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Abstract: Non-small cell lung cancer (NSCLC) is the most common form of lung cancer. Despite the
existence of various therapeutic options, NSCLC is still a major health concern due to its aggressive
nature and high mutation rate. Consequently, HER3 has been selected as a target protein along
with EGFR because of its limited tyrosine kinase activity and ability to activate PI3/AKT pathway
responsible for therapy failure. We herein used a BioSolveIT suite to identify potent inhibitors of
EGFR and HER3. The schematic process involves screening of databases for constructing compound
library comprising of 903 synthetic compounds (602 for EGFR and 301 for HER3) followed by
pharmacophore modeling. The best docked poses of compounds with the druggable binding site of
respective proteins were selected according to pharmacophore designed by SeeSAR version 12.1.0.
Subsequently, preclinical analysis was performed via an online server SwissADME and potent
inhibitors were selected. Compound 4k and 4m were the most potent inhibitors of EGFR while 7x
effectively inhibited the binding site of HER3. The binding energies of 4k, 4m, and 7x were −7.7,
−6.3 and −5.7 kcal/mol, respectively. Collectively, 4k, 4m and 7x showed favorable interactions with
the most druggable binding sites of their respective proteins. Finally, in silico pre-clinical testing
by SwissADME validated the non-toxic nature of compounds 4k, 4m and 7x providing a promising
treatment option for chemoresistant NSCLC.

Keywords: chemoresistance; epidermal growth factor receptor; HER3; lung cancer; pharmacophore design

1. Introduction

Lung cancer is one of the leading causes of death worldwide [1]. It has become the
frequently diagnosed cancer with a high mortality rate than the other prevalent cancers
(breast, colon, and pancreatic) [2]. Small cell lung carcinoma (SCLC) and non-small cell lung
carcinoma (NSCLC) are the two types of lung cancer. NSCLC accounts for 85% of all lung
cancer cases, while SCLC accounts for 15% [2,3]. NSCLC is the most common malignant
transformation in the world. This type of lung cancer is further divided into adenocarci-
noma, squamous-cell carcinoma, and large-cell carcinoma [2]. NSCLC is a heterogeneous
class of tumor that is related to poor diagnosis. Even though there are many different
therapeutic approaches available, it frequently occurs owing to excessive proliferation and
poor prognosis [4]. Although air pollution and radon exposure also play a part in the
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development of this disease but smoking continues to be the predominant risk factor. The
majority of patients acquire an advanced-stage diagnosis which gives them a very dismal
prognosis due to inadequate screening services and the late onset of symptoms [2,4]. A
shift towards an earlier diagnosis of NSCLC may result from advancements in diagnostic
techniques (such as screening with low-dose computed tomography scans) and increased
public knowledge of the abnormalities [5–9]. It can be diagnosed using a number of meth-
ods such as X-ray, CT scan, and PET imaging, as well as histological analysis of tumor
specimens. To choose the best treatment plan, the cancer must be accurately staged. The
management strategies include surgery, chemotherapy, radiotherapy, adjuvant therapy,
immunotherapy, and targeted treatments (such as anti-angiogenic inhibitors) [4].

Adenocarcinoma and squamous cell carcinoma is considered the major subtypes
of NSCLC, and it accounts for almost 87% of all cases. It has been challenging to treat
the disease for over three years, and the survival rate for lung cancer patients is only
18% [10]. Although multiple approaches like surgery, chemotherapy, immunotherapy, and
other therapies are recommended for NSCLC, it is quite challenging to treat NSCLC [11].
Platinum is recommended to patients in the early stages of chemotherapy, but it is not used
as the standard first-line regimen [12]. In addition, pemetrexed is extensively used to treat
NSCLC and is considered an antifolate. It acts as an antagonist against folates, where folates
donate one carbon unit in the biosynthesis of thymine, purine, and DNA. The disturbance
in DNA causes an interruption in DNA synthesis, which causes the failure in the growth
of tumor cells [13]. Pemetrexed has three steps that cause an inhibitory effect in which
three uptake receptors perform their function effectively, such as proton-coupled folate
receptor, folate receptor-α (FR-α), and reduced folate receptor (RFC) [10]. These receptors
are responsible for modifying the pharmacologically active form of the agent through
the action of folylpolyglutamate synthetase (FPGS) in the cytosol and mitochondria. It
causes the agent to remain in the cell and obtain great affinity than the parent form [10].
It has also shown efficacy as the first-line therapy with platinum and a single agent for
second-line treatment. Despite the high efficacy, it has been expected that NSCLC will
develop chemoresistance that will affect its clinical efficacy after long-term use [10,14].

