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Abstract: Staphylococci are one of the most common causes of biofilm-related infections. Such
infections are hard to treat with conventional antimicrobials, which often lead to bacterial resistance,
thus being associated with higher mortality rates while imposing a heavy economic burden on
the healthcare system. Investigating antibiofilm strategies is an area of interest in the fight against
biofilm-associated infections. Previously, a cell-free supernatant from marine-sponge-associated
Enterobacter sp. inhibited staphylococcal biofilm formation and dissociated the mature biofilm.
This study aimed to identify the chemical components responsible for the antibiofilm activity of
Enterobacter sp. Scanning electron microscopy confirmed that the aqueous extract at the concentration
of 32 µg/mL could dissociate the mature biofilm. Liquid chromatography coupled with high-
resolution mass spectrometry revealed seven potential compounds in the aqueous extract, including
alkaloids, macrolides, steroids, and triterpenes. This study also suggests a possible mode of action
on staphylococcal biofilms and supports the potential of sponge-derived Enterobacter as a source of
antibiofilm compounds.

Keywords: antibiofilm; biofilm infections; Enterobacter; Porifera; Staphylococcus aureus

1. Introduction

Biofilm-associated infections are a significant concern in medical settings, with evi-
dence suggesting they are involved in approximately 75% of human microbial infections,
particularly when medical devices such as catheters and orthopedic implants are involved.
This significantly increases mortality rates and imposes an economic burden on healthcare
systems [1]. Conventional approaches using antimicrobials may not be efficient in clearing
chronic biofilm infections and, in many cases, promote the emergence of resistance, which
is usually observed for staphylococci, one of the most common causes of biofilm-related
infections [2]. Currently, the most efficient means of eradicating biofilms remains the
surgical removal of the infected device or debridement of the wound or bone, but this may
lead to other complications [3]. Thus, new approaches are urgently needed to prevent and
inhibit bacterial adhesion and biofilm formation mechanisms [4].
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Antibiofilm strategies are mainly of two types: those involving the inhibition or pre-
vention of new biofilm formation and those based on the dispersal or eradication of existing
biofilms [5]. For instance, the interest in describing the antibiofilm activity of quorum-
quenching molecules, matrix-degrading enzymes, antimicrobial peptides, (bio)surfactants,
fatty acids, and many other substances has peaked in recent decades [4,6–9]. New ap-
proaches have been proposed. Molecular docking studies were applied to confirm the
interaction of the newly synthesized compounds with the staphylococcal target proteins
associated with biofilm formation [10]. Recently, an antibiofilm algorithm was developed to
predict repurposed drugs with potential antibiofilm activity, thus reinforcing the increased
interest in the research area under the antivirulence umbrella [11].

In this context, sponge-associated bacteria are known as gifted producers of metabo-
lites with several biologically relevant activities, among them antibiofilm properties [12]. In
a previous study, the cell-free supernatant (CFS) obtained from a marine-sponge-associated
Enterobacter sp. 84.3 culture inhibited biofilm formation (>65%) and dissociated the mature
biofilm (>85%) formed by Staphylococcus aureus and Staphylococcus epidermidis strains. The
Enterobacter aqueous extract presented concentration-dependent antibiofilm activity for
each strain with a minimum biofilm eradication concentration (MBEC) ranging from 16 to
256 µg/mL. In addition, the aqueous extract led to a significant reduction in the mature S.
aureus biofilm and diminished cell interactions. Importantly, this extract was proven not
toxic for mammalian cells (L929 cell line) [13].

Although reports on the antibiofilm potential of Enterobacter are somewhat scant,
previous studies have demonstrated that this bacterial genus can indeed detain antibiofilm
properties, notably owing to the production of N-acyl homoserine lactone lactonase [14–17].
As the sponge-associated Enterobacter sp. 84.3 has presented itself as a source of compounds
capable of eradicating staphylococcal biofilms with potential applications in the medical
field [13], the purpose of this study was to investigate the chemical nature of the active
components present in its aqueous extract and the potential dual mode of action of the
antibiofilm molecules on staphylococcal cells, unraveling this sponge-derived strain as a
fruitful biological resource for the treatment of biofilm-enclosed staphylococci.

