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Abstract: Alzheimer’s disease (AD), an amyloid-related disease, seriously endangers the health of
elderly individuals. According to current research, its main pathogenic factor is the amyloid protein,
which is a kind of fibrillar aggregate formed by noncovalent self-assembly of proteins. Based on the
characteristics of aggregation-induced emission (AIE), a bislactosyl-decorated tetraphenylethylene
(TPE) molecule TMNL (TPE + malononitrile + lactose), bearing two malononitrile substituents, was
designed and synthesized in this work. The amphiphilic TMNL could self-assemble into fluorescent
organic nanoparticles (FONs) with near-infrared (NIR) fluorescence emission in physiological PBS
(phosphate buffered saline), achieving excellent fluorescent enhancement (47-fold) upon its combi-
nation with Aβ1–42 fibrils. TMNL was successfully applied to image Aβ1–42 plaques in the brain
tissue of AD transgenic mice, and due to the AIE properties of TMNL, no additional rinsing process
was necessary. It is believed that the probe reported in this work should be useful for the sensitive
detection and accurate localization mapping of Aβ1–42 aggregates related to Alzheimer’s disease.

Keywords: Alzheimer’s disease; AIE; Aβ; tetraphenylethylene; near-infrared imaging; amyloid;
lactose; fluorescence

1. Introduction

Alzheimer’s disease, an incurable neurodegenerative disease, seriously endangers
the physical and psychological health of elderly individuals [1–3]. One of the pathological
features of Alzheimer’s disease is the abnormal deposition and accumulation of β-amyloid
outside neurons in the cerebral cortex [4–6]. When the environment of the protein is
changed, such as the temperature, pH, etc., or the protein is misfolded, its biological activity
will decrease or even disappear, and the inactive protein aggregates, forming amyloids [7,8].
The most common types of β-amyloids in human bodies are Aβ1–40 and Aβ1–42, and Aβ1–42
polypeptides are more prone to aggregate and deposit into fibrillar aggregates [9–12].

Developing sensitive and efficient tools for the accurate sensing of Aβ polypeptides
is of great importance to the diagnosis and intervention of AD in its early stage. At
present, most reported fluorescent probes used for Aβ imaging, such as Thioflavin T
(ThT), Thioflavin S (ThS), BODIPYs, and oxazines [13–15], lead to serious self-fluorescence
quenching due to aggregation at the Aβ binding site, and the rinse process also needs
to be repeatedly performed during real-time imaging to overcome the disadvantages of
the aggregation-caused quenching (ACQ) effect. In addition, ThT and Congo red (CR)
fluorophores with short emission wavelengths and small Stokes shifts are not suitable
for imaging in vivo [16,17]. Several fluorescent probes with D-π-A structures and the
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intramolecular charge transfer (ICT) effect have been developed to extend the conjugate
system; however, the fluorescent defects of the molecules themselves still limit their wide
application to achieve accurate imaging information for mapping Aβ plaques [18–20].

According to the research and report of Tang’s group [21], AIE was a preferential
strategy to identify protein fibrillar formation [16]. In contrast with the ACQ fluorophores,
fluorophores with AIE properties were exactly able to compensate for their deficiency,
particularly the light-up characteristic during the aggregation process [21]. In addition,
low fluorescence background, high sensitivity, and good resistance to photobleaching are
also advantages of AIE-type luminogens. AIE-luminogen (AIEgen) itself, in dilute solu-
tion, exhibited weak fluorescence due to intramolecular thermal motion, but when it was
combined with the β-sheet of amyloid due to hydrophobic interactions, the fluorescence
was greatly enhanced under the restriction of intramolecular motion (RIM) effect [22–24],
enabling fluorescence imaging of amyloids, such as Aβ1–42 fibrils [16,21]. However, the
initial aggregation of AIE fluorescent probes with poor water solubility led to a stronger
“false-positive” AIE signal before binding to Aβ aggregates. To date, a number of fluores-
cent probes have been developed to detect Aβ amyloid [14,25–35], but water-soluble NIR
fluorophores with AIE properties have rarely been reported [36–40].

