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Abstract: Red raspberries, which contain a variety of nutrients and phytochemicals that are beneficial
for human health, can be utilized as a raw material in the creation of several supplements. This
research suggests micronized powder of raspberry pomace production. The molecular characteristics
(FTIR), sugar, and biological potential (phenolic compounds and antioxidant activity) of micronized
raspberry powders were investigated. FTIR spectroscopy results revealed spectral changes in the
ranges with maxima at ~1720, 1635, and 1326, as well as intensity changes in practically the entire
spectral range analyzed. The discrepancies clearly indicate that the micronization of the raspberry
byproduct samples cleaved the intramolecular hydrogen bonds in the polysaccharides present in
the samples, thus increasing the respective content of simple saccharides. In comparison to the
control powders, more glucose and fructose were recovered from the micronized samples of the
raspberry powders. The study’s micronized powders were found to contain nine different types of
phenolic compounds, including rutin, elagic acid derivatives, cyanidin-3-sophoroside, cyanidin-3-(2-
glucosylrutinoside), cyanidin-3-rutinoside, pelargonidin-3-rutinoside, and elagic acid derivatives.
Significantly higher concentrations of ellagic acid and ellagic acid derivatives and rutin were found
in the micronized samples than in the control sample. The antioxidant potential assessed by ABTS
and FRAP significantly increased following the micronization procedure.

Keywords: micronization; raspberry pomace; FTIR spectra; phenolic identification; antioxidant activity

1. Introduction

Red raspberries (Rubus idaeus L.) contain a variety of nutrients and phytochemicals
important to human health [1–3]. Raspberry consumption is effective in reducing the
levels of oxidative and inflammatory stress that promote heart morphological changes in
old age, thereby preventing or delaying heart disease [4]. These fruits are unique berries
with a rich nutritional and bioactive composition. They are a source of several essential
micronutrients and dietary fiber [5]. Raspberry fruit is rich in antioxidant compounds,
especially polyphenols [6–8]. The polyphenols present in the fruit are mainly ellagitannins
and anthocyanins. Due to the high content of anthocyanins, these fruits have a red color [5].
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The antioxidant activity of raspberries is directly related to the total amount of phenolic
compounds found in raspberries [9].

Many health benefits of raspberry fruit have been established. An increasing number
of studies suggest that red raspberries may play a role in lowering the risk of metaboli-
cally related chronic diseases [5]. In a study on obese individuals with type 2 diabetes,
the effects of earing raspberries daily were discovered to potentially lower postprandial
hyperglycemia and inflammation in diabetic adults, as well as to have anti-inflammatory
properties [10]. A diet high in raspberries has been demonstrated to improve immunologi-
cal function and phospholipid metabolism in obese patients in trials [11]. Other clinical
trials have demonstrated that including fresh raspberry extract in the diet of old rats lowers
indicators of aging, improves psychomotor coordination and balance, and boosts muscle
tone and endurance [12].

Red raspberries are commonly used for producing dietary supplements because of
their health benefits. They can be purchased in the form of dried or liquid products [13].
Raspberry ketone (4-(4-hydroxyphenyl)-2-butanone) supplements have also gained popu-
larity among customers due to their ability to burn fat and aid in weight loss. Raspberry
ketone is found naturally in raspberry fruit (up to 4.3 mg/kg) [14] and is used as a flavoring
substance [15]. Processing raspberries extends their shelf life and culinary uses, although
the nutritional information among processed forms is limited [16,17]. Raspberries are
often processed into juices. After producing the juices, the pomace is obtained, which is
a recyclable by-product [18]. Fresh pomace is perishable; thus, drying it can significantly
extend its shelf life and increase reusability. Raspberry powders obtained after the de-
hydration of whole fruit or pomace can be added as functional additives (e.g., natural
dyes) to food preparations. In most studies, powders were obtained from drying whole
fruits [19,20]; only a few studies concern the drying of raspberry pomace [21]. Previous
findings suggest that powders obtained by spray-drying raspberry extracts could be used
as natural colorants or antioxidants [22]. Drying studies of whole raspberries have shown
that these techniques affect the physical properties, bioactive compounds, and antioxidant
activity of the resulting powders differently [19]. Previous studies have shown that freeze-
drying causes changes in the physical properties of raspberry pomace [21]. Only a few data
describe the antioxidant properties of processed raspberry byproducts [22,23].

There is no information on micronized forms of raspberry byproducts. Whole rasp-
berry fruit micronization tests were carried out only by fluidized bed jet milling with
drying [24]. Micronization is a grinding process that reduces the particle size of material
from microns down to the nanometer range. This technology has developed rapidly in food
production in recent decades [25–27]. Previous research has proven that the micronization
process can be applied to plant materials, resulting in increased functionality [28,29].

The process of micronization or fine grinding has been applied to other plant materials,
and it has been demonstrated that techniques leading to particle size reduction also cause
changes in powder properties such as viscosity and porosity, and such powders can be
used for a variety of purposes [30].

