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Abstract: The construction of duocarmycin-like compounds is often associated with lengthy syn-
thetic routes. Presented herein is the development of a short and convenient synthesis of a type of
duocarmycin prodrug. The 1,2,3,6-tetrahydropyrrolo[3,2-e]lindole-containing core is here constructed
from commercially available Boc-5-bromoindole in four steps and 23% overall yield, utilizing a
Buchwald-Hartwig amination followed by a sodium hydride-induced regioselective bromination. In
addition, protocols for selective mono- and di-halogenations of positions 3 and 4 were also developed,
which could be useful for further exploration of this scaffold.
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1. Introduction

Duocarmycin A (1) and SA (2) are prominent members of the duocarmycin family
that possess extreme cytotoxic properties (Figure 1) [1-3]. They were isolated from the
Streptomyces sp. in Japan in 1988 and 1990, respectively [4,5]; in the early 1990s, their
structures were confirmed by synthesis [6-8]. Since then, duocarmycin and its analogs
have attracted a lot of attention among synthetic and medicinal chemists, owing to their
structural complexity and interesting biological properties. Their mode of action is site-
specific DNA alkylation, and their strongly alkylating properties can be attributed to the
strained cyclopropane moiety (Figure 1). Unfortunately, the cytotoxicity is not only devoted
to the cancer cells; therefore, a variety of duocarmycin analogs [1-3], prodrugs [9-19], and
even antibody-drug conjugates [20] have been developed in the pursuit for more selective
cancer treatments. In a medicinal chemistry project working with prodrugs that, upon
site-selective CYP2W1 oxidation, form the phenolic counterpart and render the compound
harmful [14,17] (3, Figure 1), we needed access to the chloromethyl-substituted 1,2,3,6-
tetrahydropyrrolo[3,2-eJindole core 10 (Figure 2).

The existing synthetic pathways are elaborative and/or give the wrong substitution
pattern (Figure 2). Furthermore, in our early attempts to use Boc-5-nitroindole 9 as starting
material, we faced several problems, such as over-reduction when reducing the nitro group
(i.e., the generation of indoline), the generation of complex mixtures when performing
the halogenation reaction on the aniline, and problems with controlling the mono-Boc
protection of the aniline.

In our approach, we envisioned that the desired di-Boc-protected 5-aminoindole inter-
mediate 12 (Figure 3) could be synthesized from commercially available Boc-5-bromoindole
11 via a Buchwald-Hartwig amination with tBu-carbamate followed by a regioselective
bromination. This strategy would considerably shorten the route and also overcome the
problems related to the nitro reduction and mono-Boc protection of the aniline nitrogen;
vide supra.
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Figure 1. Structures of duocarmycin A, SA, and the duocarmycin prodrug with its activation by

site-selective CYP2W1 oxidation.
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2. Results and Discussion

The Pd(OAc), /XPhos-catalyzed Buchwald-Hartwig amination of Boc-5-bromoindole
(11) with tBu-carbamate performed well, and compound 13 could be isolated in 78%
yield (Scheme 1). Performing the subsequent halogenation under acidic conditions (i.e.,
NXS/TsOH) on the Boc-protected aniline gave the wrong regioisomer, although with
complete selectivity, and the 3-bromo (14) and 3-iodo (15) products could be isolated in
74% and 71% yields, respectively, using the two different halogen sources. We envisioned
that the deprotonation of the Boc-protected aniline with NaH prior to the halogenation
might render the aromatic ring sufficiently electron-rich to direct the halogenation to the
right position (see Supporting Information). Gratifyingly, that strategy gave the desired
4-bromo analog 12 in 65% yield with complete regioselectivity. All attempts to introduce
iodine in this position failed, even when using a more electrophilic I source (i.e., N-
Iodosaccharin [23]), other solvents, or elevated temperatures.

NXS H X
TsOH * H,0 Boc/N\CE\g
DMF N
Pd(OAC), H 14 X = Br, 74% 5°C

Br XPhos, Cs,CO3 N =
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Scheme 1. Buchwald-Hartwig amination and subsequent regioselective halogenations.

