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Abstract: Cysteine redox chemistry is widely used in nature to direct protein assembly, and in
recent years it has inspired chemists to design self-assembling peptides too. In this concise review,
we describe the progress in the field focusing on the recent advancements that make use of Cys
thiol–disulfide redox chemistry to modulate hydrogelation of various peptide classes.
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1. Introduction

Nature makes wide use of cysteine (Cys) thiol reactivity to direct protein assembly
into functional structures [1], especially through its oxidation to disulfide bridges [2].
Other types of thiol reactivity in naturally occurring systems include metal coordination,
for instance in metalloproteins, also towards catalytic function [3,4]. Moreover, sulfur
metabolism deriving from Cys (and methionine, Met) sustains the redox chemistry that
serves as the cellular antioxidant system. It also mediates signaling within and between
cells [5–8]. The plethora of Cys roles in functional proteins and their complexes is too vast
to provide a comprehensive list here; however, it is worth mentioning a few key examples
that are crucial in the biochemistry of living organisms.

Cys thiol oxidation into disulfide bridges is a key step of protein folding that proceeds
especially in the lumen of the endoplasmic reticulum (ER). It is subjected to a quality
control system before proteins can leave the ER, often to be shuttled to the cell surface [9].
There, they are exposed to harsher conditions, and disulfide bridges can exert an important
stabilizing role to preserve their function [10]. Important examples include:

• Hormones, such as insulin, whose function is strongly dependent on correct disulfide
formation [11,12];

• Functional proteins of the immune system, such as antigen-presenting major histo-
compatibility complexes (MHCs) [13] and antibodies [14];

• Natural antimicrobial peptides [15], such as defensins [16,17];
• Respiratory complexes that are key for cell metabolism, such as cytochrome c [18];
• Proteins of the extracellular matrix, such as collagen [19];
• Focal adhesion complexes that link integrins to the cytoskeleton in key processes, such

as cell adhesion and migration [20,21];
• Several toxins and venom peptides [22–24];
• Ubiquitin transfer between catalytic cysteines leading to protein degradation [25,26];
• Enzymes controlling transduction pathways, such as phospodiesterases [27].

Controlling the correct formation of disulfide bonds to produce functional proteins
in vitro is not trivial. Several approaches have been developed to master oxidative folding
of recombinant proteins and peptides [28,29]. It is thus not surprising that bioinspired
approaches that aim to exploit thiol oxidation to disulfides to control peptide assembly
have appeared in the literature in the past in relatively modest numbers. This observation is
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particularly true if we also consider the requirement to attain hydrogels, since crosslinking
can result in precipitation instead. Furthermore, Cys oxidation can proceed further to
oxygen-containing groups, such as sulfenic (RSOH), sulfinic (RSO2H), and sulfonic (RSO3H)
acids (Figure 1a), which have been observed in proteins [30]. However, the most common
oxidation product is the disulfide, which can be readily formed at pH values higher than the
pKa of Cys, thanks to the nucleophilicity of the thiolate anion. Cys has an intrinsic pKa of
8.6, which can vary depending on its position in a peptide or protein sequence, and which
can be calculated by several methods [31]. The resulting variability in pKa values is high
(Figure 1b), reaching values as little as 2.5 and as high as 11.1 in catalytic active sites [32].
Modulation of Cys thiol pKa is indeed an interesting strategy to promote disulfide crosslink
formation even at physiological pH values, to yield hydrogels for biological uses [33]. In
recent years, Cys thiol oxidation to disulfide has been increasingly and successfully applied
as a convenient trigger to modulate hydrogels obtained from peptides and proteins, as
described further below.
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with sulfur oxidation numbers shown next to each species. Reproduced from [30], Copyright © 2023,
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2. Cys Thiol–Disulfide Redox Chemistry to Modulate Peptide Hydrogels
2.1. β-Sheet Peptides for Hydrogels

β-Sheet peptides have become popular building blocks to attain hydrogels. Numerous
natural amyloids form hydrogels based on β-sheets and cross β-structures [34]. A typical
design of β-sheet-forming peptide hydrogelators features alternating hydrophilic and
hydrophobic amino acids, so as to create a polar and an apolar surface on the two opposing
sides of the β-sheets. In this manner, through self-assembly, nanofibrils can arise that
entangle in hydrogel matrices [35,36]. This approach, which originally featured long
peptides [37,38], has also been successfully applied to gradually shorter sequences, which
have the advantage of lower costs and easier preparation [39–44]. Alternatively, inclusion
of D-amino acids into heterochiral sequences can yield hydrogels from hydrophobic amino
acids, so that the polar surface is composed of the peptide backbone, and the apolar surface
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is composed of the sidechains [45–47]. In this manner, peptide sequences as short as two
amino acids provided hydrogels with good cytocompatibility in vitro [48,49]. Lastly, the
use of aromatic N-caps has provided a plethora of hydrogelators from amino acids and
short peptides [50–52].