2. Results and Discussion

According to the reported literature [20], the malononitrile substituent could be used
as an acceptor in D-π-A type NIR fluorophores for the detection of Aβ fibrils, and the π

bridge could enhance the fluorescence emission of the probe and increase its redshift. In
addition, lactose is a highly biocompatible and water-soluble substance, and it is a good
choice for use as the hydrophilic unit.

Herein, we designed and synthesized a bislactosyl-decorated tetraphenylethylene
(TPE) molecule, TMNL (Scheme 1), with typical AIE fluorescence characteristics, which
contained two malononitrile substituents in the molecule. The amphiphilic TMNL could
self-assemble into fluorescent organic nanoparticles (FONs) with NIR fluorescence emission
in PBS buffer solution (pH 7.4) and could achieve excellent no-rinsing fluorescence imaging
of Aβ1–42 fibrils through the combination of malononitrile groups with Aβ1–42 fibrils.
TMNL was bestowed on the following extraordinary features. (i) The water-soluble lactose
units would increase the water solubility and biocompatibility of TPE. (ii) The AIE-active
TPE unit would overcome the ACQ effect of traditional fluorophores. (iii) The malononitrile
substituent with an electron-withdrawing effect could extend the conjugated system of TPE,
which redshifted the emission wavelength to the NIR region. Compared to the reported
AIE-type NIR fluorescence probes for the detection of the Aβ amyloid (Tables S1 and S3),
TMNL was the first amphiphilic and water-soluble AIE-active NIR fluorescent probe
with a large Stokes shift for the detection of Aβ1–42 and high-fidelity in situ mapping of
Aβ1–42 plaques.
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Scheme 1. The synthesis route of TMNL.

2.1. Synthesis

The details of the synthetic routes of TMNL are shown in Scheme 1. Briefly, the
tetraphenylethene derivative, Compound 9, was synthesized with 5 and 6 as starting
materials by McMurry coupling reaction, radical substitution reaction, and Kornblum
oxidation reaction. The double bond was introduced to Compound 9 by the Witting
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reaction and then coupled to malononitrile by the Knoevenagel reaction to afford 13.
Finally, TMNL was obtained by the click reaction of lactose derivative 4 and TPE derivative
13. The chemical structures of TMNL and the synthetic intermediates were characterized
by 1H NMR, 13C NMR, and HRMS (Figures S1–S5).

2.2. Photophysical Characterization of TMNL

We first investigated the photophysical properties of TMNL under physiological con-
ditions (PBS buffer, pH 7.4). TMNL showed weak absorption at approximately 320–380 nm,
and the maximum emission wavelength was 645 nm (Figure 1). The large Stokes shift of
approximately 285 nm could reduce the self-absorption effect and make TMNL have a
strong ability to resist background interference [41,42].
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Figure 1. The UV absorption spectra and fluorescence emission spectra of TMNL. 
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Figure 2. (a) The fluorescence spectra of different concentrations (µM) of TMNL in PBS buffer solu-
tion (pH 7.4, 10 mM). (b) Scatter plot of fluorescence intensity at 645 nm of different concentrations 
of TMNL in PBS buffer solution (pH 7.4, 10 mM). λex = 360 nm. 

2.3. The Performance of Aβ1-42 Fibrils Detection 
The binding properties of TMNL to Aβ1-42 fibrils were mainly characterized by fluo-

rescence spectroscopy in PBS buffer solution (pH 7.4, 10 mM). The Aβ1-42 species included 
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pared from the Aβ1-42 peptide by coincubation in PBS buffer solution (pH 7.4, 10 mM) at 
37 °C for seven days (please refer to Section 3.3 for the detailed steps). ThT is generally 
used as an authoritative standard probe for the detection of the aggregation state of amy-
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Figure 1. The UV absorption spectra and fluorescence emission spectra of TMNL.