To our delight, further halogenation of 12 to give 3-iodo-4-bromo compound 16 went
smoothly under acidic conditions (NIS/TsOH) in 71% yield. To conclude the synthesis
towards the duocarmycin-type prodrug, compound 12 smoothly underwent allylation with
1,3-dichloropropene to give 17 [14] in 82% yield, followed by a tris(trimethylsilyl)silane
(TTMSS) /azaisobutyronitrile (AIBN)-induced radical 5-exo-trig cyclization according to
published procedures to furnish compound 10 [14] in 56% yield (Scheme 2). After Boc de-
protection and subsequent EDC/NaHCO3 amide coupling with 5-fluoroindole-2-carboxylic
acid, the desired prodrug rac—18 [17] was isolated in 65% yield over two steps. In addition,
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the enantiomers were separated by chiral supercritical fluid chromatography (SFC) to give
(+)—18 and (—)—18 with ee > 99%.

Cl
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N DMF N Toluene N
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Scheme 2. Synthesis of the duocarmycin-type prodrug, * denotes the chiral center.

3. Materials and Methods

General Methods: All solvents and reagents were used as received from commercial
suppliers. N-Bromosuccinimide (NBS) was recrystallized from hot water and dried under
vacuum for 24 h and then stored under cold and dark conditions. Sodium hydride was used
as 60% dispersion in mineral oil. Column chromatography was employed on normal-phase
silica gel (230-400 mesh, 60 A; the eluents are given in brackets). 1H- and 3C-NMR spectra
were recorded on a 400 MHz spectrometer at 298 K and calibrated using the residual peak
of the solvent as an internal standard [CDCl3 (CHCl;3 6y 7.26 ppm, CDCl3 8¢ 77.16 ppm)].
HRMS was performed using a microTOF instrument with electrospray ionization (ESI),
and sodium formate was used as a calibration chemical. Optical rotations were measured
on a polarimeter at 589 nm (D line of sodium) and 20 °C. Chiral chromatography was
performed on supercritical fluid chromatography equipment, using mixtures of MeOH and
supercritical CO, as eluents.

Di-tert-butyl 1-(chloromethyl)-1,2-dihydropyrrolo[3,2-e]indole-3,6-dicarboxylate (10):
tert-Butyl-4-bromo-5-((tert-butoxycarbonyl)(3-chloroallyl)amino)-1H-indole-1-carboxylate
17 (600 mg, 1.24 mmol) was dissolved in dry toluene (40 mL), and the solution was degassed
for 1 h (by bubbling N, gas through the solution under stirring). Azobisisobutyronitrile
(AIBN) (49 mg, 0.30 mmol) and tris(trimethylsilyl)silane (TTMSS) (0.41 mL, 1.34 mmol)
were added, and the reaction was heated to 90 °C (with a preheated oil bath) in a sealed
tube for 5 h. The solvent was evaporated, and the crude material was dissolved in MeOH
(12 mL) and stirred at rt for 10 min. The solvent was evaporated, and the crude product was
purified by column chromatography on silica gel (hexanes:EtOAc 95:5) to give compound
10 as a colorless oil (280 mg, 56%). The spectral data agreed with the published data [14].

tert-Butyl 4-bromo-5-((tert-butoxycarbonyl)amino)-1H-indole-1-carboxylate (12): tert-
Butyl 5-((tert-butoxycarbonyl)amino)-1H-indole-1-carboxylate 13 (200 mg, 0.60 mmol) was
dissolved in dry DMF (2 mL) and cooled to 0 °C with an ice bath. NaH (60 mg, 60% in
mineral oil, 1.5 mmol) was added, followed by NBS (129 mg, 0.72 mmol); the ice bath was
removed, and the reaction was stirred for 30 min. The reaction mixture was poured onto
saturated NaHCOj3 (aq) and extracted with EtOAc. The organic phase was dried (NapSOy),
filtered, and concentrated. The crude material was purified by column chromatography on
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silica gel (hexanes:EtOAc 95:5) to give compound 12 as a colorless foam (160 mg, 65%). The
spectral data agreed with the published data [14].

tert-Butyl 5-((tert-butoxycarbonyl)amino)-1H-indole-1-carboxylate (13): N-Boc-5-
bromoindole 11 (1.5 g, 5.06 mmol), tert-butyl carbamate (712 mg, 6.08 mmol), Pd(OAc),
(57 mg, 0.25 mmol), XPhos (241 mg, 0.50 mmol), and Cs,CO3 (2.31 g, 7.09 mmol) were
mixed in dry 1,4-dioxane (45 mL), and the vessel was flushed with N, gas, sealed, and
heated to 90 °C for 20 h. The reaction mixture was diluted with EtOAg, filtered through
Celite, and concentrated. The crude material was purified by column chromatography
on silica gel (hexanes:EtOAc 95:5) to give compound 13 as a colorless foam (1.32 g, 78%).
TH-NMR (CDCl3, 400 MHz) 6 8.01 (brd, | = 8.0 Hz, 1H), 7.75 (brs, 1H), 7.55 (brd, ] = 4.0 Hz,
1H),7.14 (dd, ] = 8.0, 4.0 Hz, 1H), 6.70 (brs, 1H, NH), 6.48 (dd, ] = 3.7, 0.8 Hz, 1H), 1.65 (s,
9H), 1.52 (s, 9H); '*C-NMR (CDCl3, 100 MHz) § 153.3, 149.8, 133.7, 131.5, 131.1, 126.6, 116.4,
115.3, 110.9, 107 .4, 83.6, 80.3, 28.5 (3C), 28.3 (3C); HRMS (ESI/TOF) m/z: [M + Na]* Calcd
for C18H24N204Na 355.1634; Found 355.1633.