However, the application of Cys redox chemistry to crosslink β-sheet hydrogelators
has been reported mainly in recent years. Lanreotide, a heterochiral peptide, forms nan-
otubes that gel and that are based on a β-hairpin that is stabilized by an intramolecular
disulfide bridge [53]. Recently, a thiol-rich peptide comprising Cys and penicillamine
residues was demonstrated to form hetero-disulfide bonds to yield amphipathic β-hairpins
that gel (Figure 2). In the presence of a reductant, such as dithiothreitol, the disulfide
bridges are removed, and the consequent conformational switch to a random coil triggers
the gel-to-sol transition [54]. Another recent study showed that the sol-to-gel transition
could be triggered for an antimicrobial cationic heptapeptide featuring a C-terminal Cys. In
this case, gelation occurred upon pH increase to induce disulfide-bond-mediated dimeriza-
tion, leading to the formation of β-sheets [55]. Using a similar approach, Fmoc-Phe-Phe-Cys
dimerization was exploited as a means to convert worm-like micelles into coiled nanohe-
lices that yielded a printable hydrogel [56]. The tetrapeptides Ac-Val-Val-Lys-Cys-NH2
and Ac-Phe-Phe-Lys-Cys-NH2 provide another couple of examples where C-terminal Cys
dimerization via disulfide-bridge crosslinking yielded thixotropic and injectable hydrogels.
These soft materials were envisaged for biomaterial applications, thanks also to their re-
sponsive behavior to glutathione levels [57]. Hauser and collaborators recently described
the tetrapeptide Ac-Ile-Val-Lys-Cys that formed hydrogels, whose stiffness was dramat-
ically increased upon dimerization via disulfide crosslinks in the presence of hydrogen
peroxide as an oxidizing agent [58].
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Figure 2. Schematic representation of a redox-responsive hydrogel that forms upon oxidation of a
random-coil peptide to yield a self-assembling β-hairpin, while gel-to-sol transition is triggered by
disulfide reduction. Reproduced with permission from [54], © 2023 Wiley-VCH GmbH.

Nevertheless, it is worth noting that, despite all these success stories, the mere introduc-
tion of Cys amino acids into self-assembling peptide sequences can affect the supramolecu-
lar and viscoelastic behavior in ways that are not always easy to predict. Indeed, both the
number and the position of Cys residues are important factors in determining such effects
on the resulting assemblies, and on their ability to form macroscopic gels, as recently de-
scribed for the amphipathic sequence EAK16-II [59]. Often, introduction of a Cys residue at
the C-terminal position offers a safe approach to avoid the disruption of the assemblies and
yields end-to-end crosslinking. This concept has been demonstrated on amyloid proteins
such as α-synuclein which yielded self-healing hydrogels and aerogels [60].

The establishment of disulfide bonds does not always enable hydrogelation from
otherwise soluble peptides. The opposite effect can also be attained upon appropriate
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design. For example, disulfide bonds had been previously used to cyclize an amphiphilic
peptide to provide a conformational restraint that prevented hydrogelation and maintained
the peptide in solution. In this case, it was the reduction of the disulfide form to Cys thiols
that produced the linear peptide molecules, which could assemble into a hydrogel based
on β-sheets [61], as shown schematically in Figure 3.
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Dodero and collaborators have recently reported a redox mechanism to modulate
amyloid fibrillation of a Cys-containing tripeptide, namely Phe-Phe-Cys, which was acety-
lated at the N-terminus and amidated at the C-terminus. The supramolecular behavior
of this sequence was determined by the oxidation state of the Cys sidechain thiol group.
In particular, in reductive environments, 60 nm wide nanospheres were formed upon
application of a solvent switch. In contrast, oxidative conditions at the alkaline pH of 8
formed the disulfide-bound dimer that further self-assembled into nanofibrils with a 20 nm
diameter. Furthermore, the conversion was reversible upon the addition of a reducing
agent. Although no hydrogel was reported in this case, this study provided an elegant
example of a nanomorphological switch based on Cys redox chemistry of a minimalis-
tic sequence as a simple as a tripeptide [62] that exploited the amyloid-derived Phe-Phe
self-assembling motif [63].