Additionally, the use of infrared spectroscopy has provided insight into the struc-
ture/interactions or packing of molecules during this and other similar processes. This
information can facilitate the identification of fast molecular markers indicative of such
changes. Notably, there are still rather few publications on the topic available in the
literature, although some authors are beginning to publish findings in this area.

Micronization in our studies was carried out with a ball mill; such studies on raspberry
pomace powders are missing in the available literature. The research hypothesis assumes
that raspberry byproduct micronization with the use of a ball mill results in a significant
reduction in particle size and may have a positive effect on the biochemical properties of the
obtained powders. The obtained powders were analyzed using the technique of ATR/FTIR
spectroscopy (attenuated total reflectance Fourier transform infrared spectroscopy) to
identify any changes that could potentially occur at the molecular level during the process of
micronization. The presented results will contribute to the identification of marker changes
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occurring at the molecular level during the analyzed process of powder micronization.
Furthermore, the presented molecular analysis will facilitate the easy identification of such
changes in subsequent studies pertaining to this and similar types of samples, even if the
micronization process itself is modified.

2. Results
2.1. Particle Size and Color Results of Micronized Byproduct Raspberry Powders

The investigation demonstrated that, as expected, the micronization process with
the utilized ball mill induced considerable changes in the particle size distribution of the
studied samples (Figure 1). The mean particle size (D[4;3]) was equal to 277 µm for the
control sample (CRP). After 10 min (10 MRP) of micronization, this value dropped to
29.8 µm, and after 20 min of micronization (20 MRP) to 11 µm. More than 90% of the
particles (d90) in the control sample (CRP) had dimensions below 578 µm. In the sample
with 10 min of micronization, this parameter was 59.4 µm, and with 20 min of micronization,
only 19.2 µm. The particle sizes for the 50% share (d50) were less than 225 µm for CRP,
25 µm for 10 MRP, and 10.5 µm for 20 MRP.
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Figure 1. Particle size distribution for raspberry byproduct powders. CRP—control (without mi-
cronization) raspberry powder; 10 MRP—raspberry byproduct micronized for 10 min; 20 MRP—
raspberry byproduct micronized for 20 min. Different line colors grouped with the same name mean
single measurements. Different line colors grouped with the same name mean single measurements.

In other studies in which superfine grinding of apple pomace [31] or herbal plant [32]
was used, similarly to our tests, a significant reduction in particle size was observed. In
these tests, the control apple pomace had a d50 particle size below 326 µm, and fine grinding
reduced the d50 particle size parameter below 51.5 µm. In our research, at 10 and 20 min of
micronization (10 MRP; 20 MRP), we obtained much lower dimensions of d50, i.e., 25 and
10.5 µm. This was due to different characteristics of the raw material. Here, we micronized
raspberry pomace after removing the seeds. For cryogrinding buckwheat hulls [33], the
d50 was below 15.1 µm. Micronization of oat husks [34] helped to obtain d50 dimensions
below 15.5 µm.

The color results revealed that the color of the raspberry powders after micronization
differed marginally, but this difference was significant, particularly in the case of the L* and
b* parameters. The control (CRP) sample had the lightest color (L* = 49.2), and the longest
micronized sample (20 MRP) had the darkest color (L* = 48.3) (Figure 2).

There were no significant differences in this parameter between 10 and 20 min of
micronization. For the longest time (20 MRP), the share of red color a* was highest in the
micronized samples, and the share of yellow color b* was highest in the micronized samples
(20 MRP). Previous research [28] has shown that the micronization method affects the color
of spinach stems and leaves. In comparison to the control sample and dry micronization,
wet micronization produced a darker color.
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Figure 2. Appearance and color parameters of raspberry byproduct powders. CRP—control (without
micronization) raspberry powder; 10 MRP—raspberry byproduct micronized for 10 min; 20 MRP—
raspberry byproduct micronized for 20 min. L*—brightness color parameter; a*—redness color
parameter; b*—blueness color parameter.

2.2. FTIR Results of Micronized Byproduct Raspberry Powders

At the next stage of the study, spectroscopic ATR-FTIR measurements were also
performed (Figure 3), which assessed the impact of the sample treatment employed to
facilitate more effective micronization. The results obtained from the spectral analysis in
the infrared range might suggest that changes occur at the molecular level in the chemical
structure of the raspberry samples in question.

Table 1 presents all the characteristic bands present in the obtained spectra and corre-
lates them with specific vibrations of their respective functional groups, based on a detailed
literature review [31–33,35–41] as well as on the careful structural analysis of the molecules
present in our samples.
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Figure 3. FTIR spectra for the analyzed raspberry samples: CRP—control (without micronization)
raspberry powder; 10 MRP—raspberry byproduct micronized for 10 min; 20 MRP—raspberry
byproduct micronized for 20 min. The measurements were performed within the spectral range from
450 to 3700 cm−1. The spectra were registered at room temperature (See Section 3).

Table 1. The location of the maxima of the FTIR absorption bands, with assignments of particular
vibrations to the respective raspberry samples corresponding to the data in Figure 4, registered within
the spectral range of 450–3700 cm−1.

