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Abstract: Pinus morrisonicola Hayata is a unique plant species found in Taiwan. Previous studies
have identified its anti-hypertensive, anti-oxidative, and anti-inflammatory effects. In this study, a
bioactivity-guided approach was employed to extract 20 compounds from the ethyl acetate fraction
of the ethanol extract of Pinus morrisonicola Hayata’s pine needles. The anti-aging effects of these
compounds were investigated using HT-1080 cells. The structures of the purified compounds were
confirmed through NMR and LC-MS analysis, revealing the presence of nine flavonoids, two lignans,
one coumarin, one benzofuran, one phenylic acid, and six diterpenoids. Among them, PML18,
PML19, and PML20 were identified as novel diterpene. Compounds 3, 4, and 5 exhibited remarkable
inhibitory effects against MMP-2 and showed no significant cell toxicity at 25 µM. Although the
purified compounds showed lower activity against Pro MMP-2 and Pro MMP-9 compared to the
ethyl acetate fraction, we speculate that this is the result of synergistic effects.

Keywords: Pinus morrisonicola Hayata; pinaceae; anti-aging; HT-1080 cells; cosmetics

1. Introduction

The skin is considered the largest organ in the human body. Skin aging is a complex
process that can be caused by either intrinsic natural aging or external factors [1]. Intrinsic
aging is associated with decreased mitotic activity, increased duration of the cell cycle
and migration time, which can result in poor wound healing and metabolism. These
effects can result in a reduction in dermis thickness, a decrease in the number of fibroblasts,
and impaired functionality of sebaceous and sweat glands. Additionally, they lead to
a reduction in the microvasculature in the skin, which lowers skin vascular reactivity,
temperature regulation, and nutrient supply, resulting in pale or sallow skin [2]. The most
important environmental factors contributing to skin aging are UV radiation and smoking,
which increase the expression of matrix metalloproteinases (MMPs) in the skin [3,4]. MMPs,
are responsible for degrading extracellular matrix proteins, such as collagen, fibronectin,
elastin, and proteoglycans [5]. UV radiation-induced MMP expression plays a crucial
role in the mechanism of photoaging through a series of signaling pathways [6]. MMPs
are regulated by the transcription factor AP-1, which is significantly increased after UV
exposure, resulting in increased mRNA and protein expression of MMPs. Increased level
of MMPs leads to excessive degradation of the extracellular matrix, causing structural
breakdown of the skin, wrinkles, and loss of elasticity, which in turn results in aging [6–8].
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Pinus morrisonicola Hayata is a plant in the family of Pinaceae and the genus of Pinus.
It is an endemic species in Taiwan and is mainly distributed in mountainous areas at
altitudes of 300 to 2000 m, and is a tall evergreen tree with a trunk height of up to 30 m
and a diameter of 1.2 m. The bark is dark gray and has a scale-like cracked appearance.
The leaves are needle-shaped, with five needles in a bundle, and are 4 to 10 cm long [9].
The main components of P. morrisonicola are flavonoids (chrysin, apigenin) [10], stilbenes
(pinosylvin and its derivatives) [11], terpenoids (pinene, terpinene) [12], and steroids (β-
sitosterol) [13]. A previous study has demonstrated that P. morrisonicola extract exhibits
good cell toxicity against GBM8901 glioblastoma cells [14], and the potential for anti-
hypertensive, anti-oxidative, and anti-inflammatory effects [15–17]. Based on its extracts’
significant antioxidant and anti-inflammatory properties and the fact that flavonoids, the
main component of P. morrisonicola, have shown anti-aging effects [18], it is expected to
find potential anti-aging compounds from P. morrisonicola. Therefore, the purpose of this
study is to isolate potential anti-aging compounds from P. morrisonicola.