Another minimalistic system that exploited Cys redox chemistry was recently reported
by Pramanik and collaborators. In this work, an azobenzene moiety was bound to the
dipeptide Lys-Cys, so that oxidation of the C-terminal thiol to disulfide could yield a
photoresponsive, thixotropic, and injectable hydrogel that was envisaged for dye removal
from contaminated waters [64]. Inclusion of azobenzene terminal moieties was successfully
applied also to the oxidized form of glutathione, to yield smart hydrogels that could respond
to a variety of stimuli [65]. Finally, Diaferia et al. reported the case of a heptapeptide
hydrogelator that, upon oxidation of the Cys residue central to the sequence, yielded a
hydrogel with significantly enhanced rigidity, thus offering the possibility to modulate the
viscoelastic properties of the material, depending on the Cys redox chemistry [66]. Finally,
Banerji and co-workers reported a superhydrogelator featuring a cyclodipeptide based on
Leu and Cys that was S-protected with a benzyl moiety. The thermoresponsive system
successfully co-assembled in the presence of the antitumoral drug 5-fluoruracil for its
sustained release, and it demonstrated a remarkable stability over the wide pH range from
6 to 12. The thermoresponsiveness was determined by the breaking of the intermolecular
H-bonding network between amide groups induced by heating, and its re-establishment
upon subsequent cooling [67]. This result is a useful advancement in the field, considering
that the hydrophilic drug was released very rapidly in other cases when co-assembled with
short-peptide molecules used for the same purpose [68].
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2.2. Peptide Amphiphiles

Peptide amphiphiles are another popular class of hydrogelators, whereby an alkyl
chain is bound to the peptide sequence typically through amidation with a fatty acid [69].
They have become a popular class of building blocks used as scaffolds for tissue engineer-
ing [70]. It is thus not too surprising that the chemical conversion of Cys thiol groups
to disulfides and vice versa has also been applied to this class of hydrogelators to mod-
ulate their viscoelastic properties and supramolecular behavior. In particular, the use of
chemically modified poly (Cys) chains featuring disulfide bridges yielded self-assembling
amphiphiles that formed micelles or nanofibrous hydrogels based on β-sheets at the phys-
iological pH 7.4 [71]. These systems have been envisaged for the loading and release of
bioactive compounds, such as drugs.

In another example, the dipeptide sequence Lys-Cys was conjugated at the N-terminus
to a pyrene unit with an alkyl chain linker [72]. In this manner, the peptide amphiphile
molecules could form dimers through disulfide bridges between their C-termini, to yield
stable hydrogels. These soft materials did not dissolve in water and have been envisaged
as carriers of proteins to protect them from chemical environments. This type of vehicle
could thus offer a promising avenue for the formulation of biotherapeutics that are more
sensitive to physico-chemical changes in their surrounding environments, and to ensure
longer-term stability.

2.3. Polypept(o)ides for Hydrogels

Peptoids have attracted great interest as peptide mimics and as building blocks for hy-
drogel biomaterials [73]. They consist of poly(N-substituted glycine), whereby the variable
residues on the nitrogen atom can mimic amino acid sidechains, with the net advantage of
added resistance against protease-mediated hydrolysis [74]. They are typically produced
by solid-phase methods, but also in liquid phase, and their synthesis is continuously being
optimized to the benefit of researchers interested in their use [75]. However, their altered
ability to engage in H-bonds, relative to peptide analogs, can lead to a reduced ability
to form hydrogels [76]. It is thus not surprising that, often, peptoids are combined with
peptides [77], polysaccharides [78,79], or synthetic polymers [80] to stabilize the resulting
soft matter. In particular, inclusion of Cys in polysarcosines has been exploited to crosslink
polypept(o)ides via disulfide bridges to control the morphology of the resulting micellar
assemblies [81].

2.4. Coiled Coils and α-Helical Peptides for Hydrogels

Coiled coils feature repeating units that typically comprise seven amino acids that
are indicated as abcdefg, where usually the a and d residues are hydrophobic, while the e
and g amino acids are charged. In this manner, the heptad motif folds into amphipathic α-
helices, with non-covalent interactions stabilizing their association into parallel clusters that
compose the coils, which result from multiple units of the same monomer or of different
monomers [82]. These building blocks have been widely applied as biomaterials [83]. They
are typically produced as recombinant proteins through biotechnological tools, especially
by means of expression in suitable host cells, such as E. coli strains, although their chemical
synthesis is possible too [84].