Initial background minimization and fidelity signal amplification of TMNL were es-
sential for ultrasensitive and accurate detection of Aβ1–42 fibrils; therefore, it was necessary
to choose a suitable detection concentration to avoid a “false-positive” AIE signal. The
fluorescence spectra of TMNL itself as a function of concentration were first measured.
As shown in Figure 2, when the concentration of TMNL was less than 0.752 µM, the fluo-
rescence intensity in PBS buffer solution (pH 7.4, 10 mM) did not change obviously with
increasing concentration. Therefore, the critical micelle concentration (CMC) was mea-
sured at 0.752 µM, and TMNL could self-assemble to form FONs when the concentration
exceeded 0.752 µM. To make the fluorescence intensity of TMNL as low as possible before
binding to Aβ1–42 fibrils, 1 µM was selected as the test concentration.
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2.3. The Performance of Aβ1–42 Fibrils Detection

The binding properties of TMNL to Aβ1–42 fibrils were mainly characterized by
fluorescence spectroscopy in PBS buffer solution (pH 7.4, 10 mM). The Aβ1–42 species
included monomers, oligomers, and aggregates, and different aggregation degrees could
have a critical influence on the change in fluorescence intensity [39]. The Aβ1–42 fibrils
were prepared from the Aβ1–42 peptide by coincubation in PBS buffer solution (pH 7.4,
10 mM) at 37 ◦C for seven days (please refer to Section 3.3 for the detailed steps). ThT
is generally used as an authoritative standard probe for the detection of the aggregation
state of amyloid [37,43–46]. As shown in Figure 3, upon coincubation with treated Aβ1–42
fibrils, the fluorescence intensity of the excitation spectra and the emission spectra sharply
enhanced, accompanied by a redshift, which indicated that the Aβ1–42 protein was in a
good aggregation state and could be used for the following detection.
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Figure 3. Fluorescence spectra of the excitation (a) and emission (b) of ThT (1 µM)-detecting Aβ1–42

(80 µg·mL−1) fibrils in PBS buffer solution (pH 7.4, 10 mM). λex = 410 nm, λem = 470 nm.

To clarify the saturation time of the interaction between TMNL and Aβ1–42 fibrils, the
“Time-Fluorescence Intensity” experiment was performed in PBS buffer solution (pH 7.4,
10 mM). After coincubation with Aβ1–42 fibrils, the fluorescence emission intensity at 645 nm
was slightly enhanced, but a very obvious emission peak appeared at 496 nm and increased
rapidly with longer coincubation time, which can be attributed to the RIM effect by the
binding of TMNL with the Aβ1–42 fibrils. The fluorescence intensity at 496 nm became
constant within 60 min, and the color change in the solution before and after the addition of
Aβ1–42 fibrils could be clearly distinguished with the naked eye (from red to yellow) under
UV illumination at 365 nm (Figure 4, insert). When the coincubation time was fixed at
60 min, the fluorescence intensity of TMNL at approximately 496 nm increased gradually
and finally tended to flatten with increasing Aβ1–42 fibril concentration. The increased
fluorescence intensity was up to 47-fold (Figure 5). Moreover, the linear relationship
between the Aβ1–42 fibril concentration and the fluorescence intensity of TMNL at 496 nm
was obtained in the concentration range of 0–45 µg·mL−1 (R2 = 0.9955, Figure 5), indicating
that the concentration of Aβ1–42 fibrils can be quantitatively estimated by TMNL. Then,
the UV absorption spectra of TMNL in the presence and absence of Aβ1–42 fibrils were also
determined. As shown in Figure 6a, the absorption band at 265–360 nm gradually increased
with increasing concentrations of Aβ1–42 fibrils, which also indicated that the binding of
TMNL and Aβ1–42 fibrils changed the conjugation system of the TMNL molecule. These
results suggested that TMNL could act as an efficient and sensitive tool for the detection of
Aβ1–42 fibrils.
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Figure 4. (a) Fluorescence spectra of the interaction of TMNL with Aβ1–42 fibrils after different
coincubation times in PBS buffer solution (pH 7.4, 10 mM). Insert: photograph of TMNL after
complete interaction with Aβ1–42 fibrils (left) and in the absence of Aβ1–42 fibrils (right) in quartz
cuvettes under 365 nm UV light. (b) Scatter plot of the relative fluorescence intensity (I/I0) at 496 nm
of the different coincubation times of TMNL and Aβ1–42 fibrils in PBS buffer solution (pH 7.4, 10 mM).
I and I0 represent the fluorescence intensity in the presence and absence of Aβ1–42 fibrils, respectively.
[TMNL] = 1 µM, [Aβ1–42] = 80 µg·mL−1, λex = 360 nm.
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2.4. Selectivity Study