2. Results
2.1. Antibiofilm Activity of the Aqueous Extract

To evaluate the influence of the aqueous extract from Enterobacter sp. 84.3 culture
supernatant on the staphylococcal biofilm architecture, the mature biofilm (48 h) was
analyzed using scanning electron microscopy before and after treatment with the active
extract. As shown in Figure 1A,C, the sample prior to treatment was characterized by a thick
multilayer biofilm displaying intense interaction among S. aureus cells. Interestingly, the
treated sample (Figure 1B,D) showed a remarkable reduction in biofilm integrity, evidenced
by the loss of the three-dimensional structure and the presence of only a few cellular
aggregates. Additionally, it was observed that the mature biofilm of the S. aureus ATCC
25923 on the wells of a 96-well microtiter plate was disrupted at 85.3% when treated with
32 µg/mL of the bioactive aqueous extract.

2.2. Antibiofilm Molecule Identification

Overall, UHPLC-HRMS revealed the presence of alkaloid, macrolide, steroid, and
triterpene molecules in the Enterobacter sp. 84.3 bioactive aqueous extract. The detected
compounds and their respective chemical classes are presented in Table 1.
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Figure 1. Representative scanning electron microscopy images of S. aureus ATCC 25923 biofilm in 
the presence of the Enterobacter sp. 84.3 bioactive aqueous extract (32 μg/mL). (A,B) Wells of 96-well 
plate showing mature biofilm untreated (left well) and treated (right well) after crystal violet 
staining. Loss of color intensity indicates biofilm disaggregation. (C) Untreated biofilm control and 
(D) treated biofilm. The images show the best antibiofilm effect compared to the control. 
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formation. Thus, these substances present in the aqueous extract were particularly effective 
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Figure 1. Representative scanning electron microscopy images of S. aureus ATCC 25923 biofilm in
the presence of the Enterobacter sp. 84.3 bioactive aqueous extract (32 µg/mL). (A,B) Wells of 96-well
plate showing mature biofilm untreated (left well) and treated (right well) after crystal violet staining.
Loss of color intensity indicates biofilm disaggregation. (C) Untreated biofilm control and (D) treated
biofilm. The images show the best antibiofilm effect compared to the control.

Table 1. Compounds putatively identified through KEGG Library from sponge-associated Enterobacter
sp. aqueous extract analyzed using UHPLC-HRMS.

Compounds Name Class RT (min) Area Molecular Ion
[M − H]−

1 Isovalerylcarnitine Alkaloid 1.01 5.0 × 105 244.1554
2 Acrophylline or morphinone Alkaloid 1.42 1.2 × 106 282.1125
3 Novamethymycin Macrolide 2.74 3.3 × 105 484.2883

4 Fasciculol E or F Tetracyclic
triterpene 11.37 3.2 × 105 722.4543

5 12-methylpregna-4,9(11)-diene-3,20-dione Steroid 13.51 3.1 × 105 325.2181
6 cephaeline Alkaloid 14.73 4.6 × 105 465.2727

7 (3alpha,5beta,11beta,17beta)-9-fluoro-17-
methylandrostane-3,11,17-triol Steroid 15.54 5.7 × 105 339.2165

2.3. Possible Mode of Action on S. aureus Biofilm

A possible dual mechanism of antibiofilm action from the detected metabolites in the
aqueous extract of Enterobacter sp. 84.3 over the S. aureus biofilm is proposed in Figure 2.
Briefly, the biofilm matrix can be disrupted by macrolide action, while alkaloids, steroids,
triterpenes, and, potentially, macrolide molecules can act by directly inhibiting biofilm
formation. Thus, these substances present in the aqueous extract were particularly effective
at both hampering biofilm development and disaggregating the mature biofilm, as shown
in the scanning electron microscopy images, wherein more than 80% of the biofilm mass
was disrupted (Figure 1).
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alkaloids (1. isovalerylcarnitine; 2. acrophylline (A) or morphinone (B); 6. cephaeline, shaded in 
blue), triterpenes (4. fasciculol E (A) or F (B), shaded in green), and steroids (5. 12-methylpregna-
4,9(11)-diene-3,20-dione, (12alpha)-; 7. (3alpha,5beta,11beta,17beta)-9-fluoro-17-methylandrostane-
3,11,17-triol; shaded in gray) likely interfere in biofilm production (blue, green, and gray arrows, 
respectively). Cells of S. aureus (represented by purple circles) are eventually released as the biofilm 
is dismantled by the synergistic action of these metabolites. 
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intercellular adhesin (PIA)-dependent to PIA-independent [19,20]. Previous studies have 
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stability and functionality, thus providing the basis for developing novel therapeutics that 
can effectively target components of the biofilm matrix and modulate biofilm stability 
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affecting the viability or growth of Staphylococcus strains. Importantly, the aqueous extract 

