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Abstract: This work presents the successful preparation and characterization of polylactide/
poly(propylene 2,5-furandicarboxylate) (PLA/PPF) and polylactide/poly(butylene 2,5-furandicarbox
ylate) (PLA/PBF) blends in form of bulk and fiber samples and investigates the influence of
poly(alkylene furanoate) (PAF) concentration (0 to 20 wt%) and compatibilization on the physi-
cal, thermal, and mechanical properties. Both blend types, although immiscible, are successfully
compatibilized by Joncryl (J), which improves the interfacial adhesion and reduces the size of PPF
and PBF domains. Mechanical tests on bulk samples show that only PBF is able to effectively toughen
PLA, as PLA/PBF blends with 5–10 wt% PBF showed a distinct yield point, remarkable necking
propagation, and increased strain at break (up to 55%), while PPF did not show significant plasticizing
effects. The toughening ability of PBF is attributed to its lower glass transition temperature and
greater toughness than PPF. For fiber samples, increasing the PPF and PBF amount improves the
elastic modulus and mechanical strength, particularly for PBF-containing fibers collected at higher
take-up speeds. Remarkably, in fiber samples, plasticizing effects are observed for both PPF and
PBF, with significantly higher strain at break values compared to neat PLA (up to 455%), likely due
to a further microstructural homogenization, enhanced compatibility, and load transfer between
PLA and PAF phases following the fiber spinning process. SEM analysis confirms the deformation
of PPF domains, which is probably due to a “plastic–rubber” transition during tensile testing. The
orientation and possible crystallization of PPF and PBF domains contribute to increased tensile
strength and elastic modulus. This work showcases the potential of PPF and PBF in tailoring the
thermo-mechanical properties of PLA in both bulk and fiber forms, expanding their applications in
the packaging and textile industry.

Keywords: fibers; polylactide; poly(alkylene furanoate)s; furan polyesters; blends; compatibilization;
renewable polymers

1. Introduction

Being biodegradable and/or derived from renewable resources, bioplastics can repre-
sent a more sustainable alternative to conventional plastics [1]. This is especially true in all
those applications where the exceptional versatility and unmatched physical properties
of traditional polymers are overshadowed by their petrochemical origin and challenging
waste management [2]. In fact, the carbon footprint reduction at the early life cycle stages
and the alternative routes for waste disposal provided by bioplastics make them a credible
and important ally in the pathway toward a more sustainable society [3,4]. Notwithstand-
ing this, the market for bioplastics currently represents less than 1% of the total global
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plastic production market [5], due to their generally higher price and/or poorer perfor-
mance compared to conventional polymers. Hence, considerable research and development
endeavor is still needed to find economically viable routes for bioplastics’ production, to
enhance their physical-mechanical properties, and to tailor their biodegradation rate. Only
in this way, the economic and environmental sustainability of bioplastics will be full [6].

Among the applications in which biopolymers can thrive is that of sustainable syn-
thetic textile fibers. For instance, fully bioderived and biodegradable polymers, such as
poly(lactic acid) (PLA), have a promising future in the production of fibers in disposable
garments and home textiles [7]. PLA exhibits acceptable properties for these applica-
tions, such as an elastic modulus of approx. 3–4 GPa and a tensile strength of approx.
50–70 MPa, and can be easily processed using conventional manufacturing equipment,
also given its lower melting temperature (Tm = 170 ◦C) compared to that of other typical
textile polymers such as poly(ethylene terephthalate) (PET) (Tm = 260 ◦C) [8–11]. PLA
filaments can be manufactured through various spinning methods, with melt spinning
being the most commonly used [12,13]. Despite these important advantages, PLA suffers
from some severe drawbacks in the processing phase, such as poor melt strength, narrow
processing window, degradation, and poor dimensional stability [14,15], which may cause
deformations, cracking, unacceptable fiber roughness, and reduction in molecular weight.
Additionally, PLA’s intrinsic brittleness and poor strain at break (<10%) limit its widespread
applications in many packaging and textile fields [16]. These substantial shortcomings have
been generally addressed via additives, such as plasticizers and chain extenders [17,18],
and/or through physical blending with other traditional and bioderived polymers [19,20].
Accordingly, despite the recent advancements in blending and copolymerizing PLA with
other bioderived compounds [21], the quest for an appropriate, easily accessible, and
cost-effective bio-additive that enhances PLA’s ductility while preserving its stiffness and
strength persists as an ongoing research challenge.

An attractive class of biopolymers that can be blended with PLA is that of the
poly(alkylene furanoate)s (PAFs). These polymers embody a viable biobased alterna-
tive to petrochemical-derived terephthalate polyesters and are synthesized from furan-2,5-
dicarboxylic acid (FDCA), which has been listed among the top 12 green platform chemicals
obtained from sugar fermentation [22]. PAFs have been synthesized via the polycondensa-
tion of FDCA with a polyol containing from 2 to 12 methylene groups: the longer the alkyl
subunit, the higher the molecular mobility, the crystallization kinetics, and the ductility, and
the lower the glass transition and melting temperatures [14,23–26]. The interest in this class
of polyesters has recently raised not only for their fully bioderived nature, which allows for
a considerable reduction in energy use and CO2 emissions in the production phase, but also
for their outstanding mechanical, thermal, optical, and gas-barrier properties, which are
comparable or even superior to those of the corresponding terephthalate counterparts [27].