2. Results
2.1. Bioasasay-Guided Compound Isolated from Pinus morrisonicola Hayata Leaves

The leaves of Pinus morrisonicola Hayata were extracted with ethanol in a 10-times
volume to obtain the crude extract (PML), which was then liquid-liquid partitioned to
obtain the ethyl acetate layer (PMLEF), n-butanol layer (PMLBF), and water layer (PMLWF).
The zymography method was then employed to assess the inhibitory activities of crude
extract and three layers against Pro MMP-9, Pro MMP-2, and MMP-2. At 100 g/mL, PML
showed significant inhibitory effects only on MMP-2 (0.43 ± 0.10), while PMLEF exhibited
the best inhibitory activity against Pro MMP9 (0.47 ± 0.16), Pro MMP2 (0.54 ± 0.17), and
MMP2 (0.16 ± 0.01) (Figure 1). Based on the significant cell activity of PMLEF, further
isolation of its active components will be conducted.
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Figure 1. Activity effects of crude extract and three layers on MMP-2, Pro MMP-2 and Pro MMP-9 in
HT-1080 human fibrosarcoma cell. Crude extraction (PML), Ethyl acetate layer (PMLEF), n-Butanol
layer (PMLBF), and Water layer (PMLWF). p-values were derived from one-way ANOVA with
Student-Newman-Keuls Tests. * p-value < 0.05, ** p-value < 0.01.
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2.2. Bioactive Compound Isolated from the Ethyl Acetate Layer (PMLEF) of Pinus morrisonicola
Hayata Leaves

Ten fractions were obtained through column chromatography from PMLEF, and these
fractions were further screened for activity using HT-1080 cells. The results showed that
Fr.5 (0.62± 0.11), Fr.6 (0.66± 0.20), and Fr.7 (0.62± 0.06) exhibited better inhibitory activity
against Pro MMP-9, while Fr.6 and Fr.7 showed better inhibitory activity against Pro
MMP-2 and MMP-2, with fold of vehicle values of 0.61 ± 0.07,0.31 ± 0.14 and 0.63 ± 0.04,
0.39 ± 0.11, respectively. (Figure 2) In addition, Fr.3 and Fr.4 also showed good inhibitory
effects against Pro MMP-2 and MMP-2, especially with inhibition rates of 0.71 ± 0.10,
0.61 ± 0.21 and 0.72 ± 0.05, 0.67 ± 0.28. (Figure 2) Based on the activity-guided strategy,
the subsequent purification prioritized Fr.3 to Fr.7 as the primary target for separation.
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HT1080 human fibrosarcoma cell, and use EGCG as positive control. (a) PMLEF Fr.2~5 (b) PMLEF
Fr.6~9 indicates significant differences from the vehicle. p-values were derived from one-way ANOVA
with Student-Newman-Keuls Tests. * p-value < 0.05, ** p-value < 0.01.

A total of 20 compounds were isolated from Fr.3~Fr.7 of PMLEF, and the structures
were confirmed through NMR, MS, and literature comparison, as shown in Figure 3.
Among them, PML4, PML18, PML19, and PML20 were determined as new compounds.
The compounds are classified and named as follows (Figure 4): nine flavonoids, including
chrysin (1) [19], apigenin (2) [20], Kaempferol 3-O-(6′′-O-E-coumaroyl)-β-D-glucopyranoside
(3) [21], Kaempferol 3-O-(6′′-O-E-feruloyl)-β-D-glucopyranoside (4) [21], Kaempferol 3-O-
(3′′,6′′-di-O-E-p-coumaroyl)-β-D-glucopyranoside (5) [22], Stenopalustrosides C (6) [22],
Kaempferol 3-O-(5′′-O-Z-p-coumaroyl)-α-L-arabinofuranoside (7) [23], Kaempferol 3-O-(5′′-
O-E-p-coumaroyl)-α-L-arabinofuranoside (8) [23], and Kaempferol 3-O-(5′′-O-E-feruloyl)-
α-L-arabinofuranoside (9) [23]. There are also two lignans, pinoresinol (10) [24] and
matairesinol (11) [25], and one coumarin, 7-hydroxycoumarin (12) [26], as well as one
benzofuran, loliolide (13) [27], and one phenylic acid, benzeneacetic acid (14) [28]. Ad-
ditionally, there are six diterpenoids, including 3-acetoxylabda-8(20),13-diene-15-oic acid
(15) [29], 3-hydroxylabda-8(20),13-diene-15-oic acid (16) [29], 13-labdadien-16, 15-olid-18-
oic acid (17) [30], PML18, PML19, and PML20.
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2.2.1. Structure Analysis of PML18, PML19

