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Abstract: Electrochemical behavior of novel electrode materials based on polydiphenylamine-2-
carboxylic acid (PDPAC) binary and ternary nanocomposite coatings was studied for the first time.
Nanocomposite materials were obtained in acidic or alkaline media using oxidative polymerization of
diphenylamine-2-carboxylic acid (DPAC) in the presence of activated IR-pyrolyzed polyacrylonitrile
(IR-PAN-a) only or IR-PAN-a and single-walled carbon nanotubes (SWCNT). Hybrid electrodes are
electroactive layers of stable suspensions of IR-PAN-a/PDPAC and IR-PAN-a/SWCNT/PDPAC
nanocomposites in formic acid (FA) formed on the flexible strips of anodized graphite foil (AGF). Spe-
cific capacitances of electrodes depend on the method for the production of electroactive coatings. Elec-
trodes specific surface capacitances Cs reach 0.129 and 0.161 F·cm−2 for AGF/IR-PAN-a/PDPACac

and AGF/IR-PAN-a/SWCNT/PDPACac, while for AGF/IR-PAN-a/PDPACalk and AGF/IR-PAN-
a/SWCNT/PDPACalk Cs amount to 0.135 and 0.151 F·cm−2. Specific weight capacitances Cw of
electrodes with ternary coatings reach 394, 283, 180 F·g−1 (AGF/IR-PAN-a/SWCNT/PDPACac) and
361, 239, 142 F·g−1 (AGF/IR-PAN-a/SWCNT/PDPACalk) at 0.5, 1.5, 3.0 mA·cm−2 in an aprotic
electrolyte. Such hybrid electrodes with electroactive nanocomposite coatings are promising as a
cathode material for SCs.

Keywords: polydiphenylamine-2-carboxylic acid; binary and ternary nanocomposites; activated
IR-pyrolyzed polyacrylonitrile; single-walled carbon nanotubes; hybrid electrode coatings;
organic electrolyte

1. Introduction

With the development of alternative resource-saving energy, it is of great importance
to solve the problems related to the creation of both energy storage devices and new ways
to store energy [1–3]. The popularity of wearable electronic devices cause interest in the
development of more efficient energy storage systems [4–8]. The supercapacitors (SCs) of
high power density, long service life and comparatively high maintenance attract special
attention among such systems [9–12]. While batteries provide better energy density for
storage, SCs ensure faster charge and discharge [7,13,14]. Therefore, SCs are used when no
large energy storage capacity is required, but powerful impulses are wantrequired, such as
for starting electric cars.

The combination of advantages of batteries and SCs can be achievable in the hybrid
SCs based on conductive polymers and carbon nanomaterials, where energy is stored at
the electrode/electrolyte interface using double-layer capacitance and Faraday pseudoca-
pacitance [15–24]. This type of a system with two energy storage mechanisms requires the
development of highly efficient electrode materials that determine the capacitance, energy
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density, and specific power of SCs [25–29]. The use of electro-active conductive polymers
(ECP) in the creating of electrode materials of hybrid SCs is an undoubted achievement
of the last decade [30,31]. Quasi-reversible electrochemical charge-discharge processes in
such polymers are carried out when they are doped with counter-ions due to the formation
of delocalized π-electrons or holes and their transfer under the influence of an electric
field along the system of conjugated double bonds of ECP. In terms of specific energy and
specific power, the electrochemical SCs with ECP are in an intermediate position between
the double-layer SCs and the lithium-ion batteries. Such polymer-carbon nanomateri-
als as electroactive coatings for hybrid electrodes are promising for the creation of SCs,
rechargeable batteries, electrochemical current sources, solar panels, fuel cells, etc. [32–41].

Graphene-like materials and carbon nanotubes can be used as carbon materials for
hybrid electrode coatings [34,38,42–45]. They easily form composites with redox active
polymers to increase the pseudocapacitance for energy storage [46–49]. Along with carbon
nanoparticles, porous carbon materials, in particular activated carbon materials, are consid-
ered promising [21,25,28,29]. The latter are derived from carbon precursors by physical or
chemical activation.

The use of activated IR-pyrolyzed polyacrylonitrile (IR-PAN-a) offers exciting electro-
chemical properties of resulting composites by changing the structural characteristics of the
carbon material. The carbon structure of IR-PAN-a contains nitrogen atoms that provide
additional Faraday pseudocapacity [50,51]. The introduction of nitrogen heteroatoms into
the structure of carbonaceous materials leads to an increase in the free space for electrolyte
placement, providing high accessibility of electrolyte ions to the active surface [40,52].

In the last decade, researchers have focused on the production of hybrid electrode
materials that include, along with a conductive polymer, a combination of different carbon
nanomaterials. Only a few papers have shown that PANI-based nanocomposites containing
graphene and CNT nanoparticles have improved SCs [53–55]. PANI is the most studied
electro-active polymer. Its main advantages are simplicity of synthesis, ease of doping-
dedoping processes, stability of properties. The simultaneous presence of two different
carbon nanoparticles in the nanocomposite composition contributes to the formation of a
three-dimensional structure where redox centers of PANI are more accessible. The addition
of CNT to two-dimensional graphene nanosheets increases the surface area, but physical
interactions between carbon nanomaterials are not enough to hold them together. PANI is
considered as a kind of glue for attaching various types of carbon nanomaterials to each
other [56]. Not only the performance of SCs is significantly increased, but also the resistance
to charge transfer is reduced in such a structure.