There are many different types of lung cancer, from very slow-growing and surgically
treatable SCLCs to extremely aggressive and substantially metastatic NSCLCs. Identify-
ing these variations in lung cancer is greatly aided by the discovery of driver oncogene
mutations of tumors. These inherited mutations cause constitutive signaling and promote
oncogenic transformation [4]. NSCLC is due to the mutation in human epidermal growth
factor receptor 3 (HER3) and epidermal growth factor receptor (EGFR). EGFR, a trans-
membrane receptor, is a member of the HER family of receptor tyrosine kinases [15]. The
EGFR primarily exists in a monomeric form that is auto-inhibited, but when a ligand binds
to it, it adopts a conformation that is ready to form either homodimers or heterodimers
with HER2 or other receptors [16]. This ligand-activated EGFR then effectively stimulate
multiple intracellular signaling pathways, resulting in enhanced robustness [17]. Mutant
forms of EGFR that possess oncogenic properties imitate the ligand-induced activation
of the wild-type counterpart. However, despite the enzymatic activity and transforming
ability exhibited by the mutated EGFRs in tumors, their tyrosine phosphorylation status is
notably lower when compared to the ligand-activated wild-type receptors [18]. Evidently,
this seemingly modest yet enduring activity produces intracellular signals that deviate
from the conventional biochemical mechanisms leading to tumorigenesis [19]. On the other
hand, HER3 is the major cause of chemoresistance due to its role in PI3K/AKT signaling
pathway. In addition, HER3 preferably binds with the EGFR as a heterodimeric partner [20].
Heregulin is the sole ligand known to bind HER3; other ligands for EGFR include EGF, TGF,
and EPG. The binding of heregulin induces the heterodimerization of HER3 and HER2,
resulting in the formation of the most potent ErbB receptor complex involved in ontoge-
nesis. Co-expression of HER3 and HER2, but not HER3 and EGFR, acts synergistically
to achieve this effect. Additionally, the inhibition of HER2-HER3 dimerization, which is
thought to be a key step in the promotion of carcinogenesis, can diminish the proliferation
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and migration of transformed cells [21]. The high mutation rate in NSCLC, specifically
in Asians, in the amino acid sequence of EGFR, is one of the causes of treatment failure.
In the active form, the cell-surface tyrosine kinase receptor EGFR can open up pathways
involved in cell growth and proliferation. Through persistent stimulation, EGFR mutations
in malignancies cause unchecked cell division [2,22]. Exons 18–21, which encode a part of
the EGFR kinase domain, are the sites of frequent EGFR mutations that offer vulnerability
to EGFR tyrosine kinase inhibitors. Exon 19 deletions and the L858R point mutation on
exon 21 make up about 90% of these alterations [2,23,24].