Compound 18 was obtained as a colorless oil from Fr. 4 after purification. Its molecular
formula was deduced to be C24H40O7 based on the high-resolution electrospray ionization-
tandem mass spectrometry (HRMS) [M-H]- ion at m/z 439.2698 (cal. 439.2696) in negative
mode, along with the 13C-NMR and DEPT spectra, which indicated a degree of unsatu-
ration of 5 (Figures S2 and S16). The DEPT-NMR spectrum revealed the presence of four
methyl groups, ten methylene groups, five methine groups, and five quaternary carbons
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(Figure S16). One quaternary carbon at δc 81.5 appeared downfield, suggesting its connec-
tion to a hydroxyl group. (Table 1) Two ethoxy groups were identified based on the 1H-1H
COSY spectrum, where two proton signals at δH 1.18 were correlated with those at δH 3.51,
3.77 and δH 3.45, 3.74, respectively (Figures 5A and S3). The proton at δH 4.82, 4.96, which
linked the two ethoxy groups, also showed a downfield shift, likely due to the influence of
the connecting oxygen (Figures 5A and S3). The 13C-NMR spectrum showed a terminal
double bond at δc 107.6, which was revealed by the 1H-13C HSQC spectrum to be correlated
with the protons at δH 4.55, 4.80. (Figure S5, Table 1) A carboxylic acid carbon at δc 183.3
was shown on a 13C-NMR spectrum (Table 1). The degree of unsaturation of 5 suggested
the presence of two six-membered rings and one five-membered ring after subtracting one
carboxylic acid and one double bond, indicating PML 18 is a diterpene structure.

Table 1. 13C-NMR (125 MHz, Chloroform-d), 1H-NMR (500 MHz, Chloroform-d) data for
PML18, 19, 20.

PML18 PML19 PML20
13C-NMR 1H-NMR 13C-NMR 1H-NMR 13C-NMR 1H-NMR

Position δC δH (Multiplet, J in Hz) δC δH (Multiplet, J in Hz) δC δH (Multiplet, J in Hz)

1 39.2 1.07 (1H, m), 1.81 (1H, m) 39.0 1.06 (1H, m), 1.89 (1H, m) 39.0 1.04 (1H, m), 1.08 (1H, m)

2 17.4 1.52 (1H, m), 1.78 (1H, m) 17.2 1.35 (1H, m), 1.74 (1H, m) 20.6 1.45 (1H, m), 1.92 (1H, m)

3 38.2 1.01 (1H, m), 2.12 (1H, m) 38.0 1.03 (1H, m), 2.13 (1H, m) 42.4 1.94 (1H, m), 1.97 (1H, m)

4 44.4 - 44.2 - 44.2 -

5 56.6 1.28 (1H, m) 56.3 1.29 (1H, m) 51.8 1.39 (1H, d, J = 4.3 Hz)

6 26.1 1.83 (1H, m), 1.96 (1H, m) 26.0 1.86 (1H, m), 1.95 (1H, m) 25.5 2.20 (1H, m), 2.52 (1H, m)

7 38.9 1.84 (1H, m), 2.36 (1H, m) 38.6 1.86 (1H, m), 2.37 (1H, m) 127.8 5.68 (1H, d, J = 6.3 Hz)

8 147.9 - 147.7 - 134.6 -

9 56.8 1.51 (1H, m) 56.7 1.52 (1H, m) 56.2 1.87 (1H, m)

10 40.8 - 40.6 - 37.7 -

11 20.1 1.47 (1H, m), 1.83 (1H, m) 19.9 1.50 (1H, m), 1.85 (1H, m) 21.2 1.45 (1H, m), 1.75 (1H, m)

12 33.0 1.44 (1H, m), 1.75 (1H, m) 32.7 1.31 (1H, m), 1.96 (1H, m) 36.4 1.87 (1H, m), 2.07 (1H, m)

13 81.5 - 81.4 - 79.2 -

14 80.5 3.91 (1H, d, J = 4 Hz) 80.5 3.94 (1H, d, J = 4 Hz) 42.5 2.35 (1H, d, J = 10.7 Hz),
2.81 (d, J = 10.7 Hz)