Hydrogels can also be attained from the hierarchical organization of coiled coils.
For instance, Montclare and co-workers designed the protein Q that forms α-helices that
assemble into coiled coils that yield thermoresponsive hydrogels [85]. The interior of the
coiled coils is hydrophobic and it was exploited for the loading of curcumin as a drug model,
and its subsequent sustained release over two weeks was studied. Appropriate design
to include charged residues was successfully applied by the same group [86], Dexter and
collaborators [87], and by Chmielewski and coworkers [88], to impart pH-responsiveness to
coiled-coil hydrogels. Strategic inclusion of Cys units can be exploited to guide hierarchical
self-assembly towards hydrogels for tissue engineering, with the possibility to include
bioactive motifs. An example includes the fibronectin-derived RGD, to impart adhesiveness
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to cells [89]. Indeed, the formation of disulfide bridges is a convenient strategy to control
the side-by-side association between the coils, through the inclusion of Cys residues into
defined positions of the helical peptides [90]. In particular, Woolfson and co-workers have
applied this strategy to obtain self-assembling cage-like particles (Figure 4) [91–93].
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Alternatively, Cys thiol oxidation can be exploited to control protein chain extension
and entanglement by including these residues near the N- and C-termini (Figure 5) to
ameliorate the mechanical properties of the resulting hydrogels, as demonstrated by Olsen
and coworkers [94].
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in coiled-coil hydrogels. Reproduced with permission from [94]. Copyright © 2023, American
Chemical Society.

This type of end-to-end crosslinking was also successfully applied to obtain collagen-
like peptide polymers that displayed the additional feature of presenting bioactive motifs
capable of integrin recognition. They could thus be used for platelet adhesion and activation,
for instance, towards thrombotic activity and wound healing [95]. Disulfide engineering
has also been applied to recombinant collagen-like proteins to yield tunable hydrogels
with promising biocompatibility [96]. Finally, α-helical keratin also inspired the use of Cys
thiol–disulfide redox chemistry to modulate the viscoelastic properties of the resulting
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hydrogels. Interestingly, upon oxidation of Cys thiol groups to disulfides, the α-helical
content significantly decreased in favor of β-sheet conformations. The resulting soft matter
demonstrated injectability, a self-healing ability, and good cytocompatibility with fibroblast
cells in vitro [97]. Finally, disulfide crosslinks have also been recently applied to attain
hydrogels from buckwheat protein lysates that featured varying secondary structures and
viscoelastic properties, depending on the applied experimental conditions [98].

3. Conclusions

In conclusion, over the last decade, we have witnessed the increasing application of
Cys thiol–disulfide redox chemistry to modulate the viscoelastic behavior of supramolecu-
lar peptide-based systems (see summary Table 1). The vast majority have been envisaged
for biological use, but also as green materials for environmental remediation. Many of
these systems exploit the formation of disulfide crosslinks to induce gelation. The opposite
is more rare, although it has been applied, for instance, by exploiting the disulfide bond
as a means to impart a conformational constraint that impedes gelation. In other exam-
ples discussed above, disulfide bridges enable an increase in the hydrogel stiffness, thus
offering a tool to modulate the viscoelastic properties of the soft matter, depending on the
intended use. Many of these studies took inspiration from nature’s strategic use of Cys
redox chemistry, and we can envisage that this is just the beginning for the generation of
even more versatile applications of design strategies that are bioinspired. For instance, it
was found that more than 10% of disulfides that are present in the Protein Data Bank are
strained, and thus more reactive; a canonical case occurs between antiparallel β-strands
that are destabilized due to alteration in their hydrogen-bonding pattern [99]. It is reason-
able to think that this type of increased reactivity could be exploited to impart catalytic
activity to a supramolecular system, and in the gel phase. Other forms of supramolecular
assemblies could be catalytically active, especially through the mimicry of the protected
environment of enzyme hydrophobic pockets for reactions to occur. For instance, a cyclic
dipeptide featuring Cys was already demonstrated to display an esterase-mimicry abil-
ity when co-assembled with another cyclic dipeptide featuring His, which is a recurrent
catalytically active amino acid [100]. Cyclodipeptides are indeed emerging as industrially
attractive building blocks for hydrogels [101], which can be cost effective, biocompati-
ble, and biodegradable. Furthermore, this class of biomolecules, despite their chemical
simplicity, can display unexpected bioactivity, such as anti-ageing effects [102,103].