FTIR Type and Origin of Vibrations
Positioning of Band (cm−1)

3312 ν(O-H) in H2O and intra-molecular hydrogen bonding

2914
ν(C-H) in CH2 and CH3 asymmetrical and symmetrical

2845

1723 ν(C=O)

1635 ν(C=C) or/and δ (O-H) adsorbed H2O

1541 ν(C=C)

1407
δ(-OH in plane), δ(CH2), δ(C-H)

1363

1326 δ(C-H) and δ (O-H)

1222 δ(C-H) and asymmetrical bridge oxygen stretching -OH
in-plane bending

1146 asymmetrical in phase ring stretching
and ν(C-O-C) and ν(C-O) and ring stretching modes1017

912/893/866 β-linkage of cellulose
ring breathing

and asymmetrical out of phase stretching
-OH out-of-plane bending and CH2 rocking

813/772

613/580/550/511
Note: ν—stretching vibrations; δ—deformation vibrations
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Figure 4. HPLC chromatogram and sugar content in micronized byproduct raspberry powders
(mg/g). Values in the same column marked with different letters differ significantly (p < 0.05).

The infrared spectra recorded for the analyzed raspberry byproduct contain clear
bands that can be fairly accurately associated with identifiable vibrations of particular
functional groups that are characteristic of ingredients present in products rich in polysac-
charides and similar nutrients [31–33,38].

Starting from the highest wave numbers, we first observed characteristic, wide bands
that are present in the range from approx. 2500 to 3600 cm−1. The maximum of these bands,
located at ~3300 cm−1, is typical of the vibrations of asymmetric bonds induced by the
stretching vibrations of the hydroxy -OH groups, which are characteristic of polysaccharide
molecules that are predominant in the analyzed samples [38,41]. Moreover, the groups
are involved in the formation of hydrogen bonds between smaller units of polysaccharide
molecules. Notably, the band corresponding to the stretching vibrations of the -OH groups
enhances the stretching vibrations of the C-H groups [36,41]. There are two very sharp
bands present in this region, with wave numbers of 2914 and 2848 cm−1, that are particu-
larly characteristic of asymmetric and symmetric stretching vibrations in the CH2 groups
present in this type of food sample. The highest intensity of this particular band, similar to
the band corresponding to the -OH vibrations, could be observed in the sample subjected
to micronization for 20 min, with a lower value registered for the sample micronized for
10 min and the lowest for the control.

Next, we proceed to the analysis of the essential group of vibrations known as the
fingerprint region. The first two key bands corresponded to vibrations with the maxima at
1720 and 1632 cm−1, respectively. The former was associated with the characteristic stretch-
ing vibrations of the carbonyl group ν(C=O) [38] found in the molecules of simple sugars
present in the samples. The latter band with the maximum at approx. 1630 cm−1 [37,38]
corresponded to the deformation vibrations characteristic of water molecules, δ(-OH).
During the micronization process, the relation between the two bands was noticeably
altered. In the control, the respective ratio of the 1632/1720 bands was: 0.94, whereas in the
sample subjected to 20 min., micronization increased to as much as 1.04. This pair of bands
can therefore be treated as an excellent spectroscopic marker for the processing treatment
in question.

Furthermore, the bands observed in the region from 1550 to 900 cm−1 corresponded
to the strong vibrations of the C-O, C-C, C-O-H, and C-O-C groups, various oligomolecules
or polysaccharides [32,33]. Even though the spectra recorded in this region seemed similar
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in terms of shape, two significant changes ought to be noted. Firstly, there was a change
in the shape and increase in the intensity of the band with the maximum at 1540 cm−1,
characteristic of ν(C=C) vibrations. Secondly, we observed changes in terms of the intensity
and, most importantly, the shape of the bands with the maximum at 1326 cm−1, character-
istic of δ(C-H) vibrations and potentially enhanced by δ(O-H) vibrations in the molecules
of poly- and oligosaccharides that were the primary ingredients of the analyzed samples.
While other vibrations in this region retained their original shapes, their intensity was sig-
nificantly increased with the growing duration of the micronization process. On addition,
the intensity of the bands with the maximum at 1412 cm−1 was characteristic of δ(C-H)
vibrations. Next, we observed an increase in intensity of the vibrations with the maxima at
1360, 1222, and 1144 cm−1. These are characteristic of the vibrations of, respectively, δ(-OH
in plane), δ(CH2) groups, and δ(C-H) groups, as well as of the stretching vibrations in the
C-O-C system found in oligo- and polysaccharides present in raspberries. We also observed
increased intensity of the bands, with the main maximum at 1019 cm−1. The bands in
this spectral region are primarily associated with C-O and C-O-C stretching vibrations in
polysaccharide molecules. The highest intensity of these vibrations was observed in the
samples subjected to 20 min processing.

