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Abstract: Crystalline borates have received great attention due to their various structures and wide
applications. For a long time, the corner-sharing B–O unit is considered a basic rule in borate
structural chemistry. The Dy4B6O15 synthesized under high-pressure is the first oxoborate with
edge-sharing [BO4] tetrahedra, while the KZnB3O6 is the first ambient pressure borate with the
edge-sharing [BO4] tetrahedra. The edge-sharing connection modes greatly enrich the structural
chemistry of borates and are expected to expand new applications in the future. In this review, we
summarize the recent progress in crystalline borates with edge-sharing [BO4] tetrahedra. We discuss
the synthesis, fundamental building blocks, structural features, and possible applications of these
edge-sharing borates. Finally, we also discuss the future perspectives in this field.
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1. Introduction

Borates show rich structural chemistry and have broad applications as birefringent
materials and nonlinear optical (NLO) materials [1–31]. The famous KBe2BO3F2 (KBBF),
LiB3O5 (LBO), and β-BaB2O4 (β-BBO) crystals are used to generate ultraviolet (UV) or
deep-UV lasers through cascaded frequency conversion in practical application [32–34].
α-BaB2O4 (α-BBO) is an excellent UV birefringent crystal with a wide transparency win-
dow from 190 nm to 3500 nm and a large birefringence of 0.15 at 266 nm [35]. To date,
the number of synthetic borates and borate minerals are over 3900 in the documented
literature [1]. Three types of B–O units of linear [BO2], triangular [BO3], and tetrahedral
[BO4] are observed in these borates in which linear [BO2] with sp hybridized chemical
bonds are extremely rare; only 0.1% of borates contain the linear [BO2] configuration.
M5Ba2(B10O17)2(BO2) (M = K, Rb) and NaRb6(B4O5(OH)4)3(BO2) are three typical exam-
ples; the former two compounds contain unusual [BO2] with the traditional [BO3] and
[BO4] units and exhibit suitable birefringence (∆n = 0.06) and transparency windows down
to the deep-UV region (<190 nm) [36,37]. Theoretical analyses reveal that the [BO3] and
[BO4] units have the smaller polarizability anisotropy compared with linear [BO2]. While
the latter one is the first noncentrosymmetric and chiral structure with the linear [BO2] unit
and displays a weak second-harmonic generation response (SHG) (0.1 × SiO2) and wide
transparency of about 21.2% at 200 nm [38].

In 2021, Pan and coworkers summarized the synthesis, fundamental building blocks
(FBBs), symmetries, structure features, and functional properties of the reported anhydrous
borates [1]. The FBBs of polynuclear borates are generally formed by corner-/edge-sharing
[BO3] and [BO4] units. Cs3B7O12 contains a large FBB with 63 boron atoms in which
35 (or 37) BO3 triangles and 28 (or 26) BO4 tetrahedra are linked to form thick anionic
sheets stacked along the c direction [39]. Mg7@[B69O108(OH)18] contains 42 [BO3] trian-
gles and 27 [BO4] tetrahedra; it exhibits a supramolecular framework with hexagonal
snowflake-like channels; unique triple-helical ribbons are found in {B69} FBBs [40]. This
huge [B69O108(OH)18] cluster represents the largest FBB in borates. The FBBs can further
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polymerize into 1D chains, 2D layers, and 3D networks [41–49]. For example, we obtained
three alkali and alkaline earth-metal borates, namely Ba2B10O16(OH)2·(H3BO3)(H2O),
Na2B10O17·H2en, and Ca2[B5O9]·(OH)·H2O [41–43], in which pentaborates are used to
construct a single-layered structure, 2D microporous layers, and a 3D network, respectively.
Ca2[B5O9]·(OH)·H2O is impressive with a dense net consisting of pcu B−O net and dia
Ca−O net and exhibits a short UV cutoff edge below 200 nm and a strong SHG response of
~three times that of KH2PO4 (KDP) [43].

In 2002, Huppertz and coworkers reported the high-pressure synthesis of Dy4B6O15; it
is the first oxoborate with an edge-sharing BO4 tetrahedra [50]. The edge-sharing [BO4]
tetrahedra in Dy4B6O15 changes the rule of corner-sharing [BO3]/[BO4] units in borate
structural chemistry. In addition, it is considered that the extreme synthetic conditions,
such as high pressure, is necessary for edge-sharing borates. In 2010, the discovery of
KZnB3O6 changed this view; KZnB3O6 represents the first ambient pressure edge-sharing
[BO4]-containing borate [51]. To date, edge-sharing [BO4]-containing borates are still rare;
less than 1% of borates contain edge-sharing BO4 tetrahedra. Over the past decade, the syn-
thesis, crystal structures, and properties of KBBF-like borates [52], fluorooxoborates [53,54],
high-temperature borates [55], high-pressure borates [56], f -element borates [57], zincob-
orates [58,59], aluminoborates [60,61], borogermanates [62], hybrid d- or p-block metal
borates [63], and hydrated borates with non-metal or transition-metal complex cations have
been well reviewed [64]. Herein, we give a detailed summary of the recent progress in
crystalline borates with edge-sharing BO4 tetrahedra. These edge-sharing borates can be
grouped into two types in terms of their synthetic method: (i) high pressure synthesis of
borates with edge-sharing [BO4] tetrahedra and (ii) ambient pressure synthesis of borates
with edge-sharing [BO4] tetrahedra. We discuss the synthesis, FBBs, structural features,
potential applications, and future perspectives of edge-sharing borates.