Given their remarkable properties, PAFs are promising candidates to mitigate the
drawbacks of PLA through physical blending, but despite the growing interest in this
field, the corpus of studies on furanoate-based polymer blends in general, and PLA/PAF
blends in particular, is still surprisingly limited. The most widely investigated blend is
PLA/poly(butylene 2,5-furandicarboxylate) (PBF), reported as immiscible but with promis-
ing mechanical properties if the weight fraction of PBF is kept low (under 5 wt%) [28,29].
More recently, Terzopoulou et al. [30] synthesized a copolyester of PBF with poly(butylene
adipate) (PBF-co-PBAd) and investigated its effectiveness as a compatibilizer for the
PLA/PBF blends. A similar copolyester was instead used as the only additive by
Wang et al. [31], who reported an increase in the strain at break from 5.7% of neat PLA to
222% of the blend containing 30 wt% of PBF-co-PBAd.

Our group has recently carried out a detailed investigation on PLA/PAF blends pre-
pared via solution mixing, for the production of bioderived films [32–36] and fibers [37–39].
That work involved blending PLA not only with PBF, but also with longer-alkyl-chain
PAFs such as poly(pentamethylene furanoate) (PPeF), poly(hexamethylene furanoate)
(PHF), poly(octamethylene furanoate) (POF), poly(decamethylene furanoate) (PDeF), and
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poly(dodecamethylene furanoate) (PDoF). These works confirmed that a small weight
fraction of such PAFs enhance the strain at break and the fracture toughness of neat PLA.
On the other hand, the scarce adhesion between the PAF domains and the surrounding
PLA matrix suggested that even better properties could be obtained by adding a suitable
compatibilizer. This was demonstrated in a subsequent work [40] on the development
of PLA/PEF blends produced via melt mixing and compatibilized with a commercial
compatibilizer/chain extender (Joncryl® ADR 4468, J). In this work, this compatibilizer
was proven to reduce the domain size of the dispersed phase and improve the interfacial
adhesion. That work also evidenced the advantages of melt mixing over solution mixing.
Although solution mixing allows for low-temperature processing and prevents undesired
transesterification reactions typically observed with furanoate polyesters [23], it is poorly
scalable and not environmentally friendly; moreover, residual solvents can remain in the
samples and affect the resulting thermomechanical properties. In contrast, investigating
the properties of PLA/PAF blends through melt mixing can produce industrially relevant
results applicable in large-scale manufacturing plants.

Most of this recent research effort focuses on the development of PLA/PAF films for
packaging applications, while very little has been done to produce PLA/PAF fibers, mostly
via solution spinning. Conversely, only one work [41] has been found on the production of
PLA/PEF fibers via melt spinning: in that work, the authors develop an interesting melt
spinning variation that allows for the production of a nanofibrillar microstructure, but they
lack the investigation of the mechanical properties of the resulting fibers. On the other
hand, to the best of the authors’ knowledge, no works can be found in the open scientific
literature on the thermomechanical properties of melt-spun PLA/PAF-compatibilized fiber
blends including PAFs other than PEF.

Therefore, this work aims, for the first time, at producing PLA/poly(propylene
2,5-furandicarboxylate) (PPF)- and PLA/PBF-compatibilized fibers via melt spinning and
at understanding their morphological and thermomechanical properties as a function of
the PAF type and weight fraction, also varying the collection speed. The PPF and PBF
concentrations ranged between 0 and 20 wt%, while the concentration of the employed
commercial compatibilizer (Joncryl® ADR 4468, J) was fixed to 1 phr. The work first in-
volved the melt blending of the constituents in an internal mixer to produce 2 mm thick
sheets, which were characterized and then pelletized to produce single filaments through
melt spinning. The characterization first involved a thorough rheological analysis of the
blends, and then a detailed evaluation of the blends’ microstructure, thermal properties,
and mechanical performance, both on bulk (sheets) and fiber samples.

2. Results
2.1. Characterization of the Bulk (Sheet) Samples
2.1.1. Rheological Properties

Dynamic rheological tests were carried out to assess the effect of the added PAF (PPF
or PBF) and of the compatibilizer J on the rheological properties of PLA at the processing
temperature (190 ◦C). Figure 1 shows the results of the dynamic rheological tests and
reports the trends of the complex viscosity η∗, storage modulus (G′), loss modulus (G′′ ),
and tanδ as a function of the applied frequency for some selected compositions.

The complex viscosity of neat PLA is in line with what is reported in the literature
for similar PLA grades [42,43], while the addition of 1 phr of J considerably increases the
values of η∗ throughout the whole investigated frequency range. This implies that J is
effective as a chain extender on neat PLA at the processing temperature investigated in
this work. Moreover, the increased shear thinning sensitivity for PLA-J1, evidenced by the
disappearance of the Newtonian plateau observed in neat PLA in favor of a more evident
shear thinning behavior, is a clear sign of chain extension, enhanced entanglement, and
possibly the formation of long-chain branching (LCB), as reported elsewhere for PLA/J
systems [44]. This phenomenon was also appreciated during melt compounding by the
observation of an increasing torque upon the addition of this chain extender.
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Figure 1. Results of dynamic rheological tests on some selected compositions. (a) Complex viscosity; 
(b) storage modulus; (c) loss modulus; (d) tanδ. 