Chemoresistance is brought on by the rapid incidence of mutations, which also reduces
the effectiveness of chemotherapy. Platinum compounds-mediated formation of DNA
adducts creates alternations in DNA structure. It causes the activation of the DNA repair
system, which protects the cells from apoptosis. The upregulation in the DNA repair
pathway creates resistance to platinum-based chemotherapeutic agents. It has been found
that NSCLC showed less response to cisplatin due to an increase in DNA repair capacity.
The overexpression of genes linked to the nucleotide excision repair system (NER) causes
cisplatin resistance [25]. Furthermore, the platinum-mediated DNA adduct formation
triggers the DNA damage response, which causes cell arrest and apoptosis. The cisplatin
regulation induces the upregulation of ATM and phosphorylation in the downstream
effectors, such as CHK2 and p53 [26]. The overexpression of anti-apoptotic proteins bcl-2
and bcl-xl induces cell-cycle arrest at the G2/M phase through the deregulation of cell-
cycle linked proteins cdc2 and cdc25C. It has been found to cause resistance to platinum
drugs [26]. As a result, the recovery rate of patients with NSCLC gets reduced. It is
mandatory to target the novel druggable proteins that are not prone to genetic alterations
and thus can help subdue chemoresistance. Therefore, HER3 and EGFR are simultaneously
targeted in this research to treat NSCLC and overcome chemoresistance using BioSolveIT
suite as shown in Figure 1.
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2. Results and Discussion
2.1. Virtual Screening

After generating the analog libraries and selection of target proteins, the compounds
were virtually screened using FlexX functionality of SeeSAR. Before molecular docking
analysis, the proteins were individually uploaded in the protein mode of SeeSAR and bind-
ing sites were automatically defined. For EGFR, the binding site consisted of 33 residues,
and for HER3, 23 residues make up the active site as shown in Figure 2. Afterwards, analog
libraries for both the target proteins were uploaded in the docking mode of SeeSAR and
reference docking was performed to generate 10 poses for each compound in the library. A
total of 5730 and 3972 poses were generated for EGFR and HER3, respectively.
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Figure 2. (A) The visualization of binding site residues of EGFR (33 amino acid residues) which
interact with the inhibitors through various intermolecular interactions. These amino acid residues
are the part of active site backbone and include Phe723, Val726, Tyr727, Val742, Ala743, Ile744, Lys745,
Leu747, Glu758, Ile759, Leu760, Asp761, Glu762, Ala763, Tyr764, Met766, Ala767, Val769, Val774,
Cys775, Arg776, Leu777, Leu778, Leu788, Ile789, Met790, Gln791, Ile853, Thr854, Asp855, Phe856,
Gly857, and Leu858. (B) The visualization of binding site residues of HER3 (23 amino acid residues).
All the residues interact with inhibitors by different intermolecular interactions. These amino acid
residues are component of active site backbone and include Pro772, Val767, Lys706, Lys694, Gln769,
Tyr770, Thr703, Thr768, Leu696, Val700, Leu771, Arg691, Leu696, Ser762, Glu689, Thr688, Gly699,
His705, Leu696, Ser762, Leu766, Thr688, Gln765, and Pro760.
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2.2. Pharmacophore Modeling

All the docked poses, which were obtained after blind docking for both proteins, were
screened to obtain the best suitable poses for pharmacophore modeling. The screening crite-
ria for the best suitable poses was based on estimated affinities, torsion angles and clashes.
Consequently, 14 well-aligned poses were chosen to generate the ligand-based pharma-
cophore for EGFR while 23 best-posed compounds were selected for the construction of
ligand-based pharmacophore for HER3 as depicted in Figure 3.
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Figure 3. Ligand-based pharmacophore design for screening the best-docked poses of inhibitors
of target proteins. (A) Pharmacophore of EGFR is formed by 14 ligands that contain aromatic
rings, nitrogen and oxygen atoms interacting with the amino acid residues of EGFR active site.
(B) Pharmacophore of HER3 is composed of 23 ligands that perfectly align and interacts with the
active site residues via similar groups. These include aromatic rings, any oxygen and any nitrogen.

2.3. ReCore and Molecular Editing

One of the most critical steps in drug discovery process is the identification of hits
which are the molecules having a high probability of interaction with the biological tar-
get [27,28]. In current research, the hits were screened by ligand-based pharmacophore
and some specific parameters such as estimated affinities, torsions, clashes, and optibrium
properties. Therefore, 98 and 33 hits were selected that optimally inhibit EGFR and HER3,
respectively, as shown in Figure 4.