2. High Pressure Synthesis of Borates with Edge-Sharing [BO4] Tetrahedra

The existence of uncommon edge-sharing [BO4] tetrahedra disobeys Pauling’s third
rule. The borates containing the so-called edge-sharing [B2O6] dimer were initially believed
to be obtained only under extreme conditions, such as high temperature and high pressure.
Since the first case of this species was discovered, multi-anvil high-pressure synthesis is the
dominant route to obtain the new edge-sharing [BO4] tetrahedra-containing borates. Up to
now, there are 26 high-pressure edge-sharing borates within the scope of discussion. Boron
atoms tend to coordinate with four O atoms to form [BO4] tetrahedra under a high-pressure
environment, as evidenced by most of these high-pressure compounds constructed merely
from [BO4] tetrahedra. Even in [BO3]-containing borates, such as high-pressure AB3O5, the
proportion of the [BO3] triangle is only 1/3.

2.1. Rare Earth Borates

RE4B6O15 (RE = Dy and Ho). Dy4B6O15 is the first reported metal borate with edge-
sharing [BO4] tetrahedra; it was obtained under high-temperature (1273 K) and high-
pressure (8 Gpa) conditions by Huppertz et al. in 2002 [50]. Shortly after, isostructural
Ho-analogues was prepared under the same extreme high-pressure condition in 2003 [65].
The RE4B6O15 series crystallize in the monoclinic crystal system with the space group of
C2/c (no. 15); their structures exhibit corrugated 2[B6O15]∞ layers formed by the linkage
of the adjacent [B12O35] clusters (Figure 1b). The large [B12O35] cluster, incorporating
edge-sharing and corner-sharing [BO4] tetrahedra with the ratio of 8:4, can be considered as
the FBB of RE4B6O15 (Figure 1a). Furthermore, the interlayer rare earth ions connect these
corrugated layers to form the final 3D structures (Figure 1c). The multi-anvil techniques,
which can offer external pressures, accelerate the discovery of borates with unusual edge-
sharing [BO4] tetrahedra and initiate the era of exploring such borates under multi-anvil
high-pressure conditions.



Molecules 2023, 28, 5068 3 of 18

Molecules 2023, 28, x FOR PEER REVIEW 3 of 19 
 

 

sharing [BO4] tetrahedra and initiate the era of exploring such borates under multi-anvil 

high-pressure conditions. 

 

Figure 1. (a) The [B12O35] FBB; (b) the 2[B6O15]∞ corrugated layer; (c) the total structure of RE4B6O15 

(RE = Dy and Ho) along [010] direction. Key: cross-centered purple ball, rare earth atom; black ball, 

B atom; red ball, O atom; orange/olive tetrahedron, edge/vertex-sharing [BO4]; purple triangle, 

[BO3]. 

α-RE2B4O9 (RE = Sm, Eu, Gd, Tb, Dy, Ho and Y). α-RE2B4O9 borates (RE = Sm, Eu, Gd, 

Tb, Dy, Ho and Y) are another rare earth borate series with edge-sharing [BO4] tetrahedra 

reported in the period of 2002 to 2017 [66–69]. Similar to the RE4B6O15 series, the α-RE2B4O9 

series crystallize in the same space group (C2/c, no. 15) in which all the incorporating 

boron atoms are four-coordinated. In these structures, the complex [B20O55] FBB is 

comprised with edge- and corner-sharing [BO4] tetrahedra according to the ratio of 18:2 

(Figure 2a and blue blanket in Figure 2b). With respect to the whole covalent B–O 

framework of RE4B6O15, the 3[B6O15]∞ network is formed by the linkage of [B20O55] FBBs, 

the rare earth cations located in the channels (Figure 2b). 

Figure 1. (a) The [B12O35] FBB; (b) the 2[B6O15]∞ corrugated layer; (c) the total structure of RE4B6O15

(RE = Dy and Ho) along [010] direction. Key: cross-centered purple ball, rare earth atom; black
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α-RE2B4O9 (RE = Sm, Eu, Gd, Tb, Dy, Ho and Y). α-RE2B4O9 borates (RE = Sm, Eu, Gd,
Tb, Dy, Ho and Y) are another rare earth borate series with edge-sharing [BO4] tetrahedra
reported in the period of 2002 to 2017 [66–69]. Similar to the RE4B6O15 series, the α-RE2B4O9
series crystallize in the same space group (C2/c, no. 15) in which all the incorporating boron
atoms are four-coordinated. In these structures, the complex [B20O55] FBB is comprised
with edge- and corner-sharing [BO4] tetrahedra according to the ratio of 18:2 (Figure 2a and
blue blanket in Figure 2b). With respect to the whole covalent B–O framework of RE4B6O15,
the 3[B6O15]∞ network is formed by the linkage of [B20O55] FBBs, the rare earth cations
located in the channels (Figure 2b).