Figure 2. Proposed dual mechanism of antibiofilm action of detected metabolites in the aqueous
extract of Enterobacter sp. 84.3 over S. aureus biofilm (center of the image, colored and shaded in
purple). While the macrolide (3. novamethymycin; shaded in red) can potentially act by both
disrupting the biofilm matrix (red arrow) and inhibiting its formation (dashed red arrow), the
alkaloids (1. isovalerylcarnitine; 2. acrophylline (A) or morphinone (B); 6. cephaeline, shaded in
blue), triterpenes (4. fasciculol E (A) or F (B), shaded in green), and steroids (5. 12-methylpregna-
4,9(11)-diene-3,20-dione, (12alpha)-; 7. (3alpha,5beta,11beta,17beta)-9-fluoro-17-methylandrostane-
3,11,17-triol; shaded in gray) likely interfere in biofilm production (blue, green, and gray arrows,
respectively). Cells of S. aureus (represented by purple circles) are eventually released as the biofilm
is dismantled by the synergistic action of these metabolites.

3. Discussion

Biofilm formation is a critical factor in the pathogenesis of S. aureus, playing a sig-
nificant role in persistent infections and promoting antimicrobial resistance [18]. The
composition of the extracellular matrix varies among strains, ranging from polysaccha-
ride intercellular adhesin (PIA)-dependent to PIA-independent [19,20]. Previous studies
have showcased how distinct constituents of the biofilm matrix contribute to its archi-
tectural stability and functionality, thus providing the basis for developing novel thera-
peutics that can effectively target components of the biofilm matrix and modulate biofilm
stability [2,3,18,21].

Sponges harbor a diverse array of bacteria that produce a wide range of secondary
metabolites, including those with potential antibiofilm activity [22]. Previous results
indicate that an Enterobacter strain isolated from the marine sponge Oscarella sp. displays
promising antibiofilm activity against Staphylococcus spp. The strain’s aqueous extract
inhibited the formation of mature biofilm and induced biofilm disaggregation, without
affecting the viability or growth of Staphylococcus strains. Importantly, the aqueous extract



Molecules 2023, 28, 4843 5 of 10

was also nontoxic for mouse fibroblast cells, thus highlighting an important trait that can
be taken into consideration for future applications [13].

In the present study, SEM images further confirmed that the aqueous extract of this
sponge-associated bacteria was able to dissociate the mature staphylococcal biofilm. This
effect was also observed using confocal scanning laser microscopy, showing a significant
reduction in the biofilm layer as well as diminished interactions among the cells [13]. To
this extent, the results indicate that the antibiofilm agent could be applied both for the
prevention of biofilm formation and the removal of mature biofilm on indwelling medical
devices. In addition, seven potential compounds were detected in the aqueous extract
of Enterobacter sp. 84.3 via LC-HRMS, including alkaloids, macrolides, triterpenes, and
steroids. Although it is not possible to affirm via the employed methodology which one
of the substances is primarily responsible for the antibiofilm activity, it is highlighted that
the aqueous extract is constituted by a complex pool of substances that potentially act
synergistically to eradicate the staphylococcal biofilm.

The antibiofilm activity of alkaloids has been previously explored, whereby it was
demonstrated that reserpine, an indole alkaloid, inhibits biofilm formation, resulting in the
reduced production of extra polymeric substances and reduced biovolume and thickness.
Furthermore, docking simulations revealed that the alkaloid had the proteins Bap, IcaA,
AtlE, SarA, SarG, and AgrA, which are involved in biofilm composition and regulation, as
the most favorable targets [10,23].