The optimization of hits is also critical for discovering a lead inhibitor. Therefore, some
of the best compounds were optimized by using the ReCore functionality and molecular
editor mode of SeeSAR. 117 novel compounds for EGFR and 123 novel compounds for
HER3 were generated by editing the structures of best-selected hits. These were docked
by standard docking through FlexX functionality of SeeSAR version 12.1.0 to generate
1170 and 1570 poses, respectively. These poses were screened to obtain 73 (EGFR) and
66 (HER3) compounds for further analysis. Additionally, some of the screened compounds
were subsequently analyzed using the inspirator mode of SeeSAR in order to identify
new scaffolds. A particular fragment of each compound was chosen and substituted
with suitable fragments produced from the fragment library utilizing ReCore. Resultantly,
110 new compounds were obtained and docked against EGFR that generated 1068 poses.
Similarly, 120 new compounds were docked against HER3 that generated 1098 poses. These
poses were screened on the basis of estimated affinities, torsions, and clashes resulting in
the selection of 49 (Table S2) and 43 compounds (Table S4), respectively.
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2.4. Pre-Clinical Testing

SwissADME, an online software for pharmacokinetic analysis, was used for the se-
lection of safe and druggable inhibitors for both target proteins. For a druggable inhibitor,
certain criteria should be fulfilled; TPSA (topological polar surface area) should be greater
than 20 Å2 and less than 130 Å2 [29], rotatable bonds less than 9, and molecular weight
should range from 150 g/mol to 500 g/mol [30]. In order to prevent skin permeation, the
log Kp value should be negative. The negative value of log Kp is directly related to a
decrease in skin permeability [30]. The synthetic accessibility value, which ranges from 1 to
10, should be lower to ensure that the compound is druggable. This value predicts the ease
with which a compound can be synthesized in vitro, with higher values indicating greater
difficulty [30,31].
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In case of EGFR, the pharmacokinetic analysis of 122 novel compounds (73 compounds
from molecular editing and 49 compounds from inspirator) was carried out to obtain a lead
inhibitor, which follows all the druggable criteria. According to these criteria, 4k and 4m
were found to follow all the druggable criteria.

In HER3, the pharmacokinetic analysis of 109 novel compounds (66 from molecular
editing and 43 compounds from inspirator) was used to obtain the lead inhibitor that follow
all the druggable criteria. In this case, 7x was identified as the lead molecule.

Compound 4k namely 1-((7-((2R,4S)-4-hydroxytetrahydrofuran-2-yl)-6-methyl-7H-
pyrrolo[2,3-d]pyrimidin-4-yl)methyl)azepan-1-ium has a molecular weight of 331.43 g/mol
with 24 heavy atoms, 9 aromatic heavy atoms, 3 rotatable bonds, 4 hydrogen bond acceptors
and 2 hydrogen bond donors. In addition, the TPSA, molar refractivity, consensus log P,
and log Kp values are 64.61 Å2, 97.78 m3mol−1, 0.88, and −7.24 cm/s, respectively. This
compound is non-toxic as it does not inhibit any cytochrome P450 (CYP) and has high
gastrointestinal absorption. Moreover, 4k follows all the druggable rules, exhibits no Brenk
or PAINS alerts (Table 1).

Table 1. Pharmacokinetic analysis of potent inhibitors (4k and 4m) of EGFR and (7x) of HER3.

Attributes 4k 4m 7x

Structure
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Molecular weight (g/mol) 331.43 250.36 261.12

Number of heavy atoms 24 18 14
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heavy atoms 9 5 5

Fraction C(sp3) 0.67 0.79 0.50

Number of rotatable bonds 3 5 5

Number of H-bond
acceptors 4 2 2

Number of H-bond donors 2 1 3

Molar refractivity
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Class Soluble Soluble Soluble

GI absorption High High High

Blood-brain barrier No No No

P-gp substrate Yes Yes No

CYP1A2 inhibitor No No No

CYP2C19 inhibitor No No No

CYP2C9 inhibitor No No No
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Table 1. Cont.