The complex viscosity of neat PLA is in line with what is reported in the literature 
for similar PLA grades [42,43], while the addition of 1 phr of J considerably increases the 
values of 𝜂𝜂∗ throughout the whole investigated frequency range. This implies that J is 
effective as a chain extender on neat PLA at the processing temperature investigated in 
this work. Moreover, the increased shear thinning sensitivity for PLA-J1, evidenced by the 
disappearance of the Newtonian plateau observed in neat PLA in favor of a more evident 
shear thinning behavior, is a clear sign of chain extension, enhanced entanglement, and 
possibly the formation of long-chain branching (LCB), as reported elsewhere for PLA/J 
systems [44]. This phenomenon was also appreciated during melt compounding by the 
observation of an increasing torque upon the addition of this chain extender. 
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those of PLA-J1. More specifically, the blends containing a small (1–5 wt%) percentage of 
PAF exhibit a higher complex viscosity and 𝐺𝐺′ than PLA-J1; this could be due to the con-
tribution of the interfacial interaction of PLA and the PAF domains, which sums up to the 
branching and chain entanglement, as already observed in a previous work on PLA/PEF-
compatibilized blends [40]. On the other hand, the increased percentage of PAF decreases 
the complex viscosity, due to a less effective compatibilization and, probably, the slightly 
lower viscosity of the neat PAFs.  

By comparing the samples PLA-PPF10-J1 and PLA-PBF10-J1, i.e., the two blends con-
taining 10 wt% of either PPF or PBF, it can be observed that PPF seems to increase the 

Figure 1. Results of dynamic rheological tests on some selected compositions. (a) Complex viscosity;
(b) storage modulus; (c) loss modulus; (d) tanδ.

The addition of 10 wt% of PPF does not modify the rheological behavior of PLA
considerably. The slight increase in G′ and decrease in G′′ and tanδ, observed especially
at low frequencies, may suggest some interfacial interaction between the two phases [45].
On the other hand, all samples containing both J and a PAF (either PPF or PBF) show a
higher viscosity than neat PLA and, generally, rheological properties comparable with
those of PLA-J1. More specifically, the blends containing a small (1–5 wt%) percentage
of PAF exhibit a higher complex viscosity and G′ than PLA-J1; this could be due to the
contribution of the interfacial interaction of PLA and the PAF domains, which sums up
to the branching and chain entanglement, as already observed in a previous work on
PLA/PEF-compatibilized blends [40]. On the other hand, the increased percentage of PAF
decreases the complex viscosity, due to a less effective compatibilization and, probably, the
slightly lower viscosity of the neat PAFs.

By comparing the samples PLA-PPF10-J1 and PLA-PBF10-J1, i.e., the two blends
containing 10 wt% of either PPF or PBF, it can be observed that PPF seems to increase the
viscosity, the storage modulus, and the loss modulus more than PBF, probably due to its
higher own complex viscosity.

Finally, it is worth noting that all the blends show a decreased tanδ compared to the
neat PLA. Due to the chain extension and branching caused by J, but also to the interfacial
interaction with the PAF domains, the rheological behavior of the melted blends manifests
a higher melt elasticity. However, the values of tanδ are very rarely lower than 1, which
highlights the persistence of a viscous, liquid-like behavior in most of the investigated
frequency range.

2.1.2. Microstructural Properties of the Bulk (Sheet) Samples

A microstructural evaluation through SEM was performed to investigate the morphol-
ogy of the prepared blends in terms of size, distribution, and interfacial compatibility. All
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samples show a sea–island morphology, which is a sign of blend immiscibility; however,
as already observed for PLA/PEF blends [40], the addition of J considerably decreases
the PAF domain size and improves the interfacial adhesion with the surrounding PLA
matrix. This is evident by comparing the cryofracture surface of the samples PLA-PPF10
and PLA-PPF10-J1 (Figure 2a,b), which also shows the quantitative evaluation of the PPF
domain size distribution (experimental data and log-normal fitting), clearly highlighting a
decrease in the PPF domain size and a narrowing in the size distribution for the sample
PLA-PPF10-J1.
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show that the PBF domains are larger than those of PPF, probably due to a combination 
of different viscosity and compatibilization efficacy for these two polymers, but more 
studies are needed to fully clarify this concept. 

Figure 2. SEM micrographs of the cryofracture surface of the bulk samples (a) PLA-PPF10 and
(b) PLA-PPF10-J1; (c) lognormal fitting of the PPF domain size of PLA-PPF10 and PLA-PPF10-J1.

The PAF domain size slightly increases with the PAF content, as shown in Figure 3 and
reported in Table 1, which could be due to the coalescence of PAF droplets in the molten
state. The PPF domain size increases from 0.25 µm for a PPF content of 1 wt% to 0.31 µm for
a PPF concentration of 20 wt%, while the PBF domain size increases from 0.44 µm for a PBF
amount of 1 wt% to 0.51 µm for a PBF content of 20 wt%. These data also show that the PBF
domains are larger than those of PPF, probably due to a combination of different viscosity
and compatibilization efficacy for these two polymers, but more studies are needed to fully
clarify this concept.
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Table 1. Diameter of the PAF domains in the bulk samples PLA-PPFX-J1 and PLA-PBFX-J1
(x = 1–20 wt%).

PAF wt% PPF Domain Size (µm) PBF Domain Size (µm)

1 0.25 + 0.10 0.44 + 0.11

5 0.31 + 0.12 0.43 + 0.14

10 0.30 + 0.10 0.50 + 0.10

20 0.31 + 0.14 0.51 + 0.15

The next step has been the evaluation of the prepared blends via FT-IR to highlight
the possible occurrence of covalent bonding between PLA and the PAFs thanks to the
addition of J. Figure 4 shows the FT-IR spectra of the neat PLA, PPF, and PBF and some
selected blends, while the most important FT-IR signals are listed in Table 2 with the
corresponding assignment.
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Table 2. Assignment of the main FT-IR peaks of some selected samples.