In order to obtain both high capacitance and high charge-discharge currents, the
combination of a high porous carbon substrate, carbon nanoparticles and electroactive
polymer in electrode materials makes it possible to balance contributions of double layer
charging and Faraday pseudocapacitance.

Attention should be drawn to the fact that the information available in the literature on
the study of electrode materials based on ternary nanocomposites of PANI with two carbon
components describes the results of electrochemical measurements, conducted in acid or
alkaline aqueous electrolytes. We have not been able to find any references to studies of
such nanocomposites in lithium organic electrolytes. The main disadvantages of aqueous
electrolytes are low discharge voltage, narrow operating temperature range, high corrosive
activity. On the other hand, lithium batteries use organic electrolytes, which have a wider
range of operating potentials and operating temperatures, high corrosion resistance. It
should be noted that the number of works on SCs with organic electrolytes is extremely
limited (some of them were done by the authors of this article [57,58]). Moreover, we
have not been able to find any research work on electrode materials based on ECP ternary
nanocomposites with two carbon components in lithium organic electrolytes. Nevertheless,
the transition to organic electrolytes gives the prospect of creating hybrid devices that
combine the advantages of SCs and lithium batteries.
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The present work is the first study of the electrochemical behavior of a cathode material
based on a conjugated polyacid, IR-PAN-a and CNT in a lithium organic electrolyte. Such
cathode materials in organic electrolytes are the most promising for the creation of hybrid
SCs due to the possibility of increasing the SC voltage and achieving high values of energy
density and charge-discharge current.

In this research paper, for electroactive coatings, hybrid ternary polymer-carbon-
carbon nanocomposites based on polydiphenylamine-2-carboxylic acid (PDPAC), IR-PAN-a
and SWCNT were prepared in two different ways for the first time. The choice of PDPAC
as a polymer component is due to the possibility of coordination of carbon nanoparticles
not only for amine but also for carboxylic groups. Furthermore, the presence of carboxylic
groups makes it difficult to aggregate polymer chains (as in the case of PANI). Steric
difficulties caused by carboxylic groups contribute to a looser structure that facilitates
electrolyte penetration.

SWCNTs, which differ in high electrical conductivity and graphite-like external surface
of the walls, are selected as one of the carbon components. Due to the π-π* stacking, adsorp-
tion of aromatic monomers is possible on such a surface, during oxidative polymerization
of which a polymer shell grows, which prevents CNT aggregation. CNTs form an internal
conductive framework that provides electronic transport in the composite.

Another carbon component of polymer-carbon-carbon nanocomposite is IR-PAN,
leached to form a highly porous structure, adsorbing a part of the polymer phase, resulting
in the general loosening of the nanocomposite.

In this work, the IR-PAN-a/SWCNT/PDPAC nanomaterials were synthesized in an
acidic medium or in an alkaline medium via in situ oxidative polymerization of DPAC
monomer in the presence both of SWCNT and IR-PAN-a as a highly porous N-doped
carbon component. Electrochemical properties of the ternary IR-PAN-a/SWCNT/PDPAC
nanocomposite electroactive coatings on a flexible strips of AGF with a developed porous
surface in 1 M LiClO4 in propylene carbonate organic electrolyte were investigated. For com-
parison, under the same conditions, the binary composite coatings of IR-PAN-a/PDPAC
were studied.

2. Results and Discussion
2.1. Synthesis and Characterization of IR-PAN-a/SWCNT/PDPAC Nanocomposites

PDPAC-based ternary nanocomposites were prepared via in situ oxidative polymer-
ization of DPAC in the presence of IR-PAN-a and SWCNT in acidic and alkaline me-
dia. For comparison, binary composites of IR-PAN-a/PDPAC were obtained under the
same conditions. Figure 1 shows a synthesis scheme of ternary nanomaterials of IR-PAN-
a/SWCNT/PDPAC.
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The formation of IR-PAN-a/SWCNT/PDPAC nanomaterials was confirmed by FTIR
and Raman spectroscopy, XRD and field emission scanning electron microscopy (FE-SEM).

According to XRD analysis, as well as IR-PAN-a/PDPAC, IR-PAN-a/SWCNT/PDPAC
nanocomposites are amorphous irrespective of the preparing method (Figure 2). Diffrac-
tograms of binary and ternary composites identify reflection peaks of IR-PAN-a in the
range of scattering angles 2θ = 39◦, 69◦ (CrKα radiation). These diffraction peaks correlate
to Miller indices (002), (101). The carbon phase reflection peak from a single SWCNT plane
is not identified.
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Figure 2. XRD of IR-PAN-a/PDPAC (1) and IR-PAN-a/SWCNT/PDPAC (2), prepared in an acidic
(a) and alkaline media (b).