The last spectral “fingerprint” region below 930 cm−1 corresponds primarily to the
crystalline regions and indicates conformational changes occurring in the analyzed material
through possible changes to the β-1,4-glycoside bonds in polysaccharide molecules [38].
As we know, a fingerprint region is a spectral infrared range where each organic compound
produces its unique absorption band. Such bands provide information as to the presence
of various functional groups found in the given analyzed sample. As can be seen in
our results, in the discussed case, the region below 930 cm−1 was characterized by a
relatively low intensity of the bands with the maxima at ~891, 808, 774, or 580 cm−1.
Apart from intensity variations, no particularly significant changes were observed here.
Nonetheless, the changes in vibration intensity observed in this region, particularly in
samples subjected to micronization, clearly indicate effects on the bonds between individual
units in polysaccharide molecules [31–33].

To briefly recapitulate the already discussed results obtained from the spectral FTIR
measurements, the observed discrepancies in terms of band intensity and, in some cases,
slight shifts thereof indicate that the mechanical strength of finely ground material had a
significant impact in the molecular properties of the analyzed samples. Firstly, the method
of micronization employed for the raspberry byproduct samples resulted in cleaving the
intramolecular hydrogen bonds in cellulose, hemicellulose, and polysaccharides predom-
inantly present in the samples in question, likely leading to an increase in their content
of amorphic cellulose and simple saccharides [31–33]. This was evidenced mainly by the
changes in the intensity of bands characteristic of the stretching vibrations of the -OH
group and the altered ratio of the 1720/1632 cm−1 bands, but also by the increased inten-
sity of bands such as those with maxima at 1326, 1222, or 1019 cm−1. As follows from
the literature data, mechanical strength usually cleaves only the amorphic region on the
ordered surface in a crystalline substance [31–33]. Due to the same, the stiff and ordered
structure of cellulose was slightly deteriorated by very fine grinding. All the mentioned
shifts were related to the cleavage of hydrogen bonds present in the polymer chain during
the grinding process. Additional cleavage of bonds and structural changes occurring in
the polysaccharides were also facilitated by the observed increase in sample temperature
during the micronization process. However, the observed spectral changes also clearly
indicated that very fine grinding had no effect on the primary functional groups in cellulose,
and the observed discrepancies were associated mainly with modifications to polysaccha-
ride chains. This observation was further corroborated by the vibrations recorded below
930 cm−1, where the only effects noted related to band intensity. The bands in this region
are characteristic of the vibrations on β-1,4-glycoside bonds, as already discussed above.
As for the registered changes in the intensity of said vibrations, they evidence the same
susceptibility to factors related to the micronization of the tested raspberry samples.
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As evidenced by the above, the use of FTIR spectroscopy allowed us to identify
the bands of marker changes characterizing the micronization process employed. The
presented results may allow for better optimization of the process in the course of future
research with a view of obtaining even higher-quality products.

2.3. Identification of Sugars in Micronized Byproduct Raspberry Powders

A study of the identification of sugars in raspberry powders (Figure 4) showed that,
compared to control samples, micronization, regardless of the time of 10 or 20 min, resulted
in significantly higher amounts of fructose and glucose. The disintegration of cell mem-
branes during physical destruction, but also to some extent heat treatment, which facilitates
the extraction of the solute, can be used to explain changes in the levels of sugars [42].

Additionally, our analysis of the FTIR spectra indicated that it is likely that the polysac-
charides’ intramolecular hydrogen bonds had broken, boosting the proportion of simple
saccharides in the mixture. According to a different study [43], micronizing soybean fibers
resulted in a considerable reduction in the amount of polysaccharides, including cellulose.
Research on the effects of ball mill micronization on the characteristics of polygonatum
powder revealed that the process’ extension led to a much higher concentration of soluble
sugar in these powders [44].

2.4. Identification of Phenolic Compounds in Micronized Byproduct Raspberry Powders

The list of compounds identified in this study using UHPLC-Q-TOFMS/MS is pre-
sented in Table 2, and the results of the content of individual phenolic compounds of
micronized byproduct raspberry powders are shown in Table 3.

Table 2. Identification of the main phenolic compounds of raspberry powders by UHPLC-Q-
TOFMS/MS.

Compound Number Ionization Compound Name MS MS/MS

1 [M − H]− Ellagic acid derivative 571 301, 229
2 [M − H]+ Cyanidin-3-sophoroside 611 449, 287, 269
3 [M − H]+ Cyanidin-3-(2-glucosylrutinoside) 757 611, 287
4 [M − H]+ Cyanidin-3-rutinoside 449 287
5 [M − H]+ Pelargonidin-3-rutinoside 579 271
6 [M − H]− Ellagic acid derivative 934 1235, 934, 633, 315, 301
7 [M − H]− Ellagic acid derivative 934 1235, 934, 633, 315, 301
8 [M − H]− Ellagic acid 301 229
9 [M − H]− Rutin 609 301

Table 3. Content of individual phenolic compounds, total phenolics and antioxidant potential of
micronized byproduct raspberry powders (mg/g).