Attributes 4k 4m 7x

CYP2D6 inhibitor No No No

CYP3A4 inhibitor No No No

Log Kp (cm/s) −7.24 −6.39 −6.71

Lipinski Yes; 0 violation Yes; 0 violation Yes; 0 violation

Ghose Yes Yes Yes

Veber Yes Yes Yes

Egan Yes Yes Yes

Muegge Yes Yes Yes

Bioavailability score 0.55 0.55 0.55

PAINS 0 alert 0 alert 0 alert

Brenk 0 alert 0 alert 0 alert

Leadlikeness Yes Yes Yes

Synthetic accessibility 3.88 3.39 2.77

Compound 4m namely (1S,3R)-1-(cyclopentylmethyl)-3-((4-methoxy-1H-pyrazol-1-
yl)methyl)azetidin-1-ium follows all the druggable rules and has a molecular weight of
250.36 g/mol. In addition, it is safe with no toxicity, and zero PAINS and Brenk alerts.
Moreover, 4m contains 18 heavy atoms, 5 aromatic heavy atoms, 5 rotatable bonds, 2 hydro-
gen bond acceptors and 1 hydrogen bond donors. The TPSA, molar refractivity, consensus
log P, and log Kp values are 31.49 Å2, 76.79 m3mol−1, 1.02, and −6.39 cm/s, respectively.
The solubility and gastrointestinal absorption are high with no permeation to blood-brain
barrier as shown in Table 1.

Compound 7x namely (S)-2-((5-bromo-1H-pyrazol-3-yl)amino)-N-ethylpropanamide
follows all the druggable rules showing molecular weight of 261.12 g/mol, 14 heavy atoms,
5 aro-matic heavy atoms, 5 rotatable bonds, 2 number of H-bond acceptors and 3 donors.
In addition, 7x exhibits zero toxicity, PAINS and Brenk alerts while showing good solubility.
It also follows Lipinski’s rule and shows lead-likeness properties (Table 1).

The binding energies of the best-selected inhibitors of EGFR and HER3 are represented
in Table 2.

Table 2. Binding energies of best inhibitors having optimum pharmacokinetic properties.

Best Selected Inhibitors Binding Energies ((kcal/mol)

4k −7.7

4m −6.3

7x −5.7

2.5. Protein-Ligand Interactions

Discovery Studio plays a vital role in providing a visual representation of the inter-
actions that occur between a ligand and the corresponding target protein at the molecu-
lar level.

In case of EGFR, 4k interacts with the binding site residues by forming conventional
hydrogen bonds, carbon hydrogen bonds, alkyl, π-alkyl and π-sigma bond. A conventional
hydrogen bond is formed by the interaction of amino group of Lys745 and the N5 of 4k with
a bond distance of 2.87 Å. The other conventional hydrogen bond is developed between
the oxygen of Asp855 and H49 of 4k (1.88 Å). The H50 of the 4k interacts with the Thr854
and Asp855 via carbon hydrogen bond interactions. In addition, alkyl bond interactions
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are formed by Lys745, Met766, Leu777, and Leu788 with C12 and tetrahydrofuran ring of
4k. Leu858 develops π-alkyl interactions with the 7H-pyrrolo[2,3-d]pyrimidine ring of 4k,
whereas, Leu788 forms a π-sigma bond with the pyrrole ring of 4k as depicted in Figure 5.
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Figure 5. The illustration of intermolecular interactions between 4k (dark pink color) and binding site
residues of EGFR (light blue color), in both three-dimensional (A) and two-dimensional (B) formats.
The different types of interactions are shown through dotted lines of various colors. The conventional
hydrogen bonds are depicted with green dotted lines, while alkyl and π-alkyl interactions are shown
with pink dotted lines. The light blue lines represent carbon hydrogen bonds, whereas, the purple
dotted line depicts π-sigma interaction.