La3B6O13(OH). During the synthetic process, the replacement of the anhydrous boron
source with boric acid, hydrated borates, or borates containing water molecules are some-
times obtained. La3B6O13(OH) is the first SHG-active edge-sharing [BO4] tetrahedra-
containing borate [70]. This compound was obtained by a high-pressure/high-temperature
condition at 6 GPa and 1673 K and was immediately identified as an NLO crystal by
Huppertz et al. in 2020. It crystallizes in the chiral space group, P21 (no. 4), and presents
a 2D 2[B6O13(OH)]∞ layered structure with La ions located between the layers (Figure 3).
The FBB of La3B6O13(OH) features a ‘sechser’-ring, which is constructed of one [B2O6],
three vertex-sharing [BO4], and one [BO3(OH)] (Figure 3a). The [B6O16(OH)] FBBs are
linked into a 2D 2[B6O13(OH)]∞ layer along the bc plane, which further stack along [100]
direction with La ions residing in the interlayer space (Figure 3b). Although La3B6O13(OH)
crystallizes in a noncentrosymmetric space group, its basic B–O units in the lattice are all the
non-π-conjugated tetrahedral. La3B6O13(OH) displays a relatively weak SHG effect. Com-
pared to the non-π-conjugated [BO4] tetrahedron with negligible hyperpolarization, the
π-conjugated motifs represented by planar [BO3] and [B3O6] in the borate system are supe-
rior NLO-active functional modules, and thus, the powder SHG response of La3B6O13(OH)
based on the Kurtz–Perry method is as weak as 2/3 times that of quartz.
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2.2. Transition Metal Borates

TMB2O4 (TM = Ni, Fe and Co). Previous research on edge-sharing [BO4]-containing
borates mainly focus on lanthanide borates. Later, researchers achieved the combination
of transition metal and edge-sharing [BO4] tetrahedra. From 2007 to 2010, a series of
high-pressure transition metal borates, TMB2O4 (TM = Ni, Fe and Co), were discovered
by Huppertz and coworkers [71–73]. All boron atoms in this species are four-coordinated,
and the FBB is the simplest [B2O6] cluster (Figure 4b). Each edge-shared [B2O6] dimmer
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is linked to four surrounding [B2O6] units through µ2-O atoms, resulting in a dense 2D
2[B2O4]∞ layer with six-member rings (6 MRs) (Figure 4a). The stacking of 2[B2O4]∞
layer along [100] direction is further linked by interlayer TM ions, which leads to the final
structure of TMB2O4 (Figure 4c).
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transition metal atom; black ball, B atom; red ball, O atom; orange tetrahedron, edge-sharing [BO4].

γ-HfB2O5. In 2021, the γ-phase of HfB2O5, which incorporates edge-sharing [BO4]
tetrahedra, was obtained under extreme pressure (120 GPa) by Huppertz [74]. γ-HfB2O5
crystallizes in the centrosymmetric monoclinic space group, P21/c (no. 14). The tetravalent
transition metal Hf4+ cation displays higher coordination numbers than divalent cations,
and the FBB in γ-HfB2O5 is changed to [B3O9] with the additional one vertex-sharing [BO4]
(Figure 5a). Similar to the stuctures of TMB2O4 series, the structure of γ-HfB2O5 borate also
shows layered sheets with Hf ions filling the interlayer space (Figure 5b). It is interesting
to note that β-HfB2O5 was synthesized at 7.5 GPa in the multi-anvil press, upon further
compression up to 120 GPa, a shrinkage of the cell parameters during the compression
process was observed, and finally the β-phase is transformed to the γ-phase. The layer in
β-HfB2O5 contains four MRs and eight MRs by the corner-sharing BO4 tetrahedra, while
γ-HfB2O5 contains ten MRs, including the edge-sharing BO4 tetrahedra. Edge-sharing BO4
tetrahedra in new phase γ-HfB2O5 shows exceptionally short B–O and B· · ·B distances.
The coordination number of the Hf4+ cations in γ-HfB2O5 increased to nine in comparison
to eight in its ambient pressure counterpart.

Molecules 2023, 28, x FOR PEER REVIEW 6 of 19 
 

 

HfB2O5 contains ten MRs, including the edge-sharing BO4 tetrahedra. Edge-sharing BO4 

tetrahedra in new phase γ-HfB2O5 shows exceptionally short B–O and B⋯B distances. The 

coordination number of the Hf4+ cations in γ-HfB2O5 increased to nine in comparison to 

eight in its ambient pressure counterpart. 

 

Figure 5. (a) The [B3O9] FBB; (b) the total structure of HfB2O5 along [010] direction. Key: cross-centered 

purple ball, Hf atom; black ball, B atom; red ball, O atom; orange tetrahedron, edge-sharing [BO4]. 

M6B22O39·H2O (M = Fe and Co). The first two acentric edge-sharing [BO4] tetrahedra-

containing borates M6B22O39·H2O (M = Fe and Co) were prepared under the high-pressure 

(6 GPa) and high-temperature (880 °C for Fe and 950 °C for Co) conditions in a Walker-

type multi-anvil apparatus by Huppertz et al. in 2010 [75]. The M6B22O39·H2O series crys-

tallize in a noncentrosymmetric orthorhombic space group, Pmn21 (no. 31). The unusually 

long B–O bond lengths as well as the short distances between the two boron cores are 

shown in the structure, which indicates the successful capture of intermediate states on 

the way to edge-sharing [BO4] tetrahedra. The structure of M6B22O39·H2O shows a 3D 

[B22O39]∞ anhydrous B–O framework with the Fe or Co ions and water molecules located 

in the structural channels (Figure 6a,c). Specifically, taking Fe6B22O39·H2O as an example, 

the B(11), O(2), O(15), and O(24) in the structure are not strictly in the same plane, and the 

B(11)-O(16) bond length (1.883(6) Å) is obviously longer than the common B–O distances 

(Figure 6b). The group of B(11) center and its three coordinated O(2,15,24) atoms as well 

as the neighboring O(16) can be regarded as a highly twisted polyhedron or the interme-

diate states between [BO3] tringle and [BO4] tetrahedron. The discovery of M6B22O39·H2O 

is helpful for understanding the dynamic process from the vertex-sharing [BO3] + [BO4] 

model to edge-sharing [BO4] + [BO4] model. 