15 109.2 4.96 (1H, d, J = 4 Hz) 109.0 4.96 (1H, d, J = 4 Hz) 175.7 -

16 107.3 4.82 (1H, s) 106.8 4.83 (1H, s) 90.2 4.18 (1H, dd, J = 12.2, 2.8
Hz)

17 62.7 3.51 (1H, m), 3.77 (1H, m) 64.5 3.52 (1H, m), 3.78 (1H, m) 41.4 2.30 (1H, m), 2.40 (1H, m)

18 15.4 1.18 (3H, s) 14.9 1.20 (3H, s) 178.9 -

19 63.3 3.45 (1H, m), 3.74 (1H, m) 63.0 3.47 (1H, m), 3.77 (1H, m) 29.5 1.20 (3H, s)

20 15.4 1.18 (3H, s) 14.9 1.20 (3H, s) 14.4 0.75 (3H, s)

21 107.6 4.55 (1H, brs), 4.80 (1H,
brs) 106.9 4.64 (1H, brs), 4.81 (1H,

brs) - -

22 183.3 - 182.6 - - -

23 29.2 1.20 (3H, s) 29.0 1.22 (3H, s) - -

24 13.0 0.57 (3H, s) 12.7 0.59 (3H, s) - -
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Based on the COSY experiment, the protons at δH 1.83, 1.96 (H-6) and at δH 1.28 (H-5),
δH 1.84, 2.36 (H-7) were found to be correlated; the protons at δH 1.52 (H-2) were correlated
with δH 1.07, 1.81 (H-1) and δH 1.01 (H-3) (Figures 5A and S3); The protons at δH 1.51 (H-9)
was correlation between δH 1.47, 1.83 (H-11); and the proton δH 4.96 (H-15) was correlated
to δH 3.91 (H-14) (Figures 5A and S3). In the HMBC experiment, the methyl group at δH
1.20 was found to be correlated with the carbons at δc 44.4 (C-4), 38.2 (C-3), and 56.6 (C-5)
(Figures 5A and S6); oxymethylene group δH 3.51, 3.77 (H-17) was found to be correlated
with the carbons at δc 15.4, 109.2 (C-15), δH 3.45, 3.74 (H-19) was found to be correlated
with the carbons at δc 15.4,107.3 (C-16); δH 3.91 (H-14) was found to be correlated with
the carbons at δc 81.5 (C-13), 109.2 (C-15), 107.3 (C-16) (Figures 4A and S6). According to
the above NMR analysis, the planar structure of compound 18 is shown in Figure 4. The
methyl group (H-24) on C10 of compound 18 is affected by the isotropic acid on C4 at
high magnetic fields (δH 0.75) (Figure S1). The δH 0.57 determined from NOESY spectra
correlates with δH 1.83 at C-11, indicating that -COOH and H-9 are in the β-orientation
(Figure S4). The proton δH 3.91 of H-14 is correlated with δH 1.44, 1.75 of H-12 and δH 4.96
of H-15, indicating that the hydroxyl group of C-13, C-14 and the ethoxy group of C-15 are
all in the β-direction (Figure S4). Therefore, the three-dimensional structure of compound
18 is shown in Figure 4.

Compounds 19 and 18 are stereoisomers, and their 1H NMR spectra are very similar.
The only difference is that the H-12 (δH 1.31, 1.96) and double bonds (δH 4.64, 4.84) of
compound 19 are slightly different from those of compound 18. The NOESY experiment
found that H-16 (δH 4.83) of compound 19 was related to the double bond but not 18
(Figures 5B, S1, S4 and S7). Therefore, it can be determined that the ethoxy group at C-16 in
PML18 is a β-form, while ethoxy group at C-16 in PML19 (δH 4.83) is an α-form. There-
fore, the structures of compounds 18 and 19 were determined as 15β,16β-diethoxy,13,14-
dihydroxy-labd-8(21)-en-22-oic acid (18) and 15β,16α-diethoxy,13,14-dihydroxy-labd-8(21)-
en-22-oic acid (19).