tert-Butyl 3-bromo-5-((tert-butoxycarbonyl)amino)-1H-indole-1-carboxylate (14): tert-
Butyl 5-((tert-butoxycarbonyl)amino)-1H-indole-1-carboxylate 13 (200 mg, 0.60 mmol) was
dissolved in DMF (2 mL), NBS (118 mg, 0.66 mmol) and TsOH-H,O (23 mg, 0.12 mmol)
were added, and the reaction was stirred at rt for 10 min. The reaction mixture was
poured onto saturated NaHCO; (aq) and extracted with EtOAc. The organic phase was
dried (NapSQy), filtered, and concentrated. The crude material was purified by column
chromatography on silica gel (hexanes:EtOAc 95:5) to give compound 14 as a colorless foam
(183 mg, 74%). 'H-NMR (CDCl3, 400 MHz) § 8.02 (brd, ] = 8.0 Hz, 1H), 7.65 (brs, 1H), 7.60
(brs, 1H), 7.24 (brd, | = 8.0 Hz, 1H), 6.67 (brs, 1H, NH), 1.65 (s, 9H), 1.54 (s, 9H); >*C-NMR
(CDCl3, 100 MHz) 6 153.1, 148.9, 134.5, 130.9, 130.0, 125.5, 117.5, 115.6, 109.2, 97.9, 84.4,
80.6, 28.5 (3C), 28.3 (3C); HRMS (ESI/TOF) m/z: [M + Na]* Calcd for C1gHp3BrN>,O4Na
433.0739; Found 433.0755.

tert-Butyl 5-((tert-butoxycarbonyl)amino)-3-iodo-1H-indole-1-carboxylate (15): tert-
Butyl 5-((tert-butoxycarbonyl)amino)-1H-indole-1-carboxylate 13 (1.3 g, 3.91 mmol) was
dissolved in DMF (14 mL), NIS (1.06 g, 4.71 mmol) and TsOH-H,O (149 mg, 0.78 mmol)
were added, and the reaction was stirred at rt for 15 h. The reaction mixture was poured onto
saturated NaHCO3 (aq) and extracted with EtOAc. The organic phase was washed with
10 wt% NayS,0s5 (aq), dried (NaySOy), filtered, and concentrated. The crude material was
purified by column chromatography on silica gel (hexanes:EtOAc 95:5) to give compound
15 as a colorless foam (1.28 g, 71%). IH-NMR (CDCl3, 400 MHz) & 8.00 (brd, ] = 8.0 Hz,
1H), 7.69 (brs, 1H), 7.53-7.46 (m, 1H), 7.27 (brd, ] = 8.0 Hz, 1H), 6.73 (brs, 1H, NH), 1.65 (s,
9H), 1.54 (s, 9H); '3C-NMR (CDClz, 100 MHz) & 153.1, 148.7, 134.6, 132.7, 131.1, 130.8, 117.5,
115.5,111.3, 84.3, 80.6, 65.4, 28.5 (3C), 28.2 (3C); HRMS (ESI/TOF) m/z: [M + Na]* Calcd
for C1gHy3IN,O4Na 481.0601; Found 481.0595.