Figure 3 shows the ATR FTIR spectra of the ternary nanocomposites obtained in
an acidic medium (IR-PAN-a/SWCNT/PDPACac) and in an alkaline medium (IR-PAN-
a/SWCNT/PDPACalk). The main bands of IR-PAN-a/SWCNT/PDPAC and IR-PAN-
a/PDPAC are the same [59,60]. The chemical structure of the polymer component mainly
depends on the pH of the reaction medium for the nanocomposite synthesis (Figure 1).
In the IR-PAN-a/PDPACac composite, the absorption bands at 751, 785, and 892 cm–1

are due to the out-of-plane bending vibrations of the δC–H bonds of the 1,2-, 1,2,4-, and
1,4-substituted benzene rings, respectively. In the IR-PAN-a/PDPACalk composite, the
absorption bands at 745 and 820 cm–1 correspond to out-of-plane bending vibrations of the
δC–H bonds of the 1,2-disubstituted and 1,2,4-trisubstituted benzene rings. In the ternary IR-
PAN-a/SWCNT/PDPAC nanocomposites, the shift in the absorption bands, corresponding
to stretching vibrations of νC–C bonds in the aromatic rings indicate the π–π* interaction
of PDPAC phenyl rings with the aromatic structures of IR-PAN-a and SWCNT (stacking
effect). The charge transfer from the polymer chain to IR-PAN-a/SWCNT is manifested in
the shift of skeletal oscillation frequencies of the polymer component.
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Figure 3. Attenuated total reflection (ATR) FTIR spectra of IR-PAN-a/PDPAC (1) and IR-PAN-
a/SWCNT/PDPAC (2), prepared in an acidic (a) and alkaline media (b).
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Figure 4 shows the Raman spectra of the IR-PAN-a/PDPAC and composites prepared
using two methods. As can be seen, in the Raman spectra of IR-PAN-a-based composites,
there are two pronounced G and D bands. A G band at ~1596 cm−1 characterizes sp2

carbon atoms. A D band at ~1339 cm−1 corresponds to sp3 carbon atoms. The G band is a
distinctive feature of graphite structures, whereas the D band is associated with disordered
and defective structures [43]. The intensity ratio of these bands in the Raman spectrum
of neat IR-PAN-a is ID/IG = 0.91 [59]. The splitting of the G and D bands in the Raman
spectra of the binary and ternary composites is associated with the presence of a polymer
component. In the IR-PAN-a/SWCNT/PDPAC, the intensity ratio of the ID/IG decreases to
0.04 regardless of the method of obtaining composites due to sp2 carbon atoms of SWCNT.
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Figure 4. Raman spectra of IR-PAN-a/PDPAC (1) and IR-PAN-a/SWCNT/PDPAC (2), prepared in
an acidic (a) and alkaline media (b).

Figure 5 shows FE-SEM images of IR-PAN-a/SWCNT/PDPAC both as powders and
as coatings on AGF. Good adhesion of composite films to the loosened surface of the
AGF substrate makes it possible to create electroactive coatings on it by pouring stable
dispersions of composites in FA [57,58].

According to FE-SEM data, in ternary nanocomposites (Figure 5a,c), the presence of
carbon nanotubes contributes to the loosening of materials. Nanocomposites are permeated
with SWCNT with a polymer film coating due to π-π* interaction of phenyl rings of PDPAC
with SWCNT aromatic structures (stacking effect) [61]. The formation of a polymer coating
on the surface of CNT provides interfacial charge transport. The electrical conductivity
of ternary IR-PAN-a/SWCNT/PDPAC nanocomposites is higher than that of binary com-
posites, which is associated with the presence of CNT. Regardless of the synthesis method,
the electrical conductivity of IR-PAN-a/SWCNT/PDPAC reaches (4.8–7.2) × 10−3 S/cm
(Table 1).

Thick (80 nm) interwoven bundles are visible in the nanocomposite coating which
forms on AGF after pouring the suspension of IR-PAN-a/SWCNT/PDPACac in FA sub-
jected to ultrasonic treatment. These bundles are SWCNT with a polymer coating, with
adhering particles of the IR-PAN-a/PDPACac composite (Figure 5b). This results in a three-
dimensional hierarchical porous structure of the IR-PAN-a/SWCNT/PDPACac coating on
AGF and an increase in the surface area available for electrolyte wetting.

In the nanocomposite coating of IR-PAN-a/SWCNT/PDPACalk on AGF (Figure 5d),
polymer-coated SWCNT and IR-PAN-a are dispersed in the polymer matrix. Polymer-
coated fragments of IR-PAN-a are engaged in the three-dimensional structure of the
nanocomposite. On the surface of this film coating there are cavities, which leads to
an increase in the surface of the composite contacting with the electrolyte.
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Figure 5. FE-SEM images of IR-PAN-a/SWCNT/PDPACac (a), AGF/IR-PAN-a/SWCNT/PDPACac

(b), IR-PAN-a/SWCNT/PDPACalk (c) and AGF/IR-PAN-a/SWCNT/PDPACalk (d).

Table 1. The conductivity values of materials.

Materials CIR-PAN-a, wt% CSWCNT, wt% σ, S/cm

IR-PAN-a/PDPACac 10 – 1.3 × 10−5

* SWCNT/PDPACac – 10 2.5 × 10−3

IR-PAN-a/SWCNT/PDPACac 10 10 7.2 × 10−3

IR-PAN-a/PDPACalk 10 – 1.5 × 10−10

* SWCNT/PDPACalk – 10 2.9 × 10−4

IR-PAN-a/SWCNT/PDPACalk 10 10 4.8 × 10−3

* From [57].