We also screened a series of sulfur-containing substances to verify the selectivity of
TMNL for Aβ1–42 fibrils, including L(+)-cysteine (Cys), glutathione (GSH), HSO3

−, SO3
2−,

and BSA. TMNL was incubated with various high-concentration interfering substances.
As shown in Figure 7, the fluorescence intensity of TMNL was nearly unchanged in the
presence of other sulfur-containing compounds. Although BSA could produce a weak
fluorescence response, it was far lower than the 47-fold increase produced by Aβ1–42 fibrils,
which suggested that TMNL could be used for highly selective detection of Aβ1–42 fibrils
under complex physiological conditions. Compared to the reported probes (Table S2),
TMNL had no inferior selectivity for Aβ1–42 fibrils.
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2.5. The Dissociation Constant Study

Binding affinity was a crucial factor for TMNL to efficiently trace the Aβ1–42 fibrils,
and a saturation binding experiment was performed to quantitatively evaluate the binding
ability of TMNL to Aβ1–42 fibrils. The fluorescence intensity was measured by incubating
Aβ1–42 fibrils with different concentrations of TMNL, as shown in Figure 8. The dissociation
constant Kd in this process was calculated to be 410.4 nM, which indicated that TMNL
was a good substrate for Aβ1–42 fibrils and could be well applied to Aβ1–42 fibril detection.
Compared to the reported AIE-type NIR fluorescence probes for the detection of Aβ

amyloid (Tables S1 and S3), TMNL had a moderate binding affinity.
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2.6. Appearance Observations

To intuitively clarify the binding appearance of TMNL with Aβ1–42 fibrils, transmis-
sion electron microscopy (TEM) images of TMNL binding to Aβ1–42 fibrils were obtained.
As shown in Figure 9a,b, TMNL could self-assemble into small spherical nanostructures
30–100 nm in diameter. After coincubation with Aβ1–42 fibrils in PBS buffer solution (pH 7.4,
10 mM) for 60 min, as shown in Figure 9c,d, TMNL aggregates were attached to the in-
tertwined Aβ1–42 fibrils, which indicated that TMNL and Aβ1–42 fibrils could combine to
make TPE aggregate and to emit strong fluorescence.
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2.7. In Vitro Mapping with High-Fidelity Aβ1–42 Plaque Information

To evaluate the performance of TMNL in bioimaging-related fields, TMNL was ap-
plied to stain Aβ1–42 plaques in the brain tissue of AD transgenic mice (App, 13 months
old). As shown in Figure 10, TMNL bound to and stained Aβ1–42 plaques in the brain
tissue of AD transgenic mice, as observed by an Axio Observer Z1 microscope. Due to the
AIE properties of TMNL, no additional rinsing or processing was necessary. These results
preliminarily indicated that TMNL had a good affinity for Aβ1–42 plaques in biological
tissues, which was suitable and convenient for further clinical application.
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3. Materials and Methods
3.1. Materials and Instrumentations

All chemicals and solvents were purchased from commercial suppliers and used with-
out further purification, unless otherwise noted. The Aβ1–42 polypeptide was obtained
from GL Biochem (Shanghai, China) Co., Ltd. Bovine serum albumin (BSA) was purchased
from Innochem (Beijing, China) Technology Co., Ltd. PBS buffer (pH 7.2–7.4, 0.01 M) was
purchased from Beijing Solarbio Science & Technology Co., Ltd., Beijing, China. All anaero-
bic reactions were performed under a dry N2 atmosphere. All reactions were monitored by
thin-layer chromatography (TLC) on T-HSGF10025025 normal-phase silica gel glass plates
or 60 RP-18 F254s reversed-phase silica gel glass plates and revealed with UV light (254 nm
or 365 nm) or EtOH-H2SO4 (7%) solution. Flash column chromatography was performed
on 200–300 mesh silica gel. Reversed-phase chromatography was performed on SiliaSphere
C18 (50 µm, 120 Å). Molecular exclusion chromatography was performed on Bio-Gel®