 

Figure 6. (a) The [B24O54] FBB of M6B22O39·H2O (M = Fe and Co); (b) coordination spheres of boron 

atoms B(11) and B(8) in Fe6B22O39·H2O; (c) the total structure of M6B22O39·H2O (M = Fe and Co) along 

[100] direction. Key: cross-centered purple ball, Fe/Co atom; black ball, B atom; red ball, O atom; 

small pink ball, H atom; orange/olive tetrahedron, edge/vertex-sharing [BO4]. 

Figure 5. (a) The [B3O9] FBB; (b) the total structure of HfB2O5 along [010] direction. Key: cross-
centered purple ball, Hf atom; black ball, B atom; red ball, O atom; orange tetrahedron, edge-
sharing [BO4].

M6B22O39·H2O (M = Fe and Co). The first two acentric edge-sharing [BO4] tetrahedra-
containing borates M6B22O39·H2O (M = Fe and Co) were prepared under the high-pressure
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(6 GPa) and high-temperature (880 ◦C for Fe and 950 ◦C for Co) conditions in a Walker-type
multi-anvil apparatus by Huppertz et al. in 2010 [75]. The M6B22O39·H2O series crystallize
in a noncentrosymmetric orthorhombic space group, Pmn21 (no. 31). The unusually long
B–O bond lengths as well as the short distances between the two boron cores are shown
in the structure, which indicates the successful capture of intermediate states on the way
to edge-sharing [BO4] tetrahedra. The structure of M6B22O39·H2O shows a 3D [B22O39]∞
anhydrous B–O framework with the Fe or Co ions and water molecules located in the
structural channels (Figure 6a,c). Specifically, taking Fe6B22O39·H2O as an example, the
B(11), O(2), O(15), and O(24) in the structure are not strictly in the same plane, and the
B(11)-O(16) bond length (1.883(6) Å) is obviously longer than the common B–O distances
(Figure 6b). The group of B(11) center and its three coordinated O(2,15,24) atoms as well as
the neighboring O(16) can be regarded as a highly twisted polyhedron or the intermediate
states between [BO3] tringle and [BO4] tetrahedron. The discovery of M6B22O39·H2O is
helpful for understanding the dynamic process from the vertex-sharing [BO3] + [BO4]
model to edge-sharing [BO4] + [BO4] model.
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Figure 6. (a) The [B24O54] FBB of M6B22O39·H2O (M = Fe and Co); (b) coordination spheres of boron
atoms B(11) and B(8) in Fe6B22O39·H2O; (c) the total structure of M6B22O39·H2O (M = Fe and Co)
along [100] direction. Key: cross-centered purple ball, Fe/Co atom; black ball, B atom; red ball,
O atom; small pink ball, H atom; orange/olive tetrahedron, edge/vertex-sharing [BO4].

Co7B24O42(OH)2·2H2O. Although the cobalt hydrated borate Co7B24O42(OH)2·2H2O
crystallizes in a centrosymmetric space group, Pbam (no. 55), it shares similar structural
characteristics with Co6B22O39·H2O. This species was prepared under high-pressure (6 GPa)
and high-temperature (1153 K) conditions by Huppertz et al. in 2012 [76]. The complex
FBB of Co7B24O42(OH)2·2H2O is comprised of twenty-two corner- and two edge-sharing
[BO4] tetrahedra with two hydroxy group locating in the mirror plane (Figure 7a). The
structure of Co7B24O42(OH)2·2H2O shows the 3[B24O42(OH)2]∞ framework with Co ions
and water molecules located in the structural channels (Figure 7b).