Assignment Label PLA PPF PLA-PPF20-J1 PBF PLA-PBF20-J1

νas CH (Fu)
A

/ 3159 / 3152 /

νs CH (Fu) / 3126 / 3117 /

νas CH3

B

2996 / 2995 / 2995

νs CH3 2945 / 2945 / 2945

νas CH 2919 2963 2921 2964 2921

νs CH 2852 2850 / 2894 2851

ν C=O C 1750 1712 1750/1712 1718 1749/1721

ν C=C (Fu) D / 1581 / 1574 1582

δas CH3 E
1453 1453 1453 1453 1458

δas CH3 1383 1389 1383 1389 1383

ν C–O F 1180 1265 1181 1268/1121 1273/1180

Fu ring breathing
G

/ 1018 / 1027 /

Fu ring bending / 965; 825;
760 965; 825; 760 965; 822;

763 966; 823; 764
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The spectrum of neat PLA shows a weak signal of the in-plane and out-of-plane C–H
stretching vibration in the interval 2950–3000 cm−1, of the C=O stretching vibration at
1750 cm−1, and of the C–O–C stretching vibration at 1180 cm−1 [46]. On the other hand, neat
PPF and PBF show the typical signals of furan-based aliphatic polyesters [47,48], i.e., the
symmetric and asymmetric stretching of the furan ring at 3126/3117 and 3159/3152 cm−1;
the symmetric and asymmetric C–H stretching at 2850–2960 cm−1; the vibration of the C=C
bond of furan ring at 1574 cm−1 the ester carbonyl stretching at 1712/1718 cm−1 [49,50];
and the furan ring breathing and bending at 1018/1027 cm−1, 965 cm−1, 825 cm−1, and
760 cm−1. The spectra of the blends show the same vibrations of the two neat polymers,
with only slight red or blue shifts in correspondence of only some signals, such as the
C=O stretching, which might indicate some compatibilization. However, neither remark-
able intensity variations nor the presence of new bands can be observed, which suggests
that the interaction between PLA and the PAF domains is probably mostly due to weak
intermolecular bonds rather than the formation of interphase covalent bonds.

2.1.3. Thermal Properties

Figure 5a,b shows the DSC thermograms of neat PLA, PPF, and PBF (Figure 5a) as
well as of PLA/PPF blends (Figure 5b), highlighting the thermal behavior of the samples
in a heating–cooling–heating cycle (H1-C-H2). The thermograms of PLA/PBF blends,
qualitatively similar to those shown here, are reported in the Supplementary Materials
(Figure S1).
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PPF10, and PLA-PPFx-J1 (x = 1–20 wt%).

The neat, as-received polymers present the traditional thermal profile of semicrys-
talline materials, with glass transition between 40 and 70 ◦C and melting/crystallization
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between 100 and 200 ◦C (Table 3). For all three polymers, the Tg in the second heating
scan is approximately 10 ◦C lower than that measured in the first scan, because the first
heating/cooling cycle erases the aging phenomena responsible for the Tg increase observed
on the as-received materials. The Tg values measured on the three polyesters are in line
with literature data [30,51,52], and in particular, it is interesting to note that, for the two fu-
ranoate polyesters, the slight lengthening of the alkyl subunit causes a remarkable decrease
in Tg for PBF compared to PPF (40.7 ◦C vs. 51.6 ◦C in H2) [53]. In both cases, though, the
Tg is lower than that of neat PLA (60.5 ◦C in H2).

Table 3. Main results of DSC tests on as received granules of PLA, PPF, and PBF.

PLA PPF PBF

Thermal Cycle H1 C H2 H1 C H2 H1 C H2

Tg [◦C] 71.8 50.7 60.5 62.0 45.2 51.6 50.0 / 40.7

Tcc [◦C] / / 111.0 105.1 / / / / /

∆Hcc [J/g] / / 36.9 3.3 / / / / /

Tm [◦C] 186.7 / 179.4 173.3 / 170.6 178.4 / 170.8

∆Hm [J/g] 51.8 / 42.8 59.3 / 0.5 61.6 / 46.1

Tc [◦C] / / / / / / / 114.7 /

∆Hc [J/g] / / / / / / / 61.6 /

Xc [%] 55.2 / 6.3 39.5 / 0.4 47.8 / 35.7

H1 = first heating scan, C = cooling scan, H2 = second heating scan, Tg = glass transition temperature,
Tcc = cold crystallization temperature, ∆Hcc = cold crystallization enthalpy, Tm = melting temperature,
∆Hm = melting enthalpy, Tc = crystallization temperature, ∆Hc = crystallization enthalpy, and Xc = crystallinity
degree.

Moreover, all three polymers show an endothermic peak associated to melting in
H1, with PPF and PBF exhibiting a similar Tm (173.3 ◦C vs. 178.4 ◦C) and crystallinity
degree (39.5% vs. 47.8%). However, only PLA and PBF are capable of crystallizing in the
cooling scan, and the crystallinity of PBF measured after the second heating scan is the
highest, being 35.7%. Conversely, PPF is almost not capable of crystallizing while cooled
at 10 ◦C/min; thus, it presents a very shallow melting event in H2 (∆Hm = 0.5 J/g). This
is due to the following: (i) its relatively short alkyl subunit, which results in restricted
chain mobility; and (ii) the odd number of methylene groups in this subunit, which further
hinders the possibility of ordered chain arrangement. PBF, on the other hand, with four
methylene groups, shows a higher tendency to crystallize. This is known as the odd-even
effect, described for furanoate polyesters by Tsanaktsis et al. [54] and by Jiang et al. [55].