2.2.2. Structure Analysis of PML20

PML 20 was purified from Fraction 5 and obtained as a colorless oil. HRMS in negative
mode gave [M-H]− m/z of 347.1867 (cal. 347.1859), indicating the molecular formula of
C20H28O5 with a degree of unsaturation of 7 (Figure S18). NMR spectrum showed one
carboxylic acid at δC 178.9 (C-18), one ester group at δC 175.7 (C-15), and one double bond
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signal at δH 5.68, suggesting the presence of four rings (Figures S10 and S11, Table 1). The
1H-NMR, 13C-NMR and DEPT spectra indicated that compound 20 has two methyls, eight
methylene, four methine, and six quaternary carbons. 1H-1H COSY spectrum showed that
δH 2.20 and 2.52 (H-6) were correlated to δH 1.39 (H-5) and 5.68 (H-7); δH 1.87 (H-9) was
correlated to δH 1.45, 1.75 (H-11), and δH 1.87 (H-12), while δH 4.18 (H-16) was correlated
with δH 2.30, 2.40 (H-17) (Figures 5C and S12). HMBC experiment showed that δH 4.18 was
correlated to ester group δC 175.7 (C-15) and quaternary carbon δC 79.2 (C-13), and C-13
was correlated to δH 4.18 (H-16), δH 2.35, 2.81 (H-14), δH 1.87, 2.07 (H-12), and δH 1.45, 1.75
(H-11). Lastly, the quaternary carbon of the double bond (C8, δC 134.6) was correlated with
δH 2.30, 2.40 (H-17) and 1.45 (H-11) (Figure S15).

In terms of stereochemistry, the proton at δH 0.75 (C-20) was relatively upfield, sug-
gesting its axial orientation was influenced by the carboxylic acid at C-18, as it did
not show any correlation with δH 1.20, but with δH 1.45, 1.75 in the NOESY spectrum.
(Figures 5D, S10 and S13) Therefore, it was confirmed that H-20 and -COOH were in the
axial direction (β-orientation), while H-9 was located in the equatorial direction. Further-
more, δH 4.18 was also observed to be in the β-orientation, as it showed correlation with
δH 1.45 and δH 1.87 in the NOESY spectrum (Figures 5D and S13). Thus, the structure of
compound 20 was determined to be Morrisonicolene.

2.3. Anti-Aging Activity Test of Flavonoid Compounds

Due to the potential anti-aging effects of flavonoids, our focus was on screening
the flavonoid compounds in the active fraction for their anti-aging activity [18]. The cell
viability of compounds 3, 4, 5, 7, and 8 was evaluated through MTT assay at a concentration
of 25 µM for 24 h, showing no cytotoxicity. Subsequently, the effects of these flavonoid
compounds 3, 4, 5, 7 and 8 at a concentration of 25 µM on MMP-2, Pro MMP-2, and
Pro MMP-9 were evaluated using zymography. As per the results, as shown in Figure 6,
compounds 3, 4, and 5 exhibited significant inhibitory effects on MMP-2, with inhibition
rates of 0.46 ± 0.05, 0.63 ± 0.08, and 0.60 ± 0.07, respectively. Among them, compound
3 demonstrated a particularly remarkable inhibitory effect. None of the five compounds
exhibited significant inhibitory effects on Pro MMP-2 and Pro MMP-9. (Figure 6) The
inhibitory activity on MMPs indicated the potential anti-aging effect of these compounds.
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3. Discussion

In this study, a total of 20 compounds were isolated and purified from PMLEF by active
fractionation method. Apart from compounds 1 and 2, the remaining constituents were
discovered for the first time in Pinus morrisonicola Hayata [10]. Compounds 8 and 9 have
been identified in other Pinus species [23]. In our study, we revealed flavonoids with sugar
moieties and coumaroyl group or feruloyl group, besides the commonly reported hydroxy
group-containing flavonoids in P. morrisonicola. Additionally, our findings demonstrated the
presence of diterpenes, which is consistent with our previous finding on Pinus taiwanensis
Hayata [31], while previous studies predominantly reported monoterpenes in Pinus species.