2.3. Borates with Monovalent or Divalent A-Site Cations

AB3O5 [A = K, NH4, Rb, Tl and Cs1-x(H3O)x (x = 0.5–0.7)]. During the period of 2011
to 2014, the AB3O5 series [A = K, NH4, Rb, Tl and Cs1-x(H3O)x (x = 0.5–0.7)] were synthe-
sized under high-pressure/high-temperature conditions by Huppertz et al. [77–80]. KB3O5 is
the first compound with various configurations, including corner-sharing [BO3], corner-
sharing [BO4], and edge-sharing [BO4]. The FBB of the isostructural AB3O5 contains two
[BO3] triangles, four corner-sharing [BO4] tetrahedra, and two edge-sharing [BO4] tetra-
hedra (Figure 8a). It should be noted that the [B2O6] rings in AB3O5 can be regarded as
six connected nodes; the two endocyclic O atoms of each [B2O6] ring are further connected
with two corner-sharing [BO4] tetrahedra. The total structures of the AB3O5 series ex-
hibit 3D B–O anionic skeletons with monovalent cations locating the structural channels
(Figure 8b). Although the boron source in the synthesis of AB3O5 series are boric acid,
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only the Cs1-x(H3O)xB3O5 (x = 0.5–0.7) phase successfully incorporates oxonium ions into
its structure.
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CsB5O8. CsB5O8 is another alkali metal borate prepared under high-pressure (6 Gpa)
and high-temperature (1173 K) conditions in a Walker-type multianvil apparatus [81].
Structurally, CsB5O8 features a similar structure to the aforementioned AB3O5 series. The
basic B–O building blocks of CsB5O8 are corner-sharing [BO3], corner-sharing [BO4], and
edge-sharing [BO4]; these units exhibit a ratio of 2:1:2, respectively (Figure 9a). The structure
of CsB5O8 exhibits a 3D B–O covalent framework with Cs ions locating in the structural
channels (Figure 9b).
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NaBSi3O8. In 2022, Gorelova et al. studied the high-pressure modification of NaBSi3O8,
and revealed the transformation behaviors of NaBSi3O8 during continuous pressure in-
crease [82]. Unexpectedly, above 27.8 GPa the crystal structure of NaBSi3O8 achieves the
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coexistence of the rare edge-sharing [BO4] tetrahedra and earlier unknown edge-sharing
[SiO5] square pyramids. The structures under 16.2 and 27.8 Gpa are quite different. Both
the 16.2 Gpa- and 27.8 Gpa-phases crystallize in the P1. The Si atoms in the 16.2 Gpa-phase
are all four-coordinated, and the corner-sharing [SiO4] tetrahedra are incorporated into
the 1D [Si3O8]∞ chains, while 1/3 Si atoms are five-coordinated in the 27.8 Gpa-phase.
These [SiO5] square pyramids are dimerized into [Si2O8] units (Figure 10a,c). SiO4 tetra-
hedra undergo geometrical distortion leading to the formation of SiO5 polyhedra due to
the pressure-induced transformations. The [BO4] tetrahedra in 16.2 Gpa-phase and the
[B2O6] dimers in 27.8 Gpa-phase act as linkers and further stable the whole structures
(Figure 10b,d).
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γ-BaB2O4. The α- and β-phases of barium metaborate are famously commercialized
birefringent and nonlinear optical materials. Relevant theoretical studies offered various
predicted phase of barium metaborate. In 2022, the third phase, γ-BaB2O4, was synthesized
experimentally by Bekker et al. under conditions of 3 GPa and 1173 K [83]. γ-BaB2O4
crystallizes in a centrosymmetrical space group, P21/n (no. 14). Its anionic B–O skeleton
exhibits 1D chains, which is completely different from the isolated [B3O6] planar cluster
in α- and β-phases. The [B4O10] FBB in γ-BaB2O4 is comprised of one [B2O6] ring and
two additional [BO3] triangles (Figure 11a); these [B4O10] FBBs further assemble into the
1[B2O4]∞ chains (Figure 11b). Finally, the [BaO10] polyhedra stable the 1[B2O4]∞ chains in
the lattice to form the total 3D structure of γ-BaB2O4 (Figure 11c). The calculated band gap
is up to 7.045 eV, which implies transparency in the deep-UV region. The most intense band
at a frequency of 853 cm−1 in the Raman spectra corresponds to the symmetric bending
mode of the B−O−B−O ring in edge-sharing tetrahedra.

α-Ba3[B10O17(OH)2]. Apart from the extreme high pressure afforded by the multi-anvil
high-pressure device, the hydrothermal reactor can also provide relatively high pressure.
In 2019, Lii et al. reported the structures of α-Ba3[B10O17(OH)2], which were obtained
through hydrothermal reactions at 773 K and 0.1 Gpa. α-Ba3[B10O17(OH)2]. The phase
containing edge-sharing [BO4] tetrahedra crystallizes in the monoclinic space group, P21/n
(no. 14), and presents a hydrated 3D B–O framework with Ba ions filling in the cavities
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(Figure 12b) [84]. In terms of its FBB, the complex [B20O40(OH)4] can be divided into the
double [B5O12] (the blue dotted ellipse part) and [B10O18(OH)4] (the red dotted blanket)
categories (Figure 12a). Unlike FBBs mentioned in other borates, the [B2O4(OH)2] units
act as two connected nodes in the structure as the targeted [B2O6] units are bounded to
hydrogen atoms as terminal hydroxy groups. The aggregation of [B5O12] clusters expanding
in the ac plane leads to a corrugated layer, and the hydrated [B10O18(OH)4] clusters connect
the adjacent antiparallel layers to form the 3[B10O17(OH)2]∞ covalent skeleton.
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3. Ambient Pressure Synthesis of Borates with Edge-Sharing [BO4] Tetrahedra

The edge-sharing [BO4] tetrahedra-containing borates obtained from classical high-
temperature solution and cooling method make it possible to obtain this species more con-
veniently. More importantly, borates obtained under ambient pressure might incorporate
more π-conjugated [BO3] units. Edge-sharing borates with high [BO3]:[BO4] ratios, such as
β-CsB9O14 (7:2) and Ba6Zn6(B3O6)6(B6O12) (22:2), are identified as birefringent crystals.