P-2 Media (45–90 µm). 1H and 13C NMR spectra were recorded on a Bruker Avance III
spectrometer (400 MHz) or JNM-ECZR spectrometer (400 and 600 MHz) with tetramethyl-
silane (TMS, δ = 0 ppm) as an internal standard. The residual peaks of the solvent were
chloroform-d at 7.26 ppm (1H) and 77.16 ppm (13C), methanol-d4 at 3.31 ppm (1H) and
49.00 ppm (13C), and DMSO-d6 at 2.50 ppm (1H) and 39.52 ppm (13C). High-resolution
mass spectra were recorded on a Bruker micrOTOF-QII mass spectrometer (ESI) or Bruker
autoflex speed LRF (MALDI-TOF). Photoluminescence (PL) spectra were recorded on a FS5
spectrofluorometer (Edinburgh Instruments Ltd., Edinburgh, UK). Transmission electron
microscopy (TEM) images were recorded on a FEI Talos F200S (Thermo Fisher Scientific,
Waltham, USA). Distilled water was used throughout the test experiments.

3.2. Preparation of AD Transgenic Mouse Brain Tissue Paraffin Sections

Brain tissue paraffin sections of AD transgenic mice (App, 13 months old) were
obtained from the Institute of Laboratory Animals Science, CAMS & PUMC (Beijing,
China). Pretreatment of the brain tissue paraffin sections of AD transgenic mice (App, 13
months old) included soaking the sections in dimethylbenzene solution for 5 min to dewax,
rinsing with ethanol and secondary water, and finally air-drying for further use. The brain
tissue paraffin section images were observed on an Axio Observer Z1 microscope (Carl
Zeiss AG, Oberkochen, Germany).

3.3. Preparation of Aβ1–42 Fibrils

Lyophilized 2.5 mg Aβ1–42 polypeptide powder was dissolved in 1.25 mL of PBS
buffer solution (pH 7.4, 10 mM), and a small amount of NH3 was added to fully dissolve
Aβ1–42, obtaining a 2 mg·mL−1 Aβ1–42 stock solution. Then, the 2 mg·mL−1 Aβ1–42 stock
solution was diluted in PBS buffer solution (pH 7.4, 10 mM) to obtain a 200 µg·mL−1
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protein solution and incubated at 37 ◦C for 7 days at 120 r·min−1 in a constant temperature
oscillator to obtain an Aβ1–42 aggregate solution.

3.4. Coincubation Preparation Process of TMNL with Aβ1–42 Fibrils

The TMNL was mixed with Aβ1–42 aggregate solution and then coincubated at 37 ◦C
for 1 h at 120 r·min−1 in a constant temperature oscillator for further testing.

3.5. Synthesis of Compound 4

Compounds 1 to 3 were synthesized according to the methods reported in a previous
article [47].

Compound 4: Compound 3 (0.1 g, 0.054 mmol) was dissolved in dry methanol
(5.42 mL), and a solution of MeONa/MeOH (5.4 M, 19 µL) was added with a microsyringe,
and then the mixture was stirred for 4 h at room temperature. The reaction was neutralized
with an IR-120 hydrogen ion resin to adjust the pH of the mixture to approximately 7.
Then, the mixture was filtered, and the solvent was evaporated. The crude compound was
purified by Bio-Gel® P-2 gel (pure H2O) to obtain Compound 4 (41 mg, 40% yield). 1H
NMR (400 MHz, CD3OD), δ (ppm): 4.82 (d, J = 3.9 Hz, 1H), 4.39–4.32 (m, 2H), 3.96–3.67 (m,
14H), 3.61–3.43 (m, 9H), 2.52 (td, J = 7.3, 2.7 Hz, 3H), 2.28 (t, J = 2.6 Hz, 1H).

3.6. Synthesis of Compound 13

Compounds 5 to 12 were synthesized according to the methods reported in a previous
article [47].