Compound Number Compound Name CRP 10 MRP 20 MRP

1 Ellagic acid derivative 0.132 ± 0.003 b 0.161 ± 0.010 a 0.166 ± 0.008 a

2 Cyanidin-3-sophoroside 0.354± 0.001 a 0.372 ± 0.014 a 0.347 ± 0.013 a

3 Cyanidin-3-(2-glucosylrutinoside) 0.134 ± 0.001 a 0.142 ± 0.005 a 0.132 ± 0.005 a

4 Cyanidin-3-rutinoside 0.402 ± 0.003 a 0.418 ± 0.015 a 0.385 ± 0.010 b

5 Pelargonidin-3-rutinoside 0.162 ± 0.001 a 0.169 ± 0.006 a 0.157 ± 0.002 b

6 Ellagic acid derivative 0.697 ± 0.024 b 1.034 ± 0.068 a 0.878 ± 0.082 a

7 Ellagic acid derivative 2.164 ± 0.041 b 2.631 ± 0.120 a 2.627 ± 0.128 a

8 Ellagic acid 0.079 ± 0.001 b 0.093 ± 0.004 a 0.098 ± 0.003 a

9 Rutin 0.012 ± 0.001 b 0.013 ± 0.001 a 0.014 ± 0.001 a

Values in the same row marked with different letters differ significantly (p < 0.05). Content of compounds 1, 6,
and 7 is expressed as ellagic acid equivalents, and compounds 2, 3, 4, and 5 as cyaniding-3-glucoside.
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The two main peaks showcased in Figure 5 can be attributed to ellagitannins such
as lambertianin C, sanguiin H6, H10, casuarictin or their isomers. Similar results were
obtained for red and black raspberry extracts [45,46]. Other researchers also confirmed
that dimeric sanguiin H6 and trimeric lamberatianin C are the main ellagotannins in
raspberries [47]. In the black raspberry seed extracts, lamberatianin C is not present [48];
however, in Siberian raspberries, they can be detected within the leave extracts [49].
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5—pelargonidin-3-rutinoside; 6—ellagic acid derivative; 7—ellagic acid derivative; 8—ellagic acid;
9—rutin.



Molecules 2023, 28, 4871 10 of 18

Recorded UV spectrums for these compounds are depicted in Figure 5. We did
not observe parent ions nor daughter ions above m/z 1235; however, according to the
abovementioned team of Ross et al. [45], the peaks can be attributed to ellagotannins.
It can be assumed that ion 934 is a daughter ion derived from the cleavage of complex
ellagotannins [16].

The identification of phenolic compounds carried out showed that in the studied
micronized powders from raspberry byproduct, there are nine different types of such
compounds, including: ellagic acid derivative (1), cyanidin-3-sophoroside, cyanidin-3-(2-
glucosylrutinoside), cyanidin-3-rutinoside, pelargonidin-3-rutinoside, ellagic acid deriva-
tive (6), ellagic acid derivative (7), ellagic acid and rutin. Significantly higher contents of
ellagic acid and ellagic acid derivatives (1, 6, 7) and rutin were detected in micronized
samples (10 and 20 MRP) than in the control (CRP) sample, regardless of micronization
time in the tested range of 10 to 20 min. Longer micronization carried out for 20 min
compared to the sample micronized for 10 min and the control sample reduced the content
of cyanidin-3-rutinoside and pelargonidin-3-rutinoside. The content of the other phenolic
compounds was not significantly different for all samples tested. In our previous stud-
ies [28] on wet and dry micronization of spinach leaves and stems, it was observed that both
dry and wet micronization affected the contents of o-coumaric acid and gallic acid. In addi-
tion, dry micronization of spinach leaves increased the content of 3-hydroxyphenylacetic
acid, 4-hydroxyphenylacetic acid, and p-coumaric acid. Other studies on micronization
of grape pomace and fiber concentrates have explained that micronization increases the
extractability of phenolic compounds, especially catechin and epicatechin [50].

We also found several anthocyanins that were tentatively identified by analyzing
their fragmentation patterns. The presence of those compounds was also detected by
RP-HPLC-DAD (Figure 6).
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Figure 6. HPLC-DAD chromatogram of phenolic compounds of raspberry powder. 1—ellagic
acid derivative; 2—cyanidin-3-sophoroside; 3—cyanidin-3-(2-glucosylrutinoside); 4—cyanidin-3-
rutinoside; 5—pelargonidin-3-rutinoside; 6—ellagic acid derivative; 7—ellagic acid derivative;
8—ellagic acid; 9—rutin.
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Other teams that have analyzed raspberries reported similar anthocyanin profiles [16,45].
The profile of the compounds that we observed in our study demonstrates that other
compounds can be detected in raspberry pomace. We observed derivatives of phenolic
acids and flavonoids, e.g., glucuronides, hexosides, and pentosides. The general profile of
the compounds that are present in the raspberry pomace is comparable with other stud-
ies [16,45,46,49]. However, more flavonoid aglycones were recently identified in raspberry
puree [51], probably due to the fact that most of them are removed when puree/juice is
produced and when pomace is obtained.

2.5. Antioxidant Potential of Micronized Byproduct Raspberry Powders

The results of the total phenolic and antioxidant potential of micronized byproduct
raspberry powders are shown in Table 4.

Table 4. Total phenolics and antioxidant potential of micronized byproduct raspberry powders
(mg/g).