KZnB3O6. The first case of borate containing edge-sharing [BO4] tetrahedra was
synthesized under atmospheric pressure. KZnB3O6 was reported by Chen et al. and Wu
et al. independently in 2010 [51,85]. KZnB3O6 crystallizes in the triclinic space group (P1,
no. 2) with a low symmetry. The [B6O12] FBB features isolated B–O cluster containing
four [BO3] tringles and two edge-sharing [BO4] tetrahedra (Figure 13a). The aligned
repetition of isolated [B6O12] clusters in the lattice gives a 2D [B6O12]∞ pseudo layer (see
the green dotted blankets in Figure 13b,c), the pairs of edge-sharing [ZnO4] polyhedra
connect the adjacent six [B6O12] clusters to form the 3[ZnB3O6]∞ network with K cations
filling the cavities. Later, KZnB3O6 was defined as highly thermally stable by Chen et al.,
and its unidirectional thermal expansion property was investigated. Its unique property
is explained by the cooperative rotations of rigid groups [B6O12] and [Zn2O6] driven by
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anharmonic thermal vibrations of K ions [86–88]. The discovery of KZnB3O6 indicated
that high pressure is not essential for obtaining edge-sharing [BO4] tetrahedra-containing
borates, and subsequently, ambient pressure edge-sharing [BO4] tetrahedra-containing
borates have been synthesized successfully one after another.
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Ba4Na2Zn4(B3O6)2(B12O24). Ba4Na2Zn4(B3O6)2(B12O24) is another edge-sharing [BO4]
tetrahedra-containing borate obtained without an extreme pressure condition, as reported
by Chen et al. in 2013 [89]. Ba4Na2Zn4(B3O6)2(B12O24) crystallizes in the triclinic space
group, P1 (no. 2); it features a complex sandwich-like layered structure. There are two
kinds of FBBs in the structure of Ba4Na2Zn4(B3O6)2(B12O24), namely [B12O24] and [B3O6],
respectively (Figure 14a,b). The aggregation of [B12O24] FBBs and [Zn(1)O4] tetrahedra
according to the stoichiometric ratio of 1:2 gives a layered [Zn2(B12O24)]∞ configuration
expanding in the ab planes, while the second FBBs [B3O6] are connected to [Zn(2)O4] to
form [Zn(B3O6)]∞ sheets. The assembly of two [Zn(B3O6)]∞ sheets and one [Zn(B12O24)]∞
layer leads to the formation of a complex [Zn4(B3O6)2(B12O24)]∞ sandwiched structure.
Split Na(1,2) atoms with the occupancy of 0.47:0.53 fill in the cavities of the sandwiched
layers, and spherical coordinated Ba ions fill in the adjacent sandwiched layers (Figure 14c).

Li4Na2CsB7O20. The trimetallic borate Li4Na2CsB7O20 was reported by Pan et al.
in 2019, and its expansion rate was investigated at the same time [90]. Li4Na2CsB7O20
crystallizes in a triclinic crystal system with the space group of P1 (no. 2). With respect to
its unique [B14O28] FBB, the centered [B2O6] ring acts as a four-connected node and further
connects with one [BO3] tringle and one [B5O11] cluster (Figure 15a). The total crystal
structure of Li4Na2CsB7O20 displays a 3D configuration with monovalent alkali metal Li,
Na, and Cs ions residing in the free spaces (Figure 15b). The temperature-dependent unit
cell parameters were collected experimentally. as Additionally, the theoretical evaluation
of thermal expansion along the principal axes indicate the highly anisotropic thermal
expansion behavior of Li4Na2CsB7O20. The expansion rates for X1, X2, and X3 were
evaluated to be 3.51 × 10−6, 17 × 10−6, and 25.4 × 10−6 K−1, respectively. This compound
may be used as a thermal expansion material.
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Figure 14. Two types of different FBBs occur in Ba4Na2Zn4(B3O6)2(B12O24): (a) [B12O24] FBB;
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O atom; olive/orange tetrahedron, corner-/edge-sharing [BO4]; purple tringle [BO3].
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BaAlBO4. In 2019, Pan et al. reported the synthesis and experimental and theoretical
studies of an edge-sharing [BO4] tetrahedra-containing aluminum oxyborate, BaAlBO4.
BaAlBO4 was synthesized via the high-temperature solution method under atmospheric
pressure [91]. Single-crystal X-ray diffraction analysis reveals that BaAlBO4 crystallizes
in a monoclinic space group, P21/c (no. 14). The crystal structure of BaAlBO4 exhibits a
3D framework, which is comprised with [AlO4] tetrahedra, [B4O10] clusters, and A-site
Ba2+ cations filling the structural channels. The corner-sharing [AlO4] units in the ab plane
give a 2D 2[Al2O5]∞ layer with six MRs (Figure 16b). The [B2O6] rings connect with two
[BO3] tringles end to end to form the isolated [B4O10] cluster (Figure 16a), which can be
considered as the FBB of BaAlBO4. The combination of [B4O10] clusters and the neighboring
2[Al2O5]∞ layer give the final 3D framework.