2.2. Electrochemical Behavior of Nanocomposite Coatings in an Organic Electrolyte

Structural features of nanocomposite coatings are clearly reflected on CV when IR-
PAN-a/SWCNT/PDPAC suspensions in FA are applied to the smooth surface of GC.
Here, unlike in case of binary nanocomposites (IR-PAN-a/PDPAC and SWCNT/PDPAC),
there is practically no transition of the active mass of ternary coatings into the elec-
trolyte. Figure 6 shows CV and charge-discharge curves of the electrodes of GC/IR-
PAN-a/SWCNT/PDPAC in 1 M LiClO4 in propylene carbonate at the potential scan rate of
20 mV·s−1 in the potential range from −0.5 V to 1.3 V.
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Figure 6. CV curves (a,c) and galvanostatic charge-discharge dependences (b,d) of the electrodes of
GC/IR-PAN-a/SWCNT/PDPACac (a,b) and GC/IR-PAN-a/SWCNT/PDPACalk (c,d) at 20 mV·s−1.

The CV of GC/IR-PAN-a/SWCNT/PDPACac electrode material from cycle 2 demon-
strates an anodic peak at 1.0 V and a cathodic peak at 0.75 V, that refer to the formation of
the PDPACac

2+ dication (Figure 6a). Redox transitions with the formation of the PDPACac
+·

radical cation are not identified on CV. In the region of 0.7 V, there is a sharp increase in
current on the anodic branch. This is connected with the merging of two redox transitions
into one due to the increase in electronic and ionic conductivity for doped PDPACac. The
CV shape and peak position of the IR-PAN-a/SWCNT/PDPACac composite coating on GC
is identical to that of the PDPACac polymer coating (1.02 V and 0.78 V) [57]. For IR-PAN-
a/SWCNT/PDPACac composite, Coulombic efficiency N increases to 98% (Table 2), while
for PDPACac polymer coating, Coulombic efficiency N is 84%. When cycling anode and
cathode currents fall very slowly. Practically, the transfer of the electroactive mass into the
electrolyte does not occur.
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Table 2. Electrochemical characteristics of electrode materials in 1 M LiClO4 in propylene carbonate,
calculated from CV.

Electrode Materials
Quantity of Electricity

Q, mC
Coulombic
Efficiency

N, %

Specific Surface
Capacitance
Cs, F·cm−2Qcharge Qdischarge

GC/IR-PAN-a/SWCNT/PDPACac 16.8 16.5 98 9.2 × 10−3

GC/IR-PAN-a/SWCNT/PDPACalk 17.1 15.9 93 8.8 × 10−3

AGF/IR-PAN-a/PDPACac 241.8 244.3 100 0.129

* AGF/SWCNT/PDPACac 269.6 270.8 100 0.145

AGF/IR-PAN-a/SWCNT/PDPACac 295.5 305.0 100 0.161

AGF/IR-PAN-a/PDPACalk 257.4 256.4 99.6 0.135

* AGF/SWCNT/PDPACalk 273.5 262.2 96 0.138

AGF/IR-PAN-a/SWCNT/PDPACalk 278.3 287.7 100 0.151

ν = 5 mV·s−1 (for AGF-based) and 20 mV·s−1 (for GC-based). * From [57].

The CV of GC/IR-PAN-a/SWCNT/PDPACalk composite electrode shows two redox
transitions in the polymer (Figure 6c). In the range of lower potentials from 0.25 to 0.75 V, the
blurred anodic peak characterizes the transition of the polymer to the PDPACalk/PDPAC+·

radical cation state. Very broad cathodic peak in the range from −0.25 V to +0.25 V
refers to the reduction of radical cation centers, some of which are located in the near
electrode layer due to the dissolution of the coating. Very clear transition at 0.87 V as-
sociated with further oxidation of radical cations to PDPAC+·/PDPAC2+ dication. A
cathodic peak is observed at 0.78 V for the PDPAC2+/PDPAC+· redox transition. When
cycling IR-PAN-a/SWCNT/PDPACalk composite coating, the anode and cathode currents
decrease due to the transition of the electroactive mass into the electrolyte. For GC/IR-
PAN-a/SWCNT/PDPACac and GC/IR-PAN-a/SWCNT/PDPACalk, the electrochemical
capacitances of composite coatings calculated from CV at a potential scan rate of 20 mV·s−1

are 44 and 37 F·g−1 with Coulombic efficiency N = 98 and 93%, respectively (Table 2).
The comparison of CV of ternary nanocomposites obtained in different media in the

simultaneous presence of IR-PAN-a (10 wt%) and SWCNT (10 wt%) (Figure 6a,c) shows
that the capacitance of the IR-PAN-a/SWCNT/PDPACalk nanocomposite coating on GC is
determined by a larger contribution of double-layer charge-discharge. This is expressed in
a sharp increase in the area of CV in the range of potentials from −0.5 to +0.6 V. Whereas
the capacitance of IR-PAN-a/SWCNT/PDPACac is determined by a larger contribution
of the Faraday pseudocapacitance. These features are also manifested in the shape of
charge-discharge curves (Figure 6b,d).