Antioxidant Potential CRP 10 MRP 20 MRP

Total phenolics (mg GAE/g) 19.74 ± 0.055 b 22.79 ± 0.78 a 23.94 ± 0.95 a

ABTS (mmol TE/g) 0.180 ± 0.005 b 0.221 ± 0.004 a 0.216 ± 0.005 a

DPPH (mmol TE/g) 0.241 ± 0.004 a 0.201 ± 0.004 c 0.218 ± 0.007 b

FRAP (mmol Fe2+/g) 0.151 ± 0.003 b 0.181 ± 0.004 a 0.179 ± 0.004 a

ACL (mmol TE/g) 0.183 ± 0.006 a 0.178 ± 0.003 a 0.180 ± 0.007 a

Values in the same row marked with different letters differ significantly (p < 0.05).

After the micronization process, the antioxidant potential measured in our study
by ABTS and FRAP greatly enhanced; there were no significant differences between the
micronization times of 10 and 20 min. The scavenging activity index (ACL) did not signifi-
cantly vary for any of the raspberry powder test samples. However, after the application of
micronization, a considerable drop in the value of the DPPH indicator was seen.

Whole raspberry micronized fruits obtained by fluidized bed jet milling with drying
were characterized by a higher content of anthocyanins and polyphenols as well as by
higher antioxidant properties compared to the powders obtained by convection and spray-
drying methods [24].

Sheng et al. [31] found that grape pomace treated by superfine grinding treatment
had lower total phenolic content and proanthocyanidins values than control samples. The
heat degradation of phenolic compounds was indicated by the authors as the explanation
for the decrease in the concentration of these compounds. In our investigation, microniz-
ing raspberry powder for 10 min did not cause it to reach a temperature of 41 ◦C, and
micronizing it for 20 min did not cause it to reach a temperature of 55 ◦C.

3. Materials and Methods
3.1. Materials

The raw material for the research was raspberries of the Polesie variety from a plan-
tation in the Lublin region. Raspberry pomace as a byproduct during juice production
was obtained with the use of a slow-running press. The research material was obtained
by freeze-drying raspberry pomace. The resulting pomace was molded into dies and
frozen at −30 ◦C under free convection conditions. In this way, frozen cuboidal solids with
dimensions of 2 × 2 × 4 cm were obtained, which were subjected to a freeze-drying process
at a pressure of 20 Pa for 72 h without heating the shelves in the Christ Alpha 2–4 LD plus
device. The obtained lyophilisate was crushed and sieved to separate the seeds. In further
analyses, only pomace without seeds was used.

3.2. Micronization of Raspberry Byproduct Powders

The micronization of freeze-dried raspberry byproduct (without seeds) was carried out
on a ball mill (Pulverisette 6, Fritsh, Idar-Oberstein, Germany) (Figure 7). The Planetary Mill
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with one working station uses one 500 ml grinding bowl that rotates with a transmission
ratio of 1:1.82 relative to the main disk. The primary disk’s rotational speed can be adjusted
from 100 to 650 revolutions per minute. Grinding balls with a diameter of 10 mm made
of hardened, stainless steel, FE-CR, were utilized in the process. Freeze-dried raspberry
pomace powder without seeds (50 g) was placed into a bowl filled with 15 balls and
micronized for 10 or 20 min with a speed of 600 rpm. The process was carried out with
simultaneous monitoring of the particle size and temperature after micronization. It
was observed that 10 min of micronization already significantly reduced the particle size.
Further extension of micronization to 10 min increased the temperature of the raw material
to 41 ◦C, and after 20 min to 55 ◦C. We did not want to cause a large degradation of
the compounds; thus, we finished the process after 20 min. As a result, three samples
were chosen for further study: a control sample of freeze-dried non-micronized raspberry
pomace (CRP), a sample of freeze-dried raspberry pomace micronized for 10 min (10 MRP),
and a sample of freeze-dried raspberry pomace micronized for 20 min (20 MRP).

Molecules 2023, 28, x FOR PEER REVIEW 13 of 19 
 

 

was observed that 10 min of micronization already significantly reduced the particle size. 

Further extension of micronization to 10 min increased the temperature of the raw mate-

rial to 41 °C, and after 20 min to 55 °C. We did not want to cause a large degradation of 

the compounds; thus, we finished the process after 20 min. As a result, three samples were 

chosen for further study: a control sample of freeze-dried non-micronized raspberry pom-

ace (CRP), a sample of freeze-dried raspberry pomace micronized for 10 min (10 MRP), 

and a sample of freeze-dried raspberry pomace micronized for 20 min (20 MRP). 

 

Figure 7. The appearance of the ball mill (Pulverisette 6) used for micronization. 

3.3. Particle Size Analysis  

Analyses of the particle size of control raspberry pomace powder (CRP) and mi-

cronized raspberry powders (10 and 20 MRP) were performed on a Mastersizer 3000 (Mal-

vern Instruments Ltd., Malvern, UK) [28,52]. Measurements were made using a dry 

Figure 7. The appearance of the ball mill (Pulverisette 6) used for micronization.