Since PLA/PPF and PLA/PBF blends were produced via melt mixing and compression
molding, it is plausible that the microstructure and the crystallinity of the three polymer
phases in the prepared blends resemble those found in the H2 scan performed on the
parent polymers, and not the H1 stage. More specifically, PBF domains are likely to be
semicrystalline, while the PPF phase is probably amorphous. This is supported by the
DSC scans of the blends: the PLA/PPF blends (Figure 5b) do not show any melting event
associated with PPF even in H1, and the measured melting temperature is constantly equal
to that of PLA, while in PLA/PBF blends (Figure S1), the Tm measured in H1 decreases with
an increase in PBF fraction, as observable also from the data reported in Table 4, because
this melting event is the sum of the melting of the crystals of PLA and those of PBF. Due
to the impossibility to distinguish the two contributions, the calculation of a crystallinity
degree for PLA and PBF in the blends is not feasible. An attempt has been made to separate
the two contributions by performing a DSC scan at a low heating rate (1 ◦C/min) on the
blend PLA-PBF20-J1, but this has not been successful, as the peak, although narrower, is
still single.
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Table 4. Main results of DSC test (first heating scan—H1 and cooling scan—C) on the prepared
blends (bulk samples).

Sample Tg
(◦C)

Tcc
(◦C)

∆Hcc
(J/g)

Tm
(◦C)

∆Hm
(J/g)

Xc (PLA)
(%)

Tc
(◦C)

∆Hc
(J/g)

PLA 59.9 94.7 26.3 183.2 57.3 33.1 95.8 10.9

PLA-J1 56.7 96.7 31.2 176.1 43.2 12.9 94.8 3.8

PLA-PPF10 58.3 95.3 37.3 176.8 51 16.2 98.7 12.9

PLA-PPF1-J1 61.3 97.2 32.3 175.6 45.3 14.2 / /

PLA-PPF5-J1 59.3 97.4 32.1 178.2 42 11.2 / /

PLA-PPF10-J1 54.7 96.8 28.2 176.8 37.3 10.9 / /

PLA-PPF20-J1 54.7 96.8 28.2 176.8 37.3 12.3 / /

PLA-PBF1-J1 58.9 97 31.5 178.9 43.5 / 96.1 3.8

PLA-PBF5-J1 62.8 96 31.9 177.9 45 / 97.8 17

PLA-PBF10-J1 39.3/59.0 97.1 29.7 177.9 45.2 / 95 5

PLA-PBF20-J1 39.5/59.2 96.7 28.3 178.5 45.3 / 99.4 9.8

Tg = glass transition temperature, Tcc = cold crystallization temperature, ∆Hcc = cold crystallization enthalpy,
Tm = melting temperature, ∆Hm = melting enthalpy, Tc = crystallization temperature, ∆Hc = crystallization
enthalpy, and Xc = crystallinity degree.

Therefore, the value of Xc of the PLA phase can be calculated only for PLA/PPF
blends, other than for neat PLA and PLA-J1, and is reported in Table 4. It can be observed
that, for PLA, the Xc strongly decreases from 33.1% to 12.9% with the addition of J, due
to its chain extension and branching effect. On the other hand, the introduction of PPF
does not significantly modify the crystallinity degree of PLA, as all the PLA-PPFx-J1 blends
show values of Xc in the range 10–14%.

Thermogravimetric analysis (TGA) was performed to assess the resistance of the
prepared blends to thermal degradation. The TGA thermograms of the PLA/PBF blends
are reported in the Supplementary Materials (Figure S2), while those of the PLA/PPF
blends are not reported as they are qualitatively and quantitatively similar to those of the
PLA/PBF samples. None of the samples show a mass loss at 100 ◦C, which indicates a very
low moisture content and, hence, effective storage of the materials in dry conditions before
testing. Neat PLA, PPF, and PBF degrade in a single step between 350 ◦C and 450 ◦C, with
peak derivative thermogravimetry (DTG) temperatures (Td) of 383 ◦C, 400 ◦C, and 404 ◦C,
respectively. Very similar values are found in the blends. These results are comparable to
previous findings on PLA/PEF blends reported in a preceding study [40].