For comparable coating weights on GC, for GC/IR-PAN-a/SWCNT/PDPACalk, the
capacitances calculated from the charge-discharge curves are 35 and 29 F·g−1 at 0.1 and
0.5 mA·cm−2 with a capacity loss of 8% in the first 10 cycles at a charge-discharge current of
0.1 mA·cm−2. For the IR-PAN-a/SWCNT/PDPACac composite coating, higher capacitance
values of 40 and 38 F·g−1 were obtained under the same conditions with a 5% loss of
capacity in the first 10 cycles. This may be due to the higher conductivity of the compos-
ite in which the polymer is in a finished state (Table 1). At a charge-discharge current of
0.5 mA·cm–2, the electrodes operate stably over 50 cycles. On AGF, the capacitance values of
these coatings at 0.5 mA·cm−2 increase by an order of magnitude and amount to 394 F·g−1

for IR-PAN-a/SWCNT/PDPACac and 361 F·g−1 for IR-PAN-a/SWCNT/PDPACalk coat-
ings with Coulombic efficiency N = 100% (Tables 2 and 3).
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Table 3. Electrochemical characteristics of electrode materials in 1 M LiClO4 in propylene carbonate,
calculated from charge-discharge curves.

Electrode Materials Coatings Weight,
mg

Discharge Current
Density

Icharge-discharge,
mA·cm−2

Specific Surface
Capacitance
Cs, F·cm−2

Specific Weight
Capacitance
* Cw, F·g−1

GC/IR-PAN-a/SWCNT/PDPACac 0.21
0.1

9.2 × 10−3 40
0.5 38

GC/IR-PAN-a/SWCNT/PDPACalk 0.24
0.1

8.8 × 10−3 35
0.5 29

AGF/IR-PAN-a/PDPACac 0.32
0.5 0.176 247
1.5 0.103 178
3.0 0.068 122

** AGF/SWCNT/PDPACac 0.32
0.5 0.237 438
1.5 0.158 350
3.0 0.112 259

AGF/IR-PAN-a/SWCNT/PDPACac 0.35
0.5 0.235 394
1.5 0.145 283
3.0 0.092 180

AGF/IR-PAN-a/PDPACalk 0.18
0.5 0.180 461
1.5 0.112 367
3.0 0.076 261

** AGF/SWCNT/PDPACalk 0.24
0.5 0.185 367
1.5 0.090 183
3.0 0.050 88

AGF/IR-PAN-a/SWCNT/PDPACalk 0.33
0.5 0.216 361
1.5 0.125 239
3.0 0.076 142

* Cw calculated from coating weight. ** From [57].

It is characteristic that the use of the flexible strips of AGF with a roughened surface as
a current collector leads to a significant improvement of electrochemical characteristics of
electroactive composite coatings due to good adhesion, as compared to the use of a smooth
GC substrate [57,58].

Before use, the smooth surface of the original graphite foil is activated by anodic
treatment. The special feature of this foil is its high porosity and low specific weight close
to 1 g/cm2. However, when rolling the foil, the graphene nanosheets are shifted and the
internal pores are closed. During anodic treatment, the surface is etched and access to
internal pores is opened. It is essential that oxygen-containing functional groups are formed
on graphene nanosheets during etching. When applying the composite by pouring, these
groups form hydrogen bonds with composite components. The composite fills the surface
pores of the current collector in the form of thin layers. In general, a strongly bonded
composite coating is formed.

Figures 7 and 8 show CV of AGF-based electrode materials recorded at potential scan
rate of 5 mV·s−1, as well as galvanostatic charge-discharge dependences at the discharge
current density of 0.5, 1.5, 3.0 mA·cm−2 in 1 M LiClO4 in propylene carbonate. Redox tran-
sitions on CV of AGF/IR-PAN-a/PDPAC and AGF/IR-PAN-a/SWCNT/PDPAC electrodes
are noticeable when the potential scan rate is reduced to 5 mV·s−1 due to sufficient time for
ions to access electroactive areas [62]. The CV shape for the studied coatings indicates the
predominant contribution of the electric double layer charging to the specific capacitance.
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Figure 7. CV curves on the electrodes of AGF/IR-PAN-a/PDPACac (a), AGF/IR-PAN-
a/SWCNT/PDPACac (b), AGF/IR-PAN-a/PDPACalk (c) and AGF/IR-PAN-a/SWCNT/PDPACalk

(d) at 5 mV·s−1.

The CV of the AGF/IR-PAN-a/PDPACalk electrode shows a wide anode wave at 1.0 V
and a corresponding wide cathode peak in the range of 0.62 V associated with redox transi-
tions in the polymer (Figure 7). In the AGF/IR-PAN-a/SWCNT/PDPACalk, redox transi-
tions typical of the polymer are not observed due to the predominant contribution of the
double layer capacitance. CV of the IR-PAN-a/PDPACac and IR-PAN-a/SWCNT/PDPACac
coatings on AGF demonstrate more pronounced redox transitions of the polymer due to
the Faraday pseudocapacitance.