Similarly, 4m interacts with the active pocket residues of EGFR by developing salt
bridge, carbon hydrogen bond, alkyl and π-alkyl interactions. Asp855 forms a salt bridge
with the H26 of 4m having a bond distance of 2.00 Å. The carbon hydrogen bond is formed
by the interaction of H49 of 4m with Thr854 of target protein (2.88 Å). In addition, the
cyclopentyl group of 4m develops alkyl interactions with the Met766, Cys775, Leu777,
and Met790, which are present at a distance of 4.93, 5.28, 4.48 and 4.89 Å from the ligand,
respectively. Moreover, two π-alkyl interactions are formed by C18 of 4m with Phe723
(5.14 Å) and Leu747 (4.28 Å) of EGFR. Leu858 of the target protein also develops a π-alkyl
interaction with the heterocyclic ring of 4m as represented in Figure 6.
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Figure 6. The illustration of intermolecular interactions between 4m and EGFR binding site residues
in both three-dimensional (A) and two-dimensional (B) form. Compound 4m is depicted as a purple
color, while the binding site residues are represented by light blue color. The different types of
interactions are portrayed using dotted lines of various colors. The carbon hydrogen bond is depicted
with light blue dotted lines, whereas, pink dotted lines are used to show alkyl and π-alkyl interactions.
The salt bridge is elucidated by orange dotted lines.
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In case of HER3, 7x established various interactions with the amino acid residues
such as conventional hydrogen bond, π-alkyl and alkyl (Figure 7). The conventional
hydrogen bonding has been observed between the NH group of heterocyclic compound and
Asp833(1.90 Å) and between Br and Crys721 (3.64 Å, 4.12 Å). In addition, the conventional
hydrogen bonding has been found between NH group and Arg819 (4.57 Å, 1.91 Å). On the
other hand, π-alkyl bonding has been identified between the heterocyclic ring and Val704
(5.31 Å) and Leu822 (3.64 Å).
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Figure 7. 3D (A) and 2D (B) binding mode interactions of 7x and HER3 binding site residues. The
intermolecular interactions between the ligand and amino acid residues can be clearly visualized.
Light green color shows the binding site residues, while red color represents compound 7x. The
different interactions have been shown in varying colors using dotted lines. The green color shows
the hydrogen conventional bond while purple color illustrates π-alkyl bond.

The methyl group, hydroxyl group, pyrimidine and furan rings present in the 4k are
the major contributors to the interaction with the EGFR active site. The methyl group
donates its electrons and stabilizes the ligand; likewisely, furan is quite stable and con-
tribute to the overall stability of the ligand. The pyrazole, cyclopentane, and methoxy
ring are the core groups in 4m, which interact with the active site residues of EGFR. The
presence of pyrazole is an indication of the biological activity of 4m because a number
of compounds having anti-cancer activities possess pyrazole ring. Both these inhibitors
have comparable docking score of −7.7 kcal/mol (4k) and −6.3 kcal/mol (4m) with the
SD−06 (−8.0 kcal/mol) and Amgen 16 (−7.7 kcal/mol) that are also EGFR inhibitors [32].
Moreover, 4k and 4m do not show any intermolecular interaction with the amino acids at
797 (serine), 844 (valine), 948 (arginine) in the active site responsible for ineffectiveness of
EGFR inhibitors because these sites are more prone to mutations [33]. In addition, methyl
group, pyrazole ring and bromine are crucial in the interaction of 7x with the HER3 active
pocket. The pyrazole ring is capable of forming conventional hydrogen bond with the
amino acid residue. The presence of electronegative atom (bromine) substitution at the
pyrazole ring also facilitated another hydrogen bond formation. Methyl group is highly
stable and is involved in the hydrophobic interactions.