Compound 13: Compound 12 (50 mg, 0.096 mmol), malononitrile (51 mg, 0.77 mmol),
and ethanol (4 mL) were added in a round bottom flask in that order. The mixture was then
stirred at 80 ◦C until the reactant disappeared. After the reaction was accomplished, the
reaction was cooled to room temperature, and the solvent was evaporated. The residue
was purified by column chromatography (Hexane:EtOAc = 3:1, v/v) to obtain Compound
13 (18 mg, 31% yield). 1H NMR (400 MHz, CDCl3), δ (ppm): 7.57 (t, J = 5.4 Hz, 1H), 7.38
(d, J = 8.2 Hz, 2H), 7.19 (d, J = 5.1 Hz, 2H), 7.07 (d, J = 8.2 Hz, 2H), 6.99 (d, J = 8.4 Hz, 3H),
6.81 (d, J = 8.5 Hz, 2H); 13C NMR (100 MHz, CDCl3), δ (ppm): 159.71, 149.47, 147.02, 142.66,
139.45, 139.11, 139.03, 132.78, 132.64, 132.25, 128.75, 122.47, 118.80, 113.53, 111.72, 82.85; MS
(MALDI-TOF): m/z Calcd for C38H22N10 [M − N2 + H]+ 591.205, found: 591.292.

3.7. Synthesis of Compound TMNL

TMNL: Compound 13 (0.42 g, 0.11 mmol) and Compound 4 (30 mg, 0.049 mmol)
were added to a double neck bottle and dissolved in THF (3 mL) under N2. Then, sodium
ascorbate (0.019 M, 1 mL, aq.) and CuSO4 (0.096 M, 1 mL, aq.) were added successively and
stirred at 60 ◦C for 4 h. Then, the reaction was cooled to room temperature, extracted with
DCM, washed with saturated aqueous sodium chloride, and dried over Na2SO4. After
filtration, the solvent of the mixture was evaporated. The crude product was purified
by Bio-Gel P-2 gel (pure H2O) to obtain TMNL (0.14 g, 45% yield). 1H NMR (400 MHz,
DMSO-d6), δ (ppm): 8.60 (s), 7.71–7.61 (m), 7.24–7.01 (m), 5.28 (s), 5.04 (s), 4.74 (s), 4.66 (s),
4.59 (s), 4.55–4.51 (m), 4.47 (s), 4.26 (d, J = 7.9 Hz), 4.16 (d, J = 6.6 Hz), 4.01 (s), 3.74–3.66 (m),
3.58 (s), 3.51–3.39 (m), 3.02 (s), 2.93 (s); HRMS (ESI): m/z Calcd for C70H75N10O22 [M + H]+

1407.5057, found: 1407.5060.

4. Conclusions

In this work, an AIE-active water-soluble and near-infrared fluorescent luminogen,
TMNL, was successfully designed, synthesized, and well characterized; it contained hy-
drophilic lactose units, hydrophobic malononitrile, and a TPE derivative moiety. TMNL
could self-assemble into fluorescent organic nanoparticles in aqueous solution and was
used for the detection of Aβ1–42 fibrils and the NIR imaging of Aβ1–42 plaques sensitively
and selectively. After coincubation with Aβ1–42 fibrils, the fluorescence intensity of TMNL
at 496 nm increased up to 47-fold, and it also had excellent selectivity for Aβ1–42 fibrils.
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The Kd value (410.4 nm) indicated the good affinity between TMNL and Aβ1–42 fibrils,
which could also be observed by TEM. TMNL could be utilized for the imaging of Aβ1–42
plaques in brain tissue accurately and conveniently, which could be an alternative to com-
mercial probes. Although TMNL still had some characteristics to be further improved,
such as complex preparation, this work was expected to facilitate relevant studies on
Alzheimer’s disease.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28135110/s1, Table S1: AIE-type fluorescent probes for
the detection of Aβ amyloid; Table S2: The selectivity comparison of AIE-type fluorescent probes
for the detection of Aβ amyloid; Table S3: The molecular structures of the corresponding probes
in Tables S1 and S2; Figure S1: 1H NMR spectra of compound 4; Figure S2: 1H NMR spectra of
compound 13; Figure S3: 13C NMR spectra of compound 13; Figure S4: 1H NMR spectra of TMNL;
Figure S5: HRMS spectra of TMNL.
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