Specific surface capacitances Cs of AGF-based electrode materials in 1 M LiClO4 in
propylene carbonate calculated from CV are given in Table 2. For ternary nanocomposites,
as compared to binary ones, the capacitances increase from 0.135 to 0.151 F·cm−2 (by
12% for IR-PAN-a/SWCNT/PDPACalk) and from 0.129 to 0.161 F·cm−2 (by 25% for IR-
PAN-a/SWCNT/PDPACac). Coulombic charge-discharge efficiency N of AGF/IR-PAN-
a/PDPAC and AGF/IR-PAN-a/SWCNT/PDPAC electrodes is close to 100%.

When calculating the specific weight capacitance Cw of composite coatings deposited
on AGF, the capacitances introduced by AGF were subtracted from the total electrode ca-
pacitance at the corresponding charge-discharge currents [24]. The capacitance loss during
charge-discharge of binary IR-PAN-a/PDPAC composite coatings on AGF at 0.5 mA·cm−2

during the first 10 cycles is 7–9%, after the tenth cycle no drop in capacitance is observed.
The AGF/IR-PAN-a/SWCNT/PDPACac electrode works stably with the capacity loss of
1.4% in the first 10 charge-discharge cycles at 0.5 mA·cm−2.



Molecules 2023, 28, 5093 11 of 15

Molecules 2023, 28, x FOR PEER REVIEW 10 of 16 
 

 

coatings indicates the predominant contribution of the electric double layer charging to 
the specific capacitance. 

  

  

Figure 7. CV curves on the electrodes of AGF/IR-PAN-a/PDPACac (a), AGF/IR-PAN-a/SWCNT/PDPACac 
(b), AGF/IR-PAN-a/PDPACalk (c) and AGF/IR-PAN-a/SWCNT/PDPACalk (d) at 5 mV·s−1. 

  

−0.5 0.0 0.5 1.0 1.5
−1.50

−0.75

0.00

0.75

1.50

I, 
m

А

Е, V vs. Ag/AgCl

AGF/IR-PAN-a/PDPACac

Qa = 241.8 mC
Qc = 244.3 mC

0.32 mg

(a)
0.92 V

0.74 V

−0.5 0.0 0.5 1.0 1.5
−1.50

−0.75

0.00

0.75

1.50

I, 
m

А

Е, V vs. Ag/AgCl

 AGF/IR-PAN-a/SWCNT/PDPACac 

Qа = 295.5 mC
Qc = 305 mC

0.35 mg

(b)

0.89 V

0.71 V

−0.5 0.0 0.5 1.0 1.5
−1.50

−0.75

0.00

0.75

1.50

I, 
m

А

Е, V vs. Ag/AgCl

AGF/IR-PAN-a/PDPACalk

Qa = 257.4 mC
Qc = 256.4 mC

(c)
1.0 V

0.62 V

0.18 mg

−0.5 0.0 0.5 1.0 1.5
−1.50

−0.75

0.00

0.75

1.50

I, 
m

А

E, V vs. Ag/AgCl

AGF/IR-PAN-a/SWCNT/PDPACalk 

Qa = 278.3 mC
Qc = 287.7 mC

0.33 mg

(d)

−100 0 100 200 300 400 500 600 700 800

−0.5

0.0

0.5

1.0

1.5

Е,
 V

 v
s.

 A
g/

A
gC

l

t, s

AGF/IR-PAN-a/PDPACac 

130 s43 s 699 s670 s

0.32 mg

(a)

0.5 mA
1.5 mA
3.0 mA

0 200 400 600 800 1000

−0.5

0.0

0.5

1.0

1.5

E,
 V

 v
s.

 A
g/

A
gC

l

t, s

897 s890 s181 s61.5 s

0.35 mg

AGF/IR-PAN-a/SWCNT/PDPACac (b)

0.5 mA
1.5 mA
3.0 mA

Molecules 2023, 28, x FOR PEER REVIEW 11 of 16 
 

 

  

Figure 8. Galvanostatic charge-discharge dependences of the electrodes of AGF/IR-PAN-a/PDPACac 
(a), AGF/IR-PAN-a/SWCNT/PDPACac (b), AGF/IR-PAN-a/PDPACalk (c) and AGF/IR-PAN-
a/SWCNT/PDPACalk (d) at 0.5, 1.5 и 3.0 mA·cm−2. 

The CV of the AGF/IR-PAN-a/PDPACalk electrode shows a wide anode wave at 1.0 V 
and a corresponding wide cathode peak in the range of 0.62 V associated with redox 
transitions in the polymer (Figure 7). In the AGF/IR-PAN-a/SWCNT/PDPACalk, redox 
transitions typical of the polymer are not observed due to the predominant contribution 
of the double layer capacitance. CV of the IR-PAN-a/PDPACac and IR-PAN-
a/SWCNT/PDPACac coatings on AGF demonstrate more pronounced redox transitions of 
the polymer due to the Faraday pseudocapacitance. 