β-CsB9O14. In 2019, Pan et al. prepared the β-CsB9O14 under ambient pressure. This
compound is the first case of triple-layered borate with edge-sharing [BO4] tetrahedra [92].
Taking the [B6O12] cluster in the KZnB3O6 as the prototype, the sandwich-like [B18O34]
FBB can be evolved from the combination of one [B6O12] and two anti-parallel [B6O12]
double-ring units (Figure 17a). The further aggregation of [B18O34] FBBs in the bc plane
leads to the formation of corrugated layers with A-site Ba2+ cations residing in the channels;
the whole structure of β-CsB9O14 is formed by stacking of these triple-layered sheets along
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[100] direction (Figure 17b). The B–O anionic skeleton of β-CsB9O14 possesses a high
[BO3]:[BO4] (7:2) ratio; the layered structure as well as the well-aligned [BO3] units in the
lattice lead to a large optical anisotropy. The experimental and theoretical studies indicate
that β-CsB9O14 can be identified as a potential deep-ultraviolet birefringent material with a
wide band gap (>6.72 eV) and large birefringence (0.115 or 0.135 at 1064 nm).
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Pb2.28Ba1.72B10O19. In 2021, an edge-sharing [BO4]-containing borate, Pb2.28Ba1.72B10O19,
was obtained under ambient pressure by Pan et al. [93]. It features a 3D B–O anionic frame-
work. Pb2.28Ba1.72B10O19 crystallizes in a monoclinic crystal system with the space group of
C2/c (no. 15). Its asymmetric unit consists of one Pb atom, five B atoms, ten O atoms, and
one common site of the Ba/Pb atom with the occupancy of 0.14:0.86. Unlike the [B2O6] basic
ring in most of edge-sharing [BO4]-containing borate with four exocyclic O atoms acting as
connection nodes, the centered [B2O6] in [B10O24] FBB connects two [BO4] tetrahedra by
the two exocyclic µ2-O atoms and two [B3O8] by two endocyclic µ3-O atoms (Figure 18a).
The whole [B10O19] anionic framework is assembled from [B10O24] FBBs and Pb and Ba
ions located in the structural channels (Figure 18b).

K3Sb4BO13. In 2021, Quarez et al. discovered the complete transformation of adja-
cent [BO3] pairs into [B2O6] dimers in the α- and β-phase of K3Sb4BO13 driven by cool-
ing [94]. The [BO3]-containing α-phase of K3Sb4BO13 is obtained from the traditional
high-temperature solution method, and the symmetry increasing from P1 to C2/c during
the cooling process, accompanied with the transformation of two close [BO3] tringles
into edge-sharing [B2O6] units. The structures of α- and β-K3Sb4BO13 display complex
2[Sb4O13]∞ layers separated by [BO3] pairs or edge-sharing [BO4] tetrahedra (Figure 19a,b).
The anti-parallel [BO3] pair in the α-phase displays a short B· · ·B distance (3.083(6) Å) and
an extremely long B· · ·O secondary bond (2.623(6) Å), while the coordination spheres of
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corresponding B atoms in the β-phase are distorted into tetrahedra (Figure 19c,d). The low
temperature brings a lattice compression, which finally leads to B2O6 units, which shortens
the B· · ·B and B· · ·O distances in each pair of adjacent BO3 triangles units. Further studies
show that B K-edge electron energy loss (EELS) spectroscopes provide a characteristic
signal of the B2O6 units; the EELS method may widely use to identify edge-sharing B2O6
units more convenient in the future.

Molecules 2023, 28, x FOR PEER REVIEW 14 of 19 
 

 

 

Figure 18. (a) The [B10O24] FBB of Pb2.28Ba1.72B10O19; (b) the view of the whole structure of 

Pb2.28Ba1.72B10O19 along [010] direction. Key: grey ball, Pb atom; green ball, Ba atom; black ball, B 

atom; red ball, O atom; orange/olive tetrahedron, edge/vertex-sharing [BO4]. 

K3Sb4BO13. In 2021, Quarez et al. discovered the complete transformation of adjacent 

[BO3] pairs into [B2O6] dimers in the α- and β-phase of K3Sb4BO13 driven by cooling [94]. 

The [BO3]-containing α-phase of K3Sb4BO13 is obtained from the traditional high-temper-

ature solution method, and the symmetry increasing from P1̅ to C2/c during the cooling 

process, accompanied with the transformation of two close [BO3] tringles into edge-shar-

ing [B2O6] units. The structures of α- and β-K3Sb4BO13 display complex 2[Sb4O13]∞ layers 

separated by [BO3] pairs or edge-sharing [BO4] tetrahedra (Figure 19a,b). The anti-parallel 

[BO3] pair in the α-phase displays a short B⋯B distance (3.083(6) Å) and an extremely long 

B⋯O secondary bond (2.623(6) Å), while the coordination spheres of corresponding B at-

oms in the β-phase are distorted into tetrahedra (Figure 19c,d). The low temperature 

brings a lattice compression, which finally leads to B2O6 units, which shortens the B⋯B 

and B⋯O distances in each pair of adjacent BO3 triangles units. Further studies show that 

B K-edge electron energy loss (EELS) spectroscopes provide a characteristic signal of the 

B2O6 units; the EELS method may widely use to identify edge-sharing B2O6 units more 

convenient in the future. 

 

Figure 19. (a) The view of the whole structure of β-K3Sb4BO13 along [100] direction; (b) the view of 

the whole structure of α-K3Sb4BO13 along [100] direction; (c) the anti-parallel [BO3] pair in the β-

K3Sb4BO13; (d) the edge-sharing [BO4] tetrahedra in the α-K3Sb4BO13. Key: purple ball, K atom; green 

ball, Sb atom; black ball, B atom; red ball, O atom; orange tetrahedron, edge-sharing [BO4]; purple 

triangle, [BO3]. 