3. Materials and Methods
3.1. Selection of Target Protein

To perform the docking analysis, the proteins were selected from the Research Col-
laboratory for Structural Bioinformatics (RCSB) protein data bank (PDB) (https://www.
rcsb.org/ accessed on 14 January 2022), a database established by Walter Hamilton for
protein selection with three-dimensional structures and other information required for

https://www.rcsb.org/
https://www.rcsb.org/
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experimental studies. RCSB PDB is a data center in US that maintains stores and validates
the experimentally determined 3D structures of proteins [34]. The proteins selected in
this study were HER3 (4RIY) and EGFR (5ZWJ) and their selection was based on high
enrichment value and resolution. The selected 3D structure of EGFR (PDB id: 5ZWJ)
consisted of a chain A of 355 amino acid residues with a resolution of 2.90 Å [33], whereas,
the 3D structure of HER3 (PDB id: 4RIY) contains two chains namely A and C which are
cumulatively made up of 326 amino acid residues. The resolution of HER3 was 2.98 Å [35].

3.2. Construction of Compound Library

Several studies from literature and databases helped us in the identification of in-
hibitors of HER3 and EGFR proteins. The reported inhibitors of the targeted proteins
were determined from the published literatures and their analogs were obtained from
the chemical structures databases namely ZINC (https://zinc.docking.org/ accessed
on 27 January 2022) [36], PubChem (https://pubchem.ncbi.nlm.nih.gov/ accessed on
18 February 2022) [37] and NPC browser (https://tripod.nih.gov/?p=182 accessed on
11 March 2022) [38]. Zinc online database was constructed by the Irwin and Shoichet
Laboratories in the Department of Pharmaceutical Chemistry at the University of Cali-
fornia, San Francisco (UCSF) [39]; whereas, PubChem is based in National Institute of
Health (NIH) since 2004 [37]. In addition, using the BioSolveIT tool, InfiniSee version 4.3.0
(https://www.biosolveit.de/infiniSee accessed on 21 February 2022), 2-dimensional (2D)
similarity search of the reported inhibitors was performed. BioSolveIT is a custom scientific
software development company based in Augustin, Germany. One of its softwares, In-
finiSee contains the in-built chemical space libraries that determine the compound libraries
for scaffold hops and evaluates the molecules on the basis of chemistry and pharmacophore-
based designing [40]. In this case, one specific inhibitor was uploaded in the software and
different databases, eMolecules, Freedom space, REAL space, GalaXi, CHEMriya, Virtual
space and CoLibri were marked to obtain the maximum analogs of the inhibitor [41].

To obtain the 2D structures of similar compounds for EGFR, gefitinib was used as a
query in infiniSee, which is the selected reported inhibitor for EGFR. Similarly, the similar
structures for HER3 were obtained by providing the 2D structure of lapatinib as an input to
infiniSee. All the settings were kept are default. As a result, the analog library of EGFR was
built containing 602 compounds (Table S1) while HER3 library consists of 301 compounds
(Table S3).

3.3. Virtual Screening

In order to virtually screen the compound library, blind molecular docking was
performed by using SeeSAR version 12.1.0 (www.biosolveit.de/SeeSAR accessed on 9
August 2022), a BioSolveIT tool that has several modes, such as protein mode, analyzer
mode, binding site mode, molecular editor mode, inspirator mode, and docking mode [42].
All these modes were used to perform docking of a library of compounds and determine
the ligand-protein binding based on affinities, torsion angles and other parameters. The
PDB ID of each targeted protein was uploaded in the protein mode and its co-crystalline
structure and chain were analyzed for the docking studies. The particular structure was
shifted to the binding site mode and binding site was identified. After binding site selection,
the ligands were uploaded in the docking mode and standard docking was performed. The
results showed multiple poses of each ligand which were subsequently screened based
on their affinities and torsion angles. In addition to torsion angles, clashes and other
optibrium properties such as log P, log S, molecular weight, and blood brain barrier were
also investigated for each ligand for further screening [43].