Both PML and PMLEF exhibited significant inhibitory effects on MMP-2, Pro MMP-2,
and Pro MMP-9 in the Zymographic assay. However, no compound displayed significant
inhibition of Pro MMP-2 and Pro MMP-9, which contradicted the results obtained from
fractions 3–7 of PMLEF. The purified compounds 3, 4, 5, 7, and 8 obtained from the
activity-guided fractionation did not show comparable effects to PML or PMLEF. Hence,
we speculate that PML possesses multiple compounds working synergistically to inhibit
Pro MMP-2 and Pro MMP-9. In the case of MMP-2, compounds 3, 4, and 5 demonstrated
significant effects (Figure 6); this suggests that glucopyranoside (compounds 3, 4, 5) exhibits
better activity than arabinoside (compounds 7, 8). The result in Figure 6 indicated that both
compounds 7 and 8 mildly inhibited MMP-2 activity, without obvious differences between
them. Considering the structural difference between compounds 7 and 8, which lies in
the cis or trans configuration of the double bond, it can be concluded that the orientation
of the double bond does not affect their inhibitory activity against MMP-2. Furthermore,
compound 3 showed stronger inhibition of MMP-2 compared to compound 4, while the
structural dissimilarity between compounds 3 and 4 lies only in the substitution of the
coumaroyl group with the feruloyl group at the 3′′′ position. Thus, the presence of a
methoxy group at the 3′′′ position is likely to decrease the inhibitory effect on MMP-2
(Figures 4 and 6).

According to the MMPs assay, the EA layer of PML and its fractions showed remark-
able activity on Pro MMP-9, Pro MMP-2 and MMP-2. However, compounds 3, 4 and 5 only
revealed an inhibitory effect on MMP-2. Therefore, we considered the EA layer of PML
or its fraction to have more potential to serve as anti-aging cosmetics owing to the multi-
component effect. In the previous study, chrysin could increase collagen I secretion and
decrease the degradation of collagen I to repair oxidation damage. In addition, chrysin has
been presented to inhibit melanin synthesis by reducing tyrosinase activity and suppressing
the expression of melanogenic proteins [32] (Table 2). Choi et al. indicated that apigenin
reduced the expression of collagenase [33], and Park et al. demonstrated that apigenin
exhibited anti-aging and anti-inflammatory effects through the inhibition of nitric oxide
(NO) production and cytokine expression in RAW264.7 cells and inhibited the expression
of high-affinity IgE receptor and cytokines in RBL-2H3 cells [34] (Table 2). Loliolide reduces
the activity of senescence-associated β-galactosidase (SA-β-gal) and decreases the levels
of p21 protein, exerting an inhibitory effect in human dermal fibroblasts [35] (Table 2).
Moreover, loliolide exhibits significant antioxidant and anti-inflammatory activities, as
well as photoprotective effects, by improving collagen synthesis, reducing intracellular
reactive oxygen species (ROS) levels, and inhibiting apoptosis in UVB-irradiated human
keratinocytes and the expression of matrix metalloproteinases. It also reduces ROS, NO,
lipid peroxidation, and cell death in UVB-irradiated zebrafish [36] (Table 2). Pinoresinol
showed the antioxidant and anti-UV radiation through SPF value, UV absorption capacity,
and the DPPH assay [37] (Table 2). At last, PML4, PML5 and PML11 all demonstrated an-
tioxidants in DPPH radical-scavenging activity [38–40] (Table 2). Based on our research and
previous study, we believe that PML and PMLEF might have the potential to be developed
as versatile cosmetic ingredients.
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Table 2. Main effects of isolation compound from Pinus morrisonicola on cosmeceutical activity.