Reports on macrolide-mediated antibiofilm activity are somewhat controversial, but
there is evidence in vitro and in vivo of such activity on staphylococcal biofilms. For in-
stance, it has been demonstrated that in vitro treatment with clarithromycin and vancomycin
was efficient in eliminating staphylococcal biofilms formed on surgical implants [24]. The
effects of macrolides in successfully eradicating staphylococcal biofilms were also demon-
strated on titanium plates implanted in mice [25]. Microneedles patches impregnated with
azithromycin and erythromycin showed antibiofilm effects against S. aureus in murine
models, resulting in wound healing and skin regeneration [26]. Despite the growing evi-
dence, the subjacent mechanisms of action by which macrolides affect bacterial biofilms
remain unelucidated. It has been verified that they might interfere in quorum-sensing (QS)
in S. aureus, potentially abolishing the biosynthesis of matrix components. Additionally,
macrolides could act on mature staphylococci biofilms by likely penetrating the polymeric
matrix in a dose- and time-dependent fashion, which has been extensively confirmed in
Gram-negative pathogens [27,28].

Although reports on steroid-producing bacteria are scant and mostly restricted to
Myxobacteria spp. [29], here, the presence of two substances was indicated, and they were
classified as steroids. Among these, a fluoride steroid was detected, which is a common
trait in marine bacterial metabolites, including those with antibiofilm activity [30]. In a
previous study, the biofilm biomass of S. aureus was significantly reduced in the presence
of steroids [31]. Steroids derivatives have had their antibiofilm potential recently described,
whose action was accompanied by the downregulation of the fnbB (fibronectin-binding pro-
tein B), capC (capsule biosynthesis protein C) genes, and the isaA gene (immunodominant
staphylococcal antigen) [32]. Proteome analyses of S. aureus biofilm have already indicated
that proteins associated with adhesion, peptidoglycan synthesis, and fibrinogen binding
are most predominant, whereas virulence-related proteins, such as IsaA, are expressed in
lower amounts [33]. Interestingly, a previous study has shown that treatment with steroid
derivatives led to the upregulation of isaA, and this could be implicated in the reduction in
staphylococcal biofilm formation [32].

Triterpenes have also been reported as promising antibiofilm agents. Their activity
has been previously associated with alterations in the structure of bacteria, such as the
cell membrane and adhesins, and may also interfere with gene expression, thus leading
to a lower capacity of adhesion and, consequently, biofilm formation [34]. For instance,
ursolic acid at concentrations of 10 and 30 µg/mL has been associated with the induction
of several genes related to chemotaxis and mobility, particularly the gene motAB, leading
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to the excessive motility of strains of Escherichia coli and preventing the establishment of
the bacterial biofilm [35]. Further, the effect of triterpene derivatives has been assessed on
S. aureus biofilm formation, whereby not only significant biofilm inhibition was observed,
but also no antibiotic or cytotoxic effects were observed [36].

Based on the results from the chemical characterization of the aqueous extract, we
suggest a potential dual mechanism of antibiofilm action by the metabolites produced by
the Oscarella-derived Enterobacter sp. Regardless of their chemical classes, it is likely that all
metabolites may inhibit biofilm formation by affecting the production of matrix components,
as suggested by the previous abovementioned reports of the antibiofilm properties of the
compounds identified [24,25,31,36]. This can take place by either a direct interaction of
these metabolites with structural elements of the biofilm matrix, such as the aforementioned
for alkaloids [23], or by hindering the gene regulation of biofilm formation, which could
be via QS interference, as pointed out for the macrolides [28], or an imbalance at the gene
expression underlying the biofilm structuring, as highlighted for the steroids [31]. Moreover,
the detected macrolide is potentially the best choice among the metabolites present in the
Enterobacter extract capable of dissociating the mature staphylococcal biofilm [24]. Hence,
this metabolite mix functions synergistically in the efficient removal of Staphylococcus spp.
biofilm in all potential stages of its life cycle. Importantly, this extract did not kill or inhibit
bacterial growth, thus suggesting its antivirulence properties [13]. Therefore, following
the treatment with the sponge bacterial extract, staphylococci cells are free from biofilm
protection and susceptible to antimicrobial chemotherapy and immune response.