3.4. Pharmacophore Modeling

Ligand based pharmacophore modeling was done in the docking mode of SeeSAR
version 12.1.0 after blind docking [44,45]. It represents the features for ligand interactions
with biological target [46]. This mode was used for docking of ligand where standard dock-

https://zinc.docking.org/
https://pubchem.ncbi.nlm.nih.gov/
https://tripod.nih.gov/?p=182
https://www.biosolveit.de/infiniSee
www.biosolveit.de/SeeSAR
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ing was performed and different poses were generated. The poses showed the rotational
conformation of various ligands that interacted with the active site of protein. The ligand
conformations further exhibited maximum interactions between protein and ligand poses.
The poses with maximum interactions were filtered for pharmacophore modelling.

3.5. ReCore and Molecular Editing

The inspirator mode of SeeSAR version 12.1.0 contains the built-in tool ‘ReCore’ that
utilizes the fragment based lead discovery for fragment linking and core replacement.
ReCore defines the bonds and interactions through matching them with new fragment. It
has the other option of hits that uses the databases like PDB, CSD and ZINC for providing
fragments [47]. ReCore was used to replace the unfavorable fragments with favorable
fragments based on the parameter of torsions, optibrium properties and torsion angles. On
the other hand, molecule editing is the other mode of SeeSAR version 12.1.0 and it was
used for removing the torsions, interclashes of molecules.

3.6. Molecular Docking

FlexX functionality of SeeSAR version 12.1.0 was used for the standard molecular
docking of novel compounds generated via ReCore and molecular editor mode of SeeSAR.
By using the incremental construction algorithm, SeeSAR generates 10 best aligned poses
for each of the novel compound. The best pose was selected on the basis of estimated
affinity, torsion angles and optibrium properties [48,49].

3.7. ADME Analysis

The ADME analysis of ligands were conducted through SwissADME and analyzer
mode of SeeSAR version 12.1.0. Initially, the selected molecules were transported to
analyzer mode to determine their ADME properties in complex with protein target [50]. In
other process, the online tool SwissADME, formed by Molecular Modeling Group of Swiss
Institute of Bioinformatics, Switzerland, was used to apprehend safety and efficiency of
ligands as the drug candidates. The SMILES was exported to SwissADME and results were
interpreted in tabular and graphical form [30]. This further predicted the protein binding,
CYP450 inhibition, blood-brain barrier permeability, solubility, lipophilicity, lead-likeness
and drug-likeness [51].

3.8. Ligand Interactions

After performing the pharmacokinetics, ligand interactions of potent inhibitors were
evaluated by BIOVIA discovery studio 2021 molecular visualization software made by
Dassault system, a France based software company [52]. It helps in showing the 2D and 3D
structures of complexes. The intermolecular interactions, such as π-alkyl bonds, hydrogen
bonds, and unfavorable interactions were indicated by dotted lines upon visualization in
2D and 3D formats [53,54].

4. Conclusions

Non-small cell lung cancer (NSCLC) is a lethal disease and a major health issue world-
wide due to its aggressive nature and high mutation rate, particularly in the epidermal
growth factor receptor (EGFR). The identification of EGFR and HER3 as potential therapeu-
tic targets for NSCLC has opened up new avenues for its treatment. This study employed a
comprehensive computational approach to screen compound libraries for potent inhibitors
of EGFR and HER3. The results identified 4k, 4m, and 7x as the most effective inhibitors of
EGFR and HER3. These inhibitors demonstrated favorable interactions with the druggable
binding sites of their respective proteins and exhibited non-toxic properties in preclinical
testing. In addition, these inhibitors do not cross the blood-brain barrier and do not per-
meate the skin. Therefore, the identified inhibitors present a promising treatment option
for NSCLC with EGFR mutations, paving the way for further development and potential
clinical applications.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules28124850/s1, Table S1: EFGR reported inhibitors; Table S2: EGFR
inhibiting compounds generated from molecular editor and inspirator mode of SeeSAR via adding
and replacing atoms and group of atoms. Table S3: HER3 reported inhibitors; Table S4: HER3
inhibiting compounds generated from molecular editor and inspirator mode of SeeSAR via adding
and replacing atoms and group of atoms.
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