Number Compound Name Cosmeceutical Activity Reference

PML1 Chrysin Anti-photoaging,
Anti-melanogenesis [32]

PML2 Apigenin Anti-UV radiation, Anti-aging,
[33,34]Anti-allergic, Anti-inflammatory

PML3 Kaempferol 3-O-(6′′-O-E- coumaroyl)-β-D-glucopyranoside Antioxidant, Anti-inflammatory [41]

PML4 Kaempferol 3-O-(6′′-O-E-feruloyl)-β-D-glucopyranoside Antioxidant [38]

PML5 Kaempferol 3-O-(3′′,
6′′-di-O-E-p-coumaroyl)-β-D-glucopyranoside Antioxidant [39]

PML6 Stenopalustrosides C - -

PML7 Kaempferol
3-O-(5′′-O-Z-p-coumaroyl)-α-L-arabinofuranoside - -

PML8 Kaempferol
3-O-(5′′-O-E-p-coumaroyl)-α-L-arabinofuranoside - -

PML9 Kaempferol 3- O-(5′′-O-E-feruloyl)-α-L-arabinofuranoside - -

PML10 Pinoresinol Antioxidant, Anti-UV radiation [37]

PML11 Matairesinol Antioxidant [40]

PML12 7-Hydroxycoumarin - -

PML13 Loliolide Anti-aging, Photoprotective [35,36]

PML14 Benzeneacetic acid - -

PML15 3-Acetoxylabda-8(20),13-diene-15-oic acid - -

PML16 3-Hydroxylabda-8(20),13-diene-15-oic acid - -

PML17 13-Labdadien-16, 15-olid-18-oic acid - -

PML18 15β,16β-Diethoxy,13,14-dihydroxy-labd-8(21)-en-22-oic acid - -

PML19 15β,16α-Diethoxy,13,14-dihydroxy-labd-8(21)-en-22-oic acid - -

PML20 Morrisonicolene - -

4. Materials and Methods
4.1. Chemicals and Reagents

Methanol (ACS Grade), ethyl acetate (ACS Grade), dichloromethane (ACS Grade),
and n-hexane (ACS Grade) were purchased from Mallinckrodt (St. Louis, MO, USA).
n-Butanol (ACS Grade) was purchased from J. T. Baker. Methanol-d4 (CD3OD), acetone-
d6 (CD3COCD3), Dimethyl sulfoxide-d6 ((CD3)2SO) and chloroform-d (CDCl3) were ob-
tained from Merck (Darmstadt, Germany). Penicillin-streptomycin solution (PS), thiazolyl
blue tetrazolium bromide (MTT), and Dulbecco’s Modified Eagle’s Medium-high glucose
(DMEM) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Fetal bovine serum
(FBS) was obtained from SAFC Biosciences (Victoria, Australia).

4.2. Plant Material

Pinus morrisonicola Hayata leaves were collected from Forestry Research Institute in
Taipei, Taiwan (coordinates 25◦1′52′′ N; 121◦30′37′′ E) and identified by Dr. Sheng-You Lu
of Taiwan Forestry Research Institute.

4.3. Extraction and Isolation
4.3.1. Extraction and Partition

A total of 9.8 kg of dried Pinus morrisonicola Hayata leaves were soaked in 10 times
volume of ethanol and extracted three times. The resulting extract was concentrated under
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evaporator to obtain a crude extract (692 g). The crude extract was then partitioned with
water, ethyl acetate, and n-butanol, and obtained an ethyl acetate layer (293 g), a n-butanol
layer (297 g), and a water layer (102 g).

4.3.2. Column Chromatography

A total of 220 g of the ethyl acetate layer were subjected to column chromatography
using a silica gel column. The mobile phases used were n-hexane: ethyl acetate: methanol
ratio from 10:0:0, 9:1:0, 8:2:0, 7:3:0, 5:5:0, 4:6:0, 3:7:0, 0:10:0, and 0:0:10 (v/v). The elution
process yielded 10 fractions.

All compounds were obtained from Fr. 3–6 by normal phase, semi-preparative high-
performance liquid chromatography (HPLC) (HITACHI L-7100, Hitachi, Tokyo, Japan)
coupling with Bischoff Refractive Index (RI) detector for detection. Phenomenex Luna
semi-preparative column (250× 10 mm) (Phenomenex, Torrance, CA, USA) was performed,
and the flow rate was 3 mL/min and eluted with n-hexane, dichloromethane, ethyl acetate
and acetone (Figure 3).