4. Materials and Methods
4.1. Bacterial Strains and Culture Conditions

Sponge-associated Enterobacter sp. 84.3 (MK780772.1) was isolated from the Brazilian
sponge Oscarella spp. as previously described [13]. Cell-free culture supernatants were
prepared by inoculating 107 cells of Enterobacter 84.3 in 3.0 mL of BHI medium (Difco,
Tucker, GA, USA). Following incubation at 25 ◦C for 24 h, 22 mL of BHI was added, and
the culture was further incubated at 25 ◦C for 48 h. After centrifugation at 4000× g for
20 min, the CFS was sterilized using filtration (Millipore 0.22 µm) and used for antibiofilm
activity assays as previously described [13].

The reference strain of the American Type Culture Collection (ATCC) S. aureus ATCC
25923, classified as a strong biofilm producer, was included in this study as an indicator
strain and positive control for further antibiofilm assays. It was grown on BHI agar or in
BHI broth supplemented with 1% glucose (BHIg) for 18 h at 37 ◦C.

4.2. Fermentation Conditions and Extract Preparation

The bioactive extract, previously identified as the delipidated aqueous phase, was
obtained as previously described [13]. Briefly, total biomass obtained from a 500 mL
culture in BHI was submitted twice to fractionation with 200 mL n-hexane (Tedia, Fairfield,
OH, USA). The hexane solution was then removed under vacuum, and the remaining
aqueous residue was extracted twice (200 mL) using the following solvents in this order:
dichloromethane, ethyl acetate, and butanol (Tedia, USA). The organic fractions were
evaporated and tested for antibiofilm activities. The delipidated aqueous phase was filtered
(Millipore 0.22 µm), tested, and named as the aqueous extract.

4.3. Scanning Electron Microscopy Observation of Antibiofilm Activity

To observe the multicellular structures in the biofilm in the presence or absence of the
bioactive extract, aliquots of overnight culture (~108 CFU/mL) of S. aureus ATCC 25923
were distributed on chamber slides (Nunc Inc., Rochester, NY, USA) for scanning electron
microscopy (SEM) observations. After incubation at 37 ◦C for 48 h, bacteria that remained in
suspension were removed by aspiration, and the remaining adherent cells on the slide were
washed three times with PBS and treated with the bioactive substance at the previously
established minimum biofilm eradication concentration (MBEC) of 32 µg/mL [13]. An
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untreated biofilm control was included on each slide. The slides were again washed with
PBS and fixed in 2.5% glutaraldehyde in 0.2 M sodium cacodylate buffer (pH 7.4) at 25 ◦C.
Then, washing was carried out thrice in 10 mL sodium cacodylate buffer 0.2 M solution,
followed by dehydration in a graded ethanol series at 30%, 50%, 70%, 90%, and 100%
(15 min each and 3× at the last concentration). Drying at the critical point was carried out
with carbon dioxide. At the metallization step, samples were sputter-coated with gold
(~5 nm layer). Biofilms on chamber slides were analyzed using a Quanta 250 Microscope
(FEI Company, Hillsboro, OR, USA) in high vacuum SEM mode.

To evaluate the antibiofilm effect of the aqueous extract (32 µg/mL), the same strate-
gies described for SEM analysis were carried out in the wells of a 96-well microtiter plate,
as previously described [13]. Briefly, in the wells of a 96-well microtiter plate (TPP, Trasadin-
gen, Switzerland), 20 µL of the indicator strain culture (~108 CFU/mL) was mixed with
180 µL of BHIg, and the plate was incubated aerobically at 37 ◦C for 24 h. After incubation,
planktonic cells were removed by washing the plate three times with sterile phosphate-
buffered saline (PBS; pH 7.4). To the remaining preformed staphylococcal biofilm, 200 µL of
the CFS was added per well. Control samples of staphylococcal biofilm were kept without
the addition of supernatant. After a second incubation at 37 ◦C for 24 h, the plates were
again washed with PBS and heat-fixed at 60 ◦C for 60 min. The wells were then stained with
0.2% crystal violet solution for 15 min at 25 ◦C. The plate was air-dried, and the dye retained
by adherent cells was dissolved in 95% ethanol. The optical density of each well containing
the mature biofilms treated and untreated after crystal violet staining was measured at
570 nm using a microtiter plate reader (model 680, Bio-Rad Laboratories, Watford, UK). The
ability to disrupt biofilm of indicator strain was expressed as a percentage of antibiofilm
activity by applying the following formula: (ODcontrol − ODsample/ODcontrol) × 100.
Three independent experiments were performed in triplicate; therefore, each data point
was averaged from a total of nine values, and the standard deviation (SD) was calculated.