Molecules 2023, 28, 4871 13 of 18

3.3. Particle Size Analysis

Analyses of the particle size of control raspberry pomace powder (CRP) and mi-
cronized raspberry powders (10 and 20 MRP) were performed on a Mastersizer 3000
(Malvern Instruments Ltd., Malvern, UK) [28,52]. Measurements were made using a dry
dispersion adapter (Aero S). As a result of the measurements, the mean particle dimensions
weighed by volume (D[4;3] (µm)) or surface area D[3;2] (µm) were obtained, and the di-
mensions of the specific surface area (SSA) (m2·kg−1) and the distributions were obtained.
D50 is the particle size in microns at which 50% of the sample is smaller or larger. d10 is the
particle size, with 10% of particles being smaller than this dimension. D90 is the particle
size at which 90% of the particles in the sample are smaller than this value. Particle size
analyses of raspberry powders were performed in three replications.

3.4. Color Measurements

The color measurements of the analyzed samples were determined on the CIE L*a*b*,
scale using the Precise Color Reader (4 Wave CR30-16, Planeta, Tychy, Poland) colorime-
ter [48]. The L* parameter, meaning the brightness of the material, was in the range of 0–100.
The a* color index ranged from −150 to +100, and negative values indicated green and
positive values red. The b* index, determined in the range from −100 to +150, determined
the share of blue color when it was negative and yellow when it was positive.

3.5. Infrared Spectra Measurements

Measurements of the ATR-FTIR spectra registered for the analyzed samples were
performed using an IRSprit spectrometer from Shimatzu (Tokyo, Japan). An ATR (Attenu-
ated Total Reflection) attachment in the form of a Zn Se crystal with adequate geometry
(45◦) was used to facilitate multiple internal reflections of the laser beam. The micronized
powder samples were placed on the crystal. The spectrometer attachment allowed for
a very exact measurement owing to the very precisely controlled contact between the
sample and the crystal, with the possibility of regulating the amount of pressure. The
attachment facilitates considerably more precise measurements in samples of this partic-
ular type. During the measurements, 24 scans were registered for each of the samples.
Subsequently, the software automatically averaged the obtained spectra. Before and after
each measurement, the crystal was spotless using ultrapure solvents. All the solvents
were purchased from Sigma-Aldrich (Poznań, Poland). The spectra were registered within
the range from 450 to 3800 cm−1 at a resolution of 2 cm−1. The spectral measurements
were conducted at the Laboratory of the Department of Biophysics, Molecular Biophysics
Institute, University of Life Sciences in Lublin. All the clearly discernible bands were
associated with corresponding vibrations based on a detailed review of available literature
as well as on information regarding the structure of the molecules present in the analyzed
samples. All the spectra were processed and prepared for publication using Grams AI
software (Version 9.1) from ThermoGalactic Industries (San Jose, CA, USA).

3.6. Sugar Identification

Sugars were extracted from raspberry seeds with hot 85% (v/v) methanol [53,54].
Individual sugars were determined using the HPLC method. Individual sugars were
separated using an HPLC Shimadzu system (Shimadzu, Kyoto, Japan), which consisted
of an SCL-10A controller, an LC-10AD pump, and a RID-10A detector. A portion of 20 µL
of the extract was injected into a Luna Omega 3 µm SUGAR column (4.6 × 250 mm)
(Phenomenex, Torrance, CA, USA). The flow rate of the mobile phase (acetonitrile–water,
25:75, v/v) was 1 mL/min. For calibration, the external standard method was used.

3.7. Phenolic Compounds Extraction

Phenolic compounds were extracted from raspberry byproduct powder, according to
Tomas [51]. Raspberry powder (2 g) was extracted in 10 mL of methanol–water solution
(75:25, v/v) containing 1% of formic acid in an ultrasonic bath for 15 min (Ultron U-509,
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Dywity, Poland). Then, the sample was centrifuged at 2700× g at 4 ◦C for 10 min, the
supernatant was collected, and the sample was adjusted to 25 mL with the solvent used
for extraction.

The content of total phenolic compounds in the extract was determined using Folin–
Ciocalteou’s phenol reagent [55]. The results were expressed as gallic acid equivalents per
gram of raspberry powder.

3.8. HPLC-DAD Analysis of Phenolic Compounds

Polyphenolic compounds were analyzed using RP-HPLC-DAD. Extracts were injected
(1 µL) into the Shimadzu Nexera system that consisted of a degassing unit (DGV-20A
5R), two pumps (LC-30AD), an autosampler (SIL-30AC), column oven, PDA detector
(SPD-M30A) and a controlling unit (CBM-20A). The flow rate was set to 1 mL/mL. Sep-
aration (Kinetex, SHIM-POL, Warsaw, Poland C18 2.6 µm, 100 A, 75 × 3 mm) was mon-
itored at 280 and 520 nm and was conducted under binary gradient conditions. The
eluents used were (A) water:acetonitrile:trifluoroacetic acid (95:5:0.1, v/v/v) and (B) ace-
tonitrile:trifluoroacetic acid (100:0.1, v/v). The gradient was set up for eluent B as follows:
0–10 min: 0–18.8%; 10.5 min: 0%; 12 min: 0%. Peak areas were recorded and compared
with those of ellagic acid and cyaniding-3-glucoside obtained from prepared calibration
curves. Results were expressed as milligrams of the standard per gram of extract per gram
of D.W.