2.1.4. Mechanical Properties

Figure 6a,b shows representative tensile stress–strain curves on the samples PLA-
PPFx-J1 and PLA-PBFx-J1 (x = 1–20 wt%), while the most important mechanical results
are summarized in Table 5. Neat PLA shows an elastic modulus of approximately 4.0 GPa,
a tensile strength of 56.3 MPa, and a strain at break of 5.2%, in line with semicrystalline
PLAs of similar grade and in good agreement with the technical datasheet. As already
observed in previous works [40], the addition of 1 phr J to neat PLA reduces the elastic
modulus and increases the properties at break, in agreement with the decrease in the degree
of crystallinity measured via DSC.
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Table 5. Main properties obtained from the tensile tests on the prepared bulk samples. 
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PLA 4.0 ± 0.1 56.3 ± 0.4 5.2 ± 0.1 
PLA-J1 3.1 ± 0.1 60.7 ± 0.8 6.6 ± 0.4 
PLA-PPF1-J1 2.7 ± 0.1 60.2 ± 0.9 7.2 ± 0.4 
PLA-PPF5-J1 2.5 ± 0.1 59.8 ± 1.3 7.7 ± 0.8 
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E = elastic modulus; UTS = ultimate tensile strength; εb = strain at break. 
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lower elastic modulus and similar ultimate tensile strength (UTS) and strain at break as 
the neat PLA, and the addition of J (sample PLA-PPF10-J1) increases the properties only 
modestly. The best ultimate properties among the PLA/PPF blends are shown by the sam-
ple PLA-PPF5-J1, which exhibits a stress at break of 59.8 MPa (+6% than neat PLA) and a 
strain at break of 7.7% (+48% than neat PLA), but these improvements are still modest. 
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PPF show incipient plasticization after the maximum stress, none of the specimens with 
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Figure 6. Representative stress–strain curves of the prepared compositions (bulk samples). (a) Blends
with PPF; (b) blends with PBF.

Table 5. Main properties obtained from the tensile tests on the prepared bulk samples.

Sample E (GPa) UTS (MPa) εb (%)

PLA 4.0 ± 0.1 56.3 ± 0.4 5.2 ± 0.1

PLA-J1 3.1 ± 0.1 60.7 ± 0.8 6.6 ± 0.4

PLA-PPF1-J1 2.7 ± 0.1 60.2 ± 0.9 7.2 ± 0.4

PLA-PPF5-J1 2.5 ± 0.1 59.8 ± 1.3 7.7 ± 0.8

PLA-PPF10 3.0 ± 0.1 54.7 ± 1.0 5.3 ± 0.3

PLA-PPF10-J1 3.1 ± 0.1 58.5 ± 2.8 6.2 ± 0.9

PLA-PPF20-J1 2.6 ± 0.1 56.1 ± 4.3 5.6 ± 0.7

PLA-PBF1-J1 3.4 ± 0.1 55.5 ± 0.5 8.3 ± 1.1

PLA-PBF5-J1 3.3 ± 0.1 53.4 ± 1.9 22.0 ± 1.5

PLA-PBF10-J1 3.4 ± 0.2 49.7 ± 1.0 55.5 ± 24.5

PLA-PBF20-J1 2.9 ± 0.1 44.8 ± 3.7 11.5 ± 3.1
E = elastic modulus; UTS = ultimate tensile strength; εb = strain at break.

For PLA/PPF blends (Figure 6a), the uncompatibilized blend PLA-PPF10 shows lower
elastic modulus and similar ultimate tensile strength (UTS) and strain at break as the neat
PLA, and the addition of J (sample PLA-PPF10-J1) increases the properties only modestly.
The best ultimate properties among the PLA/PPF blends are shown by the sample PLA-
PPF5-J1, which exhibits a stress at break of 59.8 MPa (+6% than neat PLA) and a strain at
break of 7.7% (+48% than neat PLA), but these improvements are still modest. Although the
stress–strain curves of the blends containing a small (<5 wt%) amount of PPF show incipient
plasticization after the maximum stress, none of the specimens with this composition can
sustain an extended necking propagation.
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Quite different is the case for PLA/PBF blends (Figure 6b), where the samples with a
PBF fraction of 5–10 wt% show a very evident yield point followed by a remarkable necking
propagation accompanied by considerable whitening of the specimens, which results in
a noteworthy increase in the strain at break. Samples PLA-PBF5-J1 and PLA-PBF10-J1,
in fact, exhibit a similar elastic modulus and UTS as that of neat PLA, but their strain at
break is 22% (+ 320% than neat PLA) and 55% (+ 960% than neat PLA), respectively. For
PBF fractions lower than 5 wt% and higher than 10 wt%, the plasticization performance
is more modest, even though a certain increase in the strain at break is still observable.
These differences in the toughening ability of PPF and PBF on bulk PLA probably stem
from the fact that PBF has a lower Tg and is tougher than PPF [29], which allows it to be
more ductile and to effectively plasticize PLA, although the blend PLA/PPF seems better
compatibilized, as the smaller domain size suggests (see SEM micrographs in Figure 3).

2.2. Characterization of the Fiber Samples
2.2.1. Microstructural Characterization

The compounded blends were pelletized and inserted in a single-screw extruder
to produce fibers through melt spinning, with a take-up speed varying from 10 m/min
to 100 m/min. As expected, the cross-section of the fibers decreases with the collection
speed, as qualitatively observable from the pictures of the fibers PLA-PBF5-J1 shown in
Figure 7a–f). All the produced fibers have a uniform and circular cross-section, regardless
of the composition and the collection speed (see Figure 7g–i, reported as an example),
and therefore it is possible to calculate the fiber diameters, reported in Table 6. The fiber
diameter ranges from 87 µm to 570 µm and decreases with increasing collection speed,
while it is not remarkably affected by the blend composition. From these diameters, the
value of the spinning draw ratio (DR) was calculated as the ratio between the squared
spinneret diameter (1 mm) and the squared fiber diameter [56]. The obtained DR values
range from 3 to 132 (Table 6). Table 6 also reports the values of the fiber titers, which range
from approximately 300 tex for the lowest take up speeds down to 5–20 tex for the highest
take up speeds.
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Table 6. Diameters (expressed in µm) and titers (expressed in tex) of the fiber samples prepared
at different collection speeds (average ± standard deviation). Values in parentheses represent the
draw ratios.