4.4. Chemical Analysis, Bioinformatics Screening, and Compound Identification
4.4.1. UHPLC-MS Analysis of the Aqueous Extract

To identify the bioactive molecule(s) in the aqueous extract derived from Enterobacter
sp. 84.3, ultra-high-performance liquid chromatography coupled with high-resolution
mass spectrometry (UHPLC-HRMS) was carried out. The analyses were performed in
a modular Nexera UHPLC (Shimadzu, Kyoto, Japan) system with LC-30AD pump, SIL-
30AC autosampler, CTO-30A column oven, and SPD-M20A DAD detector (spectra were
recorded from 200 to 800 nm). The LC-system was connected to a QTOF-HRMS mass
spectrometer (Bruker, Billerica, MA, USA) fitted with an ESI source (negative mode).
Negative ion mass spectra were recorded in the range of m/z 50–1.500 at a scan speed
of 1.5 kDa/s at a voltage of −5 kV and capillary temperature of 280 ◦C. Nitrogen was
used as the gas source. The components were separated using a Shimpack XR II series
C18 (120 mm × 3.6 mm × 2.1 µm). Samples were solubilized in methanol (MeOH) MS-LC
grade solvent (3 mg/mL), and the injection volume was 3 µL for the samples. The mobile
phases used were 0.1% (v/v) formic acid in water (phase A) and acetonitrile (phase B) at a
flow rate of 0.3 mL/min. The gradient program was as follows: 3% B (0.01 min), 3–15% B
(10 min), 15–45% B (12 min), 45–100% B (4.5 min), 100% B (2.5 min), and 100–0% B (4 min).

4.4.2. MZmine Parameters

Raw files were converted to universal mzXML files using MSConvert, part of the
ProteoWizard package [37] and directly processed in MZmine 2.1 [38,39]. Mass detection
was performed keeping the noise level at 1. Chromatogram building was achieved using a
minimum time span of 0.3 min, a minimum height of 1.0 × 102, and m/z tolerance of 0.002
(or 5 ppm). The local minimum search deconvolution algorithm was used with the follow-
ing settings: chromatographic threshold = 5.0%, minimum retention time range = 0.2 min,
minimum relative height = 15.0%, minimum absolute height = 5.0 × 105, minimum ra-
tio of peak top/edge = 5, and peak duration range = 0.3–10.0 min. Chromatograms were
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deisotoped using the isotopic peaks grouper algorithm with a m/z tolerance of 0.002 (or
5 ppm) and a RT tolerance of 0.2 min. Peak alignment was performed using the Join aligner
method with a m/z tolerance at 0.002 (or 5 ppm), weight for m/z = 15, RT tolerance = 0.2 min,
weight for RT = 10, minimum absolute intensity = 5.0 × 105, and minimum score = 65%.
The peak list was eventually gap-filled with the peak finder module (intensity tolerance at
1.0%, m/z tolerance at 0.002 (or 5 ppm), and absolute RT tolerance of 0.2 min). Compound
identification was performed using online searches against the KEGG Database release 80.

5. Conclusions

In conclusion, this report supports the potential of sponge-derived Enterobacter as a
valuable source of antibiofilm compounds. The aqueous extract could inhibit the biofilm
formation and dissociate the mature biofilm of S. aureus, and seven potential compounds
were proposed, including alkaloids, macrolides, steroids, and triterpenes. These results
highlight promising strategies, including multitargeted ones, which could also be applied
with combinational therapies to eradicate staphylococcal biofilms. The study not only
presents the novelty in exploring the antibiofilm properties of Enterobacter spp. but also
suggests a dual mode of action for the antibiofilm compounds.
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