450 K, and DBA·Cs-II reappeared. Such a conversion achieved
by thermal treatment can be attributed to the desorption of DBA molecules at elevated
temperatures, which reduces the stoichiometric ratio of DBA molecules to Cs atoms.

To shed light on the mechanism of the structural conversion between DBA·Cs-I and
-II, we have conducted DFT calculations to quantitatively examine the energy schemes
of the two structures. Table 1 lists the calculation results, showing the binding energy
for the unit cell of the two assemblies. We note that the average binding energy per Cs
atom in DBA·Cs-I (2.82 eV) is larger than that in DBA·Cs-II (2.81 eV) by 0.01 eV, and the
average binding energy per DBA in DBA·Cs-II (1.40 eV) is larger than that in DBA·Cs-I
(0.94 eV) by 0.46 eV. This result is consistent with the experimental observations, in which
DBA·Cs-I is energetically preferred when Cs is less (DBA:Cs > 3:1), while DBA·Cs-II is
predominant when DBA is less (DBA:Cs < 2:1). Therefore, the assembly is determined by
the less component, because the less component prefers to form a larger binding energy to
save the total energy of the system. Additionally, this result also reveals the configurational
adaptability of Cs-coordination bonding motifs.

Table 1. Summary of the calculated binding energy for the assemblies of DBA·Cs-I and -II.

Structure DBA·Cs-I DBA·Cs-II

No. of DBA 12 8
No. of Cs 4 4
Eb (eV) a 11.30 11.23

Eb per DBA (eV) 0.94 1.40
Eb per Cs (eV) 2.82 2.81

a: Eb is the total binding energy between DBA and Cs per unit cell.
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3. Materials and Methods

STM. All experiments were carried out in an ultrahigh-vacuum scanning tunneling
microscopy (UHV-STM) system (Aarhus 150, SPECS GmbH, Berlin, Germany) with a base
pressure ~3.0 × 10−10 mbar. The Au(111) single crystalline substrate was cleaned by cycles
of Ar+ ions sputtering and thermal annealing at 800 K. The organic molecule DBA (2, 5-
Dibromobenzoic acid, Aladdin Chemistry, 96%) contained by a glass crucible was sublimed
at room temperature. NaCl (Sigma-Aldrich, 99.999%) and CsCl (Sigma-Aldrich, ≥99.999%)
were evaporated by using organic molecular beam epitaxy (OMBE, Dedocon GmbH) at
240 ◦C and 340 ◦C, respectively. All STM images were obtained at room temperature in
the constant current mode, with the bias voltage applied to the sample. The STM image
processing was performed using WSxM 5.0 software [34].

First-Principles Calculations. DFT calculations were implemented in the Vienna Ab-
initio Simulation Package (VASP) [35–37] using projector-augmented wave (PAW) [38,39]
pseudopotential combined with the Perdew–Burke–Ernzerhof (PBE) [40,41] functional.
The Grimme-D3 method [42] was employed to describe the van der Waals interaction
between molecules and metal substrate [43]. The energy cutoff for the plane-wave basis
was set to 500 eV. All Au(111) substrates were modeled by three layered slabs, with the
bottom layer fixed and two top layers relaxed. The thicknesses of the vacuum layers were
all larger than 15 Å. The models of DBA·Na-II, DBA·Cs-I and DBA·Cs-II were built with
(
√

39 ×
√

31)-R95◦, (4
√

3 × 14)-R90◦ and (
√

151 ×
√

31)-R90◦ supercells of Au(111). The
molecular layer and two upper metal layers were relaxed until the residual force on each
of the relaxed atoms was less than 0.02 eV Å−1 and the break condition for the electronic
self-consistent loop was 1 × 10−6 eV. The Brillouin zone was sampled by a (2 × 2 × 1)
Gamma-centered k-mesh for DBA·Na-II and a (1 × 1 × 1) k-mesh for DBA·Cs-I and -II.

4. Conclusions

To conclude, through tuning multiple bonding motifs within the on-surface assemblies
of the bifunctional ligand DBA, we have achieved five different types of multilevel assem-
bled nanostructures (DBA-I, DBA·Na-I (-II) and DBA·Cs-I (-II)) with complex geometries
on Au(111). The directionality of cyclic COOH· · ·COOH bonding, the configurational
adaptability, and the size effect of alkali coordination centers (Na/Cs· · ·COO) are used to
design the first-level subunits. Their peculiar geometries and terminal functions guide the
following structural levels, yielding various multilevel nanostructures. The structural con-
version of the Cs· · ·COO-assisted assemblies was examined and attributed to the bonding
competition between two species. Our findings provide insightful information regarding
the fabrication of complex supramolecular nanoarchitectures at the single-molecule level.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28135116/s1, Table S1: Summary of complementary
bonding motifs; Figure S1: STM simulation of the structures DBA·Na-II, DBA·Cs-I and -II; Figure S2:
The reversible structural conversion of DBA·Cs-I and -II. References [21,44–46] are cited in the
supplementary materials.
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