Medicine is certainly a field where this type of materials can find various applications
to improve human health. As building blocks, peptides are well-positioned in terms
of biocompatibility by design, and they can also be produced by green methods and
biotechnological tools to preserve the environment. In particular, responsive formulations
for sustained or ad hoc release of drugs and biotherapeutics are very appealing. For
example, disulfide-linked prodrugs have been successfully applied towards on-demand
drug release [104]. Furthermore, a cystine-linked peptide co-assembled with curcumin
as an antitumoral drug model enabled its release in the presence of glutathione, which is
overexpressed in tumor microenvironments [105]. This type of approach is thus particularly
promising in cancer therapy to minimize chemotherapeutics’ side effects and enable their
targeted delivery and, thus, the use of lower amounts of active principle ingredients.
Furthermore, Cys as an amino acid was recently reported for its ability to disrupt amyloid
formation in a minimalistic model in vitro [106]. This finding gives scope for further
applications to modulate the bioactivity of Cys-containing hydrogels, and to potentially
design amyloid fibrillation inhibitors. In this manner, innovative therapeutic solutions
could be developed in the area of neurodegeneration and beyond.

From a fundamental science point of view, we are witnessing great advances in
supramolecular chemistry, with great efforts worldwide to translate the progress made
in recent decades in molecular machines, into innovative technologies. In this regard, the
interlocking of molecules plays a central role. Interestingly, Cys thiol oxidation has also been
recently applied to attain mechanically interlocked peptides [107], and to obtain catenanes
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from lasso peptides [108], thus adding a further level of topological complexity to peptide-
based supramolecular systems. To conclude, this is just the beginning of the successful
application of Cys redox chemistry to design responsive supramolecular hydrogels and
to tune their viscoelastic properties. It is thus envisaged that these studies advancing the
knowledge in the field provide a solid foundation to enable further progress in various
applications for peptide-based hydrogels.

Table 1. Modulation of hydrogelation using Cys redox chemistry from the examples discussed in this
review.

Peptide Sequence Reduced Cys Oxidized Cys Ref.

GCEPenYPGSCKPenGW 1 Sol Gel [54]
GCEPenYPGSCKPenG 1 Sol Ppt 2 [54]

WGCEPenYPGSCKPenGW 1 Sol Ppt 2 [54]
GCEVYPGSAKPenGW 1 Sol Sol [54]
GAEPenYPGSCKVGW 1 Sol Sol [54]

Ac-RKKWFWC-NH2 Sol Gel [55]
Fmoc-FFC Sol Gel [56]

GGKC-NH2 Sol Sol [57]
AAKC-NH2 Sol Sol [57]
IIKC-NH2 Sol Sol [57]

LLKC-NH2 Sol Sol [57]
VVKC-NH2 Sol Sol [57]
FFKC-NH2 Sol Sol [57]

Ac-GGKC-NH2 Sol Sol [57]
Ac-AAKC-NH2 Sol Sol [57]
Ac-IIKC-NH2 Ppt 2 Ppt 2 [57]

Ac-LLKC-NH2 Sol Sol [57]
Ac-VVKC-NH2 Sol Gel [57]
Ac-FFKC-NH2 Sol Gel [57]

Ac-IVKC Sol Gel [58]
CAEAEAKAKAEAEAKAK-NH2 Gel Gel [59]

CAEAEAKAKAEAEAKAKC-NH2 Gel Gel [59]
α-synuclein (Y136C) Sol Gel [60]

Ac-CFKFEFKFECG-NH2 Gel Sol [61]
Azo-KC-NH2

3 Sol Gel [64]
Azo-GSH dimethyl ester 4 Sol Gel [65]

FYFCFYF-NH2 Gel Gel [66]
hexyl-poly(Cys-SS-CH2CH2COOH) Sol Gel [71]

dodecyl-poly(Cys-SS-CH2CH2COOH) Sol Gel [71]
octadecyl-poly(Cys-SS-CH2CH2COOH) Sol Gel [71]

4-(pyren-1-yl)butanoyl-KC-NH2 Sol Gel [72]
4-(pyren-1-yl)butanoyl-KC Sol Gel [72]
4-(pyren-1-yl)butanoyl-kC Sol Gel [72]
4-(pyren-1-yl)butanoyl-Kc Sol Gel [72]

Collagen-like peptides Sol Gel [95,96]
Keratins Sol Gel [97]

Buckwheat peptides Sol Gel [98]
1 Pen = penicillamine. 2 Ppt = precipitate. 3 Azo = 4-(4-(phenyldiazenyl)phenoxy)butanoyl. 4 Azo = 4-(4-
(phenyldiazenyl)phenoxy)pentanoyl and GSH = glutathione.
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