Diameters (µm) 10 m/min 20 m/min 40 m/min 80 m/min 100 m/min

PLA 569 ± 22 (3.1) 347 ± 21 (8.3) 302 ± 14 (11.0) 207 ± 38 (23.3) 151 ± 21 (43.9)

PLA-J1 457 ± 70 (4.8) / 219 ± 15 (20.9) 184 ± 13 (29.5) /

PLA-PPF10 / / 225 ± 15 (19.8) 134 ± 12 (55.7) /

PLA-PPF1-J1 485 ± 25 (4.3) / 235 ± 24 (18.1) / /

PLA-PPF5-J1 449 ± 34 (5.0) / 232 ± 19 (18.6) 209 ± 30 (22.9) /

PLA-PPF10-J1 497 ± 22 (4.0) / 242 ± 18 (17.1) 179 ± 19 (31.2) /

PLA-PPF20-J1 500 ± 20 (4.0) / 250 ± 11 (16.0) 178 ± 9 (31.6) /

PLA-PBF1-J1 497 ± 54 (4.0) 339 ± 34 (8.7) 241 ± 17 (17.2) 163 ± 14 (37.6) 151 ± 11 (43.9)

PLA-PBF5-J1 521 ± 38 (3.7) 326 ± 21 (9.4) 265 ± 12 (14.2) 186 ± 18 (28.9) 87 ± 23 (132.1)

PLA-PBF10-J1 566 ± 32 (3.1) 414 ± 18 (5.8) 303 ± 32 (10.9) 205 ± 32 (23.8) 120 ± 32 (69.4)

PLA-PBF20-J1 557 ± 28 (3.2) 389 ± 10 (6.6) 281 ± 11 (12.7) 202 ± 7 (24.5) 157 ± 8 (40.6)

Titer (tex) 10 m/min 20 m/min 40 m/min 80 m/min 100 m/min

PLA 321 ± 3 154 ± 9 88 ± 4 39 ± 8 30 ± 2

PLA-J1 240 ± 49 / 99 ± 13 75 ± 12 /

PLA-PPF10 / / 49 ± 5 20 ± 2 /

PLA-PPF1-J1 219 ± 7 / 57 ± 7 / /

PLA-PPF5-J1 196 ± 9 / 47 ± 5 41 ± 8 /

PLA-PPF10-J1 241 ± 6 / 58 ± 4 46 ± 2 /

PLA-PPF20-J1 263 ± 12 / 62 ± 6 30 ± 1 /

PLA-PBF1-J1 259 ± 10 140 ± 4 62 ± 8 31 ± 2 24 ± 2

PLA-PBF5-J1 256 ± 9 110 ± 10 69 ± 3 35 ± 5 5 ± 1

PLA-PBF10-J1 319 ± 5 177 ± 7 84 ± 10 44 ± 3 23 ± 7

PLA-PBF20-J1 311 ± 11 155 ± 6 83 ± 6 42 ± 2 25 ± 3

The increased take-up speed decreases not only the diameter of the fibers, but also the
size of the PAF domains, as observable from Figure 8a–f, reporting the micrographs of the
cryofracture surface of the fibers PLA-PPF20-J1 and PLA-PBF20-J1 collected at different
take-up speeds (Figure 8a–d) and the domain size in the PLA-PPFx-J1 fibers (x = 1–20 wt%)
(Figure 8e,f). All fibers present PAF domains smaller than those found in the bulk samples
at the same PAF amount. Furthermore, the adhesion between the PAF domains and the
surrounding PLA matrix seems improved compared to the bulk samples, probably because
melt spinning, as an additional processing step in the melt, promotes a further reaction
of J, thereby enhancing its compatibilizing effect. Moreover, the increase in the take-up
speed further uniforms the microstructure by decreasing the domain size and narrowing
the size distribution, as observable in Figure 8e,f for PPF-containing samples. All these
effects contribute to the very interesting mechanical properties measured on the fibers, as
described in Section 2.2.3.
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Figure 8. (a–d) SEM micrographs of the cryofracture surface of some selected fibers. (a) PLA-PPF20-
J1 (10 m/min); (b) PLA-PPF20-J1 (80 m/min); (c) PLA-PBF20-J1 (10 m/min); (d) PLA-PBF20-J1
(80 m/min). (e) PPF domain size in fibers PLA-PPF20-J1 collected at different take-up speeds:
experimental data and lognormal fitting; (f) PPF domain sizes in all PPF-containing fibers as a
function of the take-up speed.

2.2.2. Thermal Characterization

All the prepared fibers were subjected to DSC and TGA tests with the same parameters
as the bulk samples. For these tests, only the results of DSC on PLA/PBF fibers are reported
in the Supplementary Materials (Figure S3a–f and Tables S1–S6) as an example. All the
other data are not reported, as they are qualitatively similar to those of the bulk samples.
They are only described qualitatively hereafter. TGA tests were performed especially to
ensure that the fibers were properly stored in dry conditions, and the absence of any mass
loss at 100 ◦C confirms this point.