3.9. Identification of Phenolic Compounds

To identify more of the compounds from raspberry pomace, samples were analyzed
using an Exigent microLC 200 system coupled with a TripleTOF 5600+ mass spectrometer
(AB Sciex, Framingham, MA, USA). Electrospray ionization was performed in positive
and negative. The operating MS conditions were as follows: ion spray voltage: 4.5 kV;
turbo spray temperature: 350 ◦C; nebulizer gas (GS1) and curtain gas flow rate: 30 L/min;
heater gas (GS2) flow rate: 35 L/min; declustering potential (DP) and collision energy
(CE) for the full-scan MS: 90 or −90 V and 10 or −10 eV, respectively; and for MS2 mode:
80 or −80 V and 30 or −30 eV, respectively. The TOF MS scan was scanned in the mass
range of 100–1250 m/z. Compounds were separated using an Exigent Halo C18 column
(0.5 × 50 mm, 2.7 µm; AB Sciex). The binary gradient that was employed consisted of 0.1%
(v/v) formic acid in water (eluent A) and 0.1% (v/v) formic acid in acetonitrile (eluent B),
and it was set up from 5 to 90% B within 3 min, maintained to 3.8 min and 5% within 4 min
to finally be maintained to 5 min.

3.10. Antiradical Activity Evaluation

Antiradical activity against ABTS•+ and DPPH• was determined using the methods
described by Re et al. [56] and Amarowicz et al. [57]. The results were expressed as
millimoles of Trolox equivalents (TE) per gram of powder. The method of Benzie and
Strain [58] was used for the determination of ferric-reducing antioxidant power (FRAP).
The results were expressed as mmol Fe2+ per gram of raspberry powder.

3.11. Photochemiluminescence Assay

The scavenging activity of raspberry byproduct powder samples was evaluated by
a photochemiluminescence (PCL-ACL) method [59] in which superoxide radical anions
(O2•−) are generated from luminol. The reactions were carried out using kits from Analytic
Jena, (Jena, Germany). Measurement was performed on a Photochem device with PCLsoft
5.1 software (Analytic Jena). The results were expressed as mmol of Trolox equivalents per
g of raspberry powders.

3.12. Statistical Analysis

Measurements were made in triplicate, means and deviations were calculated, and
other statistical analyses were performed in Statistica 12.0 (StatSoft, Kraków, Poland).
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One-way analysis of variance (ANOVA) was performed, and Tukey’s test was performed
to determine the significance of differences (p < 0.05) between the means. Significantly
different means were marked with different letters (a, b, c, etc.) in the figures and tables.

4. Conclusions

The conducted research proved that the micronization process of freeze-dried rasp-
berry pomace byproducts with the applied ball mill caused significant changes in the
particle size distribution of the tested samples. The use of micronization for 10 and 20 min
allowed for a significant reduction of the d50 particle size from 225 µm (CRP) to 25 µm
(10 MRP) and 10.5 µm (20 MRP).

The micronization procedure significantly increased the amount of recognized sugars,
such as glucose and fructose, in the raspberry powders. Despite a large reduction in particle
size, the amount of these two sugars increased by approximately 12 percent after 10 and
20 min of micronization. There were no significant differences in glucose and fructose
content between these samples.

Significantly higher contents of ellagic acid and ellagic acid derivatives and rutin were
detected in the samples micronized compared to the control sample. Longer micronization
reduced the content of cyanidin-3-rutinoside and pelargonidin-3-rutinoside.

The antioxidant potential of ABTS and FRAP significantly increased after 10 min of
micronization, and extending this process to 20 min did not cause significant changes.
According to these investigations, controlling the raspberry byproduct micronization pro-
cess can result in powders with higher antioxidant potential. As a result, these powders
can be utilized to create innovative functional foods and dietary supplements. Because
of their low humidity, such powders may be stored for an extended period and can be
simply utilized in processing. Furthermore, because of their finely separated particles and
intense color, they can be used as functional food colorants with high antioxidant activity.
In turn, the most significant discrepancies in the registered FTIR spectra were observed
in the bands with the maxima at ~1720, 1635, and 1326. The process of micronization of
raspberry byproduct samples resulted in the cleavage of intramolecular hydrogen bonds in
the polysaccharide molecules present in the samples.

The research findings have significant industrial implications because they can be
used to create innovative micronized raspberry powder that can be used as nutritionally
valuable dietary supplements. The reuse of this pomace as juice-processing byproducts is a
significant environmental issue.

For future research, it will be beneficial to run broader analyses on a larger number of
samples, such as different raspberry varieties, so that correlation relationships or PCA tests
can be conducted. Furthermore, additional investigation of the physical properties of the
powders during storage, as well as in vivo testing, should be carried out.
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