Specific surface capacitances Cs of AGF-based electrode materials in 1 M LiClO4 in 
propylene carbonate calculated from CV are given in Table 2. For ternary nanocomposites, 
as compared to binary ones, the capacitances increase from 0.135 to 0.151 F·cm−2 (by 12% 
for IR-PAN-a/SWCNT/PDPACalk) and from 0.129 to 0.161 F·cm−2 (by 25% for IR-PAN-
a/SWCNT/PDPACac). Coulombic charge-discharge efficiency ŋ of AGF/IR-PAN-a/PDPAC 
and AGF/IR-PAN-a/SWCNT/PDPAC electrodes is close to 100%. 

When calculating the specific weight capacitance Cw of composite coatings deposited 
on AGF, the capacitances introduced by AGF were subtracted from the total electrode 
capacitance at the corresponding charge-discharge currents [24]. The capacitance loss 
during charge-discharge of binary IR-PAN-a/PDPAC composite coatings on AGF at 0.5 
mA·cm−2 during the first 10 cycles is 7–9%, after the tenth cycle no drop in capacitance is 
observed. The AGF/IR-PAN-a/SWCNT/PDPACac electrode works stably with the capacity 
loss of 1.4% in the first 10 charge-discharge cycles at 0.5 mA·cm−2. 

In the simultaneous presence of the three components of PDPAC, IR-PAN-a and 
SWCNT in a nanocomposite coating, capacitance characteristics of the electrodes are 361, 
239, 142 F/g (AGF/IR-PAN-a/SWCNT/PDPACalk) and 394, 283, 180 F/g (AGF/IR-PAN-
a/SWCNT/PDPACac) at charge-discharge currents of 0.5, 1.5, 3.0 mA·cm−2 (Table 3). For the 
IR-PAN-a/SWCNT/PDPACalk coating, the capacitance retention at the increase in charge-
discharge currents to 1.5 and 3.0 mA·cm−2 amounts to 66 and 39%, whereas the capacitance 
of the AGF/IR-PAN-a/SWCNT/PDPACac electrode is retained at 72 and 46%. Combining 
the polymer with CNT can reduce degradation of the polymer component caused by 
volume change of electroactive coating during cycling. 

Characteristic features of IR-PAN-a/SWCNT/PDPAC nanocomposite coatings are 
high electrical conductivity (up to 7.2 × 10−3 S/cm) and highly developed surface. This 
simultaneously provides conditions for creating a double-layer capacitance and 
pseudocapacitance due to the rapid diffusion of electrolyte ions at the electrode–
electrolyte interface. Taken together, this leads to an increase in cycling stability of the 
coatings and an improvement in electrochemical characteristics. 

−100 0 100 200 300 400 500 600 700 800

−0.5

0.0

0.5

1.0

1.5

E,
 V

 v
s.

 A
g/

A
gC

l

t, s

685 s142с48 s

0.18 mg

AGF/IR-PAN-a/PDPACalk (c)

0.5 mA
1.5 mA
3.0 mA

0 200 400 600 800 1000

−0.5

0.0

0.5

1.0

1.5

E,
 V

 v
s.

 A
g/

A
gC

l

t, s

48 s 158 s 857 s820 s

0.33 mg

AGF/IR-PAN-a/SWCNT/PDPACalk (d)

0.5 mA
1.5 mA
3.0 mA

Figure 8. Galvanostatic charge-discharge dependences of the electrodes of AGF/IR-PAN-a/PDPACac

(a), AGF/IR-PAN-a/SWCNT/PDPACac (b), AGF/IR-PAN-a/PDPACalk (c) and AGF/IR-PAN-
a/SWCNT/PDPACalk (d) at 0.5, 1.5, 3.0 mA·cm−2.

In the simultaneous presence of the three components of PDPAC, IR-PAN-a and
SWCNT in a nanocomposite coating, capacitance characteristics of the electrodes are 361,
239, 142 F/g (AGF/IR-PAN-a/SWCNT/PDPACalk) and 394, 283, 180 F/g (AGF/IR-PAN-
a/SWCNT/PDPACac) at charge-discharge currents of 0.5, 1.5, 3.0 mA·cm−2 (Table 3). For
the IR-PAN-a/SWCNT/PDPACalk coating, the capacitance retention at the increase in
charge-discharge currents to 1.5 and 3.0 mA·cm−2 amounts to 66 and 39%, whereas the
capacitance of the AGF/IR-PAN-a/SWCNT/PDPACac electrode is retained at 72 and 46%.
Combining the polymer with CNT can reduce degradation of the polymer component
caused by volume change of electroactive coating during cycling.

Characteristic features of IR-PAN-a/SWCNT/PDPAC nanocomposite coatings are
high electrical conductivity (up to 7.2 × 10−3 S/cm) and highly developed surface. This
simultaneously provides conditions for creating a double-layer capacitance and pseu-
docapacitance due to the rapid diffusion of electrolyte ions at the electrode–electrolyte
interface. Taken together, this leads to an increase in cycling stability of the coatings and an
improvement in electrochemical characteristics.