Ba6Zn6(B3O6)6(B6O12). Ba6Zn6(B3O6)6(B6O12) was reported by Mao et al. and Pan et al. 

independently in 2022 and identified as a potential birefringent crystal with a deep-ultra-

violet absorption cut-off edge and strong optical anisotropy [95,96]. The structure of 

Ba6Zn6(B3O6)6(B6O12) features a 2D [ZnB4O8]∞ network constructed by [ZnO4] tetrahedra 

and two kinds of B–O clusters ([B6O12] and [B3O6]) with Ba cations located in the cavities 

Figure 18. (a) The [B10O24] FBB of Pb2.28Ba1.72B10O19; (b) the view of the whole structure of
Pb2.28Ba1.72B10O19 along [010] direction. Key: grey ball, Pb atom; green ball, Ba atom; black ball,
B atom; red ball, O atom; orange/olive tetrahedron, edge/vertex-sharing [BO4].
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Figure 19. (a) The view of the whole structure of β-K3Sb4BO13 along [100] direction; (b) the view
of the whole structure of α-K3Sb4BO13 along [100] direction; (c) the anti-parallel [BO3] pair in the
β-K3Sb4BO13; (d) the edge-sharing [BO4] tetrahedra in the α-K3Sb4BO13. Key: purple ball, K atom;
green ball, Sb atom; black ball, B atom; red ball, O atom; orange tetrahedron, edge-sharing [BO4];
purple triangle, [BO3].

Ba6Zn6(B3O6)6(B6O12). Ba6Zn6(B3O6)6(B6O12) was reported by Mao et al. and Pan et al.
independently in 2022 and identified as a potential birefringent crystal with a deep-
ultraviolet absorption cut-off edge and strong optical anisotropy [95,96]. The structure of
Ba6Zn6(B3O6)6(B6O12) features a 2D [ZnB4O8]∞ network constructed by [ZnO4] tetrahedra
and two kinds of B–O clusters ([B6O12] and [B3O6]) with Ba cations located in the cavities
(Figure 20). It should be noted that Ba6Zn6(B3O6)6(B6O12) shows extremely low symmetry
(space group P-1, no. 2), and its asymmetric unit includes six Ba atoms, six Zn atoms,
six planar [B3O6] clusters, and two [B3O6] fragments (half of [B6O12] cluster). To sim-
plify the description of structure, we use B–O cluster-1 and B–O cluster-2 to represent
the basic structural units (Figure 20a–c). In the sandwiched [ZnB4O8]∞ layers, the top
and bottom of well-aligned [B6O12] clusters are shielded by the anti-parallel 2[Zn(B3O6)]∞
sheets. The . . . A-A’-A . . . stacking sequence of [ZnB4O8]∞ along the [001] direction leads
to the formation of the total covalent skeleton, and Ba ions act as counterions in the lattice.
From the structural perspective, the uniformly arrangement of two kinds of B–O clus-
ters and the high ratio of highly birefringence-active [BO3] tringles and [BO4] tetrahedra
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(22:20) indicate that Ba6Zn6(B3O6)6(B6O12) may have remarkable optical anisotropy. In
addition, the dangling bonds of terminal in two kinds of B–O clusters are eliminated by
the covalent [ZnO4] tetrahedra; thus, the short-wavelength absorption cut off edge has
a blue shift. The basic physical properties of Ba6Zn6(B3O6)6(B6O12) were also studied.
The transmission/absorption spectra indicate that Ba6Zn6(B3O6)6(B6O12) possesses a wide
transparency window from 180 nm to 3405 nm. The difference of refractive indices based
on a (001) wafer at 589.3 nm is as large as 0.14, which indicates that the birefringence of
Ba6Zn6(B3O6)6(B6O12) is even larger than the commercialized α-BaB2O4. Moreover, ther-
mal analysis demonstrates that Ba6Zn6(B3O6)6(B6O12) melts congruently. The acquirement
of bulk crystals could be anticipated as is evidenced by the already grown sub-centimeter
sized crystals.
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4. Conclusions

The synthesis of edge-sharing borates greatly changes the rule of corner sharing
B–O units in borate structures, and further work demonstrates that the extreme synthetic
conditions, such as high pressure, are not necessary for edge-sharing borates. The crys-
talline borates with edge-sharing [BO4] tetrahedra continue to develop; about 34 new
edge-sharing borates containing edge-sharing B2O6 unit have been found in recent years,
among which three are crystallized in noncentrosymmetric space groups, only about 10%
in the whole edge-sharing borates. This ratio is much smaller than 35% for the entire borate
system, which may be attributable to the [BO4] units likely formed under the high-pressure
environment [97]. Noncentrosymmetric edge-sharing borates are needed to better under-
stand the NLO property in these types of structures. Fortunately, more π-conjugated [BO3]
units are found under the ambient-pressure environment; the high [BO3] and [BO4] ratio in
edge-sharing borates may be beneficial for the formation of noncentrosymmetric structures.

The signal of the B2O6 structural motif can be unambiguously assigned in the B K-edge
EELS spectrum. Some of these edge-sharing borates exhibit interesting properties, such as
unusual anisotropic thermal expansion behavior. It is curious to chemists whether edge-
sharing BO3/BO4, BO3/BO3, or even face-sharing B–O units can be realized in the future. It
is also expected that the synthesis of edge-sharing [BO3F]4−, [BO2F2]3−, and [BOF3]2− units
in the future will greatly enrich the structural chemistry of crystalline fluorooxoborates.
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Finally, we should better understand the structure–property relationships of these edge-
sharing borates, which will help us to find more applications.
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