tert-Butyl 4-bromo-5-((tert-butoxycarbonyl)amino)-3-iodo-1H-indole-1-carboxylate
(16): tert-Butyl 4-bromo-5-((tert-butoxycarbonyl)amino)-1H-indole-1-carboxylate 12 (140 mg,
0.34 mmol) was dissolved in DMF (1.4 mL), NIS (114 mg, 0.51 mmol) and TsOH-H,O (16 mg,
0.08 mmol) were added, and the reaction was stirred at rt for 16 h. The reaction mixture
was poured onto saturated NaHCOj3 (aq) and extracted with EtOAc. The organic phase
was washed with 10 wt% NayS,0s (aq), dried (NaySOy), filtered, and concentrated. The
crude material was purified by column chromatography on silica gel (hexanes:EtOAc 95:5)
to give compound 16 as a colorless foam (130 mg, 71%). 'H-NMR (CDCl3, 400 MHz) &
8.11 (m, 2H), 7.77 (s, 1H), 7.08 (brs, 1H, NH), 1.65 (s, 9H), 1.54 (s, 9H); 3C-NMR (CDCl3,
100 MHz) 5 153.0, 148.2, 134.0, 132.7, 131.6, 126.5, 118.5, 114.5, 105.3, 85.0, 81.1, 61.2, 28.5
(3C), 28.2 (3C); HRMS (ESI/TOF) m/z: [M + Na]* Calcd for C1gH»BrIN,O4Na 558.9706;
Found 558.9700.

tert-Butyl-4-bromo-5-((tert-butoxycarbonyl)(3-chloroallyl)amino)-1H-indole-1-carboxylate
(17): tert-Butyl 4-bromo-5-((tert-butoxycarbonyl)amino)-1H-indole-1-carboxylate 12 (650 mg,
1.58 mmol) was dissolved in dry DMF (12 mL) and cooled to 0 °C, NaH (190 mg, 60% in
mineral oil, 4.74 mmol) was added, and the reaction was stirred at 0 °C for 5 min. 1,3-
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Dichloropropene was added, the ice bath was removed, and the reaction was stirred at
rt for 1 h. The reaction mixture was poured onto saturated NaHCOj3 (aq) and extracted
with EtOAc. The organic phase was dried (Na;SOy), filtered, and concentrated. The crude
material was purified by column chromatography on silica gel (hexanes:EtOAc 95:5) to give
compound 17 as a colorless oil (630 mg, 82%). The spectral data agreed with the published
data [14].
(1-(chloromethyl)-1,6-dihydropyrrolo[3,2-e]indol-3(2H)-y1)(5-fluoro-1H-indol-2-yl)

methanone (18): Di-tert-butyl 1-(chloromethyl)-1,2-dihydropyrrolo[3,2-e]lindole-3,6-dicarboxylate
10 (280 mg, 0.69 mmol) was dissolved in 4 M HCl in 1,4-dioxane (15 mL, 60 mmol), and the
reaction was stirred at rt for 22 h. The solvent was evaporated, and the crude material was co-
evaporated from EtOAc two times. The crude material, together with 5-fluoro-1H-indole-2-
carboxylic acid 19 (148 mg, 0.83 mmol), N-ethyl-N’-(3-dimethylaminopropyl)carbodiimide
hydrochloride (EDC) (396 mg, 2.07 mmol), and NaHCOj3 (289 mg, 3.45 mmol), were mixed
in dry DMF (10 mL), and the reaction was stirred at rt for 5 h. The reaction mixture was
poured onto saturated NaHCO3 (aq) and extracted with EtOAc. The organic phase was
dried (NaySOy), filtered, and concentrated. The crude material was purified by column chro-
matography on silica gel (hexanes:EtOAc 60:40 to 50:50) to give compound 18 (253 mg, 65%)
as an off-white solid. The spectral data agreed with the published results [17]. The racemic
product was separated by chiral supercritical fluid chromatography (SFC) to give (+)—18,
[¢]p (c = 1.0, acetone) +17 and (—)—18, [«]p (c = 1.0, acetone) -17, both with ee > 99% (for
chromatographic conditions and chromatograms, see Supporting Information).

4. Conclusions

In conclusion, we developed a four-step route to the desired chloromethyl-substituted
1,2,3,6-tetrahydropyrrolo[3,2-eJindole core 10, utilizing an unconventional NaH promoted
site-selective bromination of Boc-protected amino indole 13 as the key step. Additionally,
3-iodo-4-bromo indole 16 constitutes an interesting starting point for further diversification.
Closely related 3-iodo-4-bromo-indoles have been used in Pd-catalyzed cross-couplings
such as the Mizoroki-Heck [24-26], Negishi [27], and Suzuki-Miyaura [28,29] reactions in
various natural products and heterocyclic syntheses. Finally, the racemate of compound 18
was separated with chiral supercritical fluid chromatography for further investigation of
this interesting prodrug.

Supplementary Materials: Supporting information with 'H-NMR and '*C-NMR of all new com-
pounds can be downloaded at: https:/ /www.mdpi.com/article/10.3390 / molecules28124818 /s1.
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