3. Experimental
3.1. Materials

Diphenylamine-2-carboxylic acid (DPAC) (C13H11O2N) (analytical grade), (NH4)2SO4
(Fisher Chemical), sulfuric acid (reagent grade), formic acid (FA) (analytical grade), aqueous
ammonia (reagent grade), and chloroform (reagent grade) were used without any additional
purification. Ammonium persulfate (analytical grade) was purified using recrystallization
from distilled water. Propylene carbonate was dried over molecular sieves. LiClO4 (Aldrich)
was dried in vacuum at 120 ◦C for 3 days. The electrolyte prepared from a 1 M LiClO4
solution in propylene carbonate was stored under argon.
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SWCNTs from Carbon Chg, Ltd. (Moscow, Russia) with values of d = 1.4–1.6 nm,
l = 0.5–1.5 µm were produced by electric arc discharge technique with Ni/Y catalyst. To
prepare IR-PAN-a, the suspension of IR-heated polyacrylonitrile in the KOH aqueous
solution was dried at 80 ◦C in a vacuum, and the powder was IR heated at 800 ◦C for
2 min in a nitrogen atmosphere [59]. The GC-2000 glassy carbon plates (NIIgrafit, Moscow,
Russia) sized 0.5 × 3 cm was polished with a diamond paste of the ASM-3/2 type. To
produce AGF, the graphite foil (GF) (Unichimtek, MSU, Russia) was used. The GF strips
sized 5 × 0.5 cm were anodized in 0.1 M (NH4)2SO4 electrolyte for 4 min at 3.0 V and
0.3 A [63].

3.2. Synthesis of IR-PAN-a/PDPAC and IR-PAN-a/SWCNT/PDPAC

IR-PAN-a/PDPAC composites were prepared via oxidative polymerization of DPAC in
the presence of 10 wt% IR-PAN-a in the homogeneous acidic medium (IR-PAN-a/PDPACac)
and in the heterophase system in an alkaline medium (IR-PAN-a/PDPACalk) described
in [59].

IR-PAN-a/SWCNT/PDPAC nanocomposites were synthesized in two different ways
according to the synthesis method for IR-PAN-a/PDPAC in [59]. The content of IR-PAN-a
and SWCNT was equal (CIR-PAN-a = CSWCNT = 10 wt% relative to the monomer weight).

3.3. Electrodes Preparation

The electroactive coatings made of suspensions of nanocomposites in FA were applied
to the GC and AGF substrates. An HD 3200 ultrasonic homogenizer was used to sonicate
the suspensions of nanocomposites in FA (1.5 wt%). The coating square was 1 cm2.

3.4. Electrochemical Measurements

Cyclic voltammograms (CV) and galvanostatic charge-discharge curves in the po-
tential range of −0.5–1.4 V were recorded using an IPC-Compact P-8 potentiostat (Elins,
Russia). Electrochemical measurements were made in a sealed three-electrode cell in the
argon atmosphere in a 1 M LiClO4 solution in propylene carbonate. The Pt plate (1 cm2)
was used as an auxiliary electrode. The Ag/AgCl was used as a reference electrode.

According to the method described in [57], coulombic efficiency N, specific weight and
surface capacitances Cw and Cs were calculated from the charge-discharge curves.

3.5. Materials Characterization

Attenuated total reflection (ATR) FTIR spectra were recorded using a HYPERION-
2000 IR microscope (Bruker, Karlsruhe, Germany) coupled with the Bruker IFS 66v FTIR
spectrometer (Karlsruhe, Germany) in the range of 600–4000 cm−1 (ZnSe crystal, resolution
of 2 cm−1).

Raman spectra were recorded using a Senterra II Raman spectrometer (Bruker, Karl-
sruhe, Germany). A laser with a wavelength of 532 nm and a power of 0.25 mW was used.
The spectral resolution was 4 cm−1.

An XRD analysis was performed using a Difray-401 X-ray diffractometer (Scientific
Instruments Joint Stock Company, Saint Petersburg, Russia) with Bragg–Bretano focusing
on CrKα radiation, λ = 0.229 nm.

FE-SEM images were taken using a Zeiss Supra 25 FE-SEM field emission scanning
electron microscope (Carl Zeiss AG, Jena, Germany).

Electric characteristics of the nanocomposites were measured using the Miller FPP-
5000 4-Point Probe (Fountain Valley, CA, USA).

4. Conclusions

Electrochemical behavior of the advanced electrodes based on the IR-PAN-a/SWCNT/
PDPAC ternary nanocomposite coatings compared to IR-PAN-a/PDPAC binary one on
roughened AGF substrate in 1 M LiClO4 electrolyte in propylene carbonate were studied
for the first time. Ternary nanocomposites for electrode coatings were prepared via in situ
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oxidative polymerization of DPAC in the presence both of IR-PAN-a and SWCNT in two
different ways in acidic and alkaline media. The main contribution to the electrochemical
capacitance is provided by the electric double-layer charging and specific weight capac-
itances Cw of electrodes reach 394, 283, 180 F·g−1 (AGF/IR-PAN-a/SWCNT/PDPACac)
and 361, 239, 142 F·g−1 (AGF/IR-PAN-a/SWCNT/PDPACalk) at charge-discharge currents
of 0.5, 1.5, 3.0 mA·cm−2. Specific surface capacitances Cs of hybrid electrodes amount
to 0.161 and 0.151 F·cm−2 for AGF/IR-PAN-a/SWCNT/PDPACac and AGF/IR-PAN-
a/SWCNT/PDPACalk. Such electroactive nanocomposite coatings for hybrid electrodes
are promising as a cathode material for SCs with increased voltage.
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