4.3.3. NMR and LC-MS Analysis

Methanol-d4, acetone-d6, dimethyl sulfoxide-d6 and chloroform-d were used as the
deuterated solvent to obtain 1H, 13C, 1H–1H correlated spectroscopy (COSY), 1H–1H
Nuclear Overhauser Effect Spectroscopy (NOESY), heteronuclear single quantum coherence
spectroscopy (HSQC) and heteronuclear multiple-bond correlation spectroscopy (HMBC)
NMR spectra on Bruker AV-300 MHz and AV-500 MHz spectrometers (Bruker, Rheinstetten,
Germany). Orbitrap QE Plus (ESI-MS) (Thermo Fisher Scientific, Waltham, MA, USA) was
used for purified compound molecular weight determination, and data were processed by
Xcalibur (version 2.2).

4.4. Cell Line and Culture

HT-1080 cells (purchased from ATCC number: CCL-121) were maintained in RPMI-164
medium supplemented with 10% FBS, 1% PSQ (2 mM,100 U/mL Penicillin and 100 µg/mL
Streptomycin, L-Glutamine) at 37 ◦C and 5% CO2 in an incubator. Cells were cultured in
RPMI-1640 medium containing 0.5% FBS before use.

4.5. MTT Cell Viability Assay

HT-1080 cells were seeded by 5 × 105 cells/mL per well in 24-well plates for 24 h, and
treated with crude extract or pure compound for another 22 h. Then, cells were cultured
with MTT solution for further 2 h. After that, supernatants were removed and 400 µL
DMSO was added to the plate. Mixtures were transferred to 96-well plate and detected by
ELISA reader (MRX microplate reader, Vodickova, Czech Republic) under the wavelength
of 550 nm. Cell viability was calculated as follows:

(Treating absorbance value)/(Resting absorbance value) × 100% (1)

4.6. Zymography

HT-1080 cells were placed at a density of 5 × 105 cells/mL in 24-well plate and
incubated at 37 ◦C for 24 h to allow attachment. After treatment with samples, the cells
were incubated for an additional 24 h at 37 ◦C. The reactions were then terminated and
cell supernatant was mixed with sample loading dye in a 1:1 volume ratio and thoroughly
mixed. The mixture was then subjected to electrophoresis on a 10% polyacrylamide gel
(containing 1% gelatin) in running buffer at 130 V and 90 mA. The gel was then washed
two times with 2.5% Triton X-100 at room temperature for 30 min each. The gel was then
incubated in reaction buffer at 37 ◦C for 24 h, and further 30 min to immobilize the proteins
on the gel by fixing solution. The gel was then stained uniformly using Brilliant Blue G-
Colloidal Concentrate, and destained using destain solution to optimize the results. Finally,
the gel was photographed using CCD in an imaging analysis system (Vilber Lourmat,
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France), and the image was analyzed using imaging analysis software (Bio-1D version 99).
The brightness of the vehicle was used as the reference value of 1, and the brightness of the
other bands was expressed in relative multiples.

4.7. Statistical Analyses

The data results of this experiment are expressed as Mean ± SD. Statistical analysis
was performed using One Way ANOVA followed by the Student-Newman-Keuls Test. A p
value less than 0.05 indicates a significant difference.

5. Conclusions

This study investigated the biological activities and chemical composition of Pinus
morrisonicola Hayata pine needles. PMLEF exhibited significant inhibitory effects on MMP-
2, Pro MMP-2, and Pro MMP-9. Therefore, we consider Pinus morrisonicola Hayata as
a promising source for the development of cosmetics. In order to further explore the
active components, twenty compounds were isolated from the extract, including three
new compounds 15β-12,13-Dihydroxy-14,15-ethoxy-14,15-epoxylabd-8(20)-en-21-oic acid
(18) 15α-12,13-Dihydroxy-14,15-ethoxy-14,15-epoxylabd-8(20)-en-21-oic acid (19), and Mor-
risonicolene (20). The purified potential active flavonoids showed significant inhibition of
MMP-2, consistent with the results of PML. However, in the case of Pro MMP-2 and Pro
MMP-9, only compound 8 displayed notable inhibition of Pro MMP-2, whereas PMLEF
both showed significant inhibitory effects. This may be attributed to potential synergistic
effects, which require further investigation in future studies.
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