DSC scans were performed mainly to measure any impact of the spinning conditions
on the crystallinity of the prepared blends. For the fibers PLA-PPFx-J1 (x = 1–20 wt%), the
crystallinity of the PLA phase is generally higher than that measured on the bulk samples
and slightly increases with the take-up speed, while it is not significantly affected by the
PPF amount. The values of Xc range from 13–15% for the fibers collected at 10 m/min to
17–20% for the fibers collected at 80 m/min, probably due to the increased orientation of
the polymer chains. For the samples PLA-PBFx-J1 (x = 1–20 wt%), the quantification of
the crystallinity is more difficult due to the very close melting events of PLA and PBF (see
Section 2.1.3). However, the melting enthalpy ∆Hm slightly increases with the collection
speed, passing from 45–46 J/g of the fibers collected at 10 m/min to 48–50 J/g of the fibers
collected at 80–100 m/min. This suggests that, also for these samples, the crystallinity
slightly increases with the collection speed. Nevertheless, since the extra drawing to
which the fibers are subjected is applied to the supercooled melt just after the extrusion,
the impact on crystallinity and chain orientation is, expectedly, rather modest, and the
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two main effects of the increased collection speed are the decrease in diameter and the
microstructural homogenization.

2.2.3. Mechanical Characterization

Figure 9 shows representative tensile stress–strain curves of some selected fiber com-
positions, while the most important mechanical parameters extracted from these tests are
reported in Figure 10. Neat PLA fibers exhibit an elastic modulus of 2.5–3 GPa and a
mechanical strength of approximately 60 MPa, regardless of the collection speed, while the
strain at break is 3–10% for low take-up speeds and increases up to 246% for fibers collected
at 100 m/min, probably due to the scarce chain orientation coupled with the size effect.
The addition of J further improves the strain at break, likely due to the chain extension
effect performed by J on PLA.
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What is more interesting, though, is the effect of PPF and PBF on the mechanical
properties. An increased PPF and PBF fraction, in fact, increases the elastic modulus and
the mechanical strength, and this effect is more evident for PBF-containing fibers collected
at higher take-up speeds. Moreover, some compositions also present an exceptional strain
at break; for example, the strain at break is equal to 333% for the sample PLA-PBF10-J1
collected at 80 m/min and to 293% for the sample PLA-PBF5-J1 collected at 40 m/min.
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These results confirm the plasticizing effect performed by a small amount of PBF on PLA
observed on bulk samples. What is even more remarkable is that the same plasticizing
effect is now observed also for PPF; for instance, the composition PLA-PPF5-J1 collected
at 10 m/min shows a noticeable strain at break of 455%, which is 50 times higher than
that of neat PLA collected at the same collection speed, but also other samples containing
5–10 wt% of PPF show strain at break higher than 200%. Additionally, the presence of a
considerable strain-hardening region after the yield point for some compositions suggests
the possibility of a subsequent cold drawing, to further increase the mechanical properties
of these fibers.

This toughening effect is probably due to the higher microstructural homogenization
resulting from the fiber spinning, the smaller PPF and PBF domain size, and the enhance-
ment of the effect of J, which probably completes its reaction in the melt spinning stage.
All these effects favor the load transfer between the PLA matrix and the PAF domains,
which can sustain the load and effectively toughen the resulting fibers. In fact, the SEM
micrographs of the tensile fracture surface of the PPF fibers (Figure 11) clearly show that
the PPF domains considerably deform in the tensile direction, and their shape changes
from spheres to fibrils.
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surface (b–d) of the following: (a,b) PLA-PPF10 (80 m/min); (c,d) PLA-PPF10-J1 (40 m/min).

It is worth mentioning that the non-compatibilized PLA-PPF10 sample collected at
80 m/min showed a ductile behavior for 4 samples out of 10, with a strain at break of
35.1%. Additionally, these samples showed considerable deformation of the PPF domains,
as shown in Figure 11b, but the adhesion between these domains and the surrounding PLA
matrix was poorer than that observed on the compatibilized samples (Figure 11d).

This deformation may be caused by a possible “plastic–rubber” transition during
the tensile test, where the heat caused by the internal friction during the test may induce
the local glass-to-rubber transition of PPF and PBF and cause their softening. This effect
has already been observed for PLA/PBF bulk samples [29], but this is the first time that
it has been observed on PLA/PBF fibers and especially on PLA/PPF samples. Given
the higher Tg of PPF compared to PBF, the observation of this phenomenon on PPF is
even more remarkable. This considerable orientation of the PPF and PBF domains may
also induce their crystallization, thereby causing a strengthening–toughening combined
effect on PLA. This may explain the concurrent increase in the tensile strength and elastic
modulus observed for some compositions.
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3. Materials and Methods
3.1. Materials

Fiber-grade PLA Ingeo® 6100D was provided by NatureWorks LLC (Minnetonka,
MN, USA) in form of granules. It shows a density of 1.24 g/cm3 and a melt index of
24 g/10 min at 210 ◦C. High-molecular-weight poly(propylene 2,5-furandicarboxylate)
(PPF) and poly(butylene 2,5-furandicarboxylate) (PBF) were synthesized via the two-stage
melt polycondensation method (esterification and polycondensation) in a glass batch reactor
as described in our previous works [57,58]. In brief, for the preparation of the polyesters,
proper amounts of 2,5-dimethylfuran-dicarboxylate (DMFD) and the appropriate diols at a
molar ratio of diester/diol = 1/2 were charged into the reaction tube of the polyesterification
apparatus. TBT (400 ppm) was added as catalyst, and the apparatus with the reagents was
evacuated several times and filled with argon in order to remove the whole oxygen amount.
The reaction mixture was heated at 160 ◦C under argon atmosphere (5 mL/min) for 2 h, at
170 ◦C for additional 2 h, and finally at 180–200 ◦C for 2 h. This first step (transesterification)
was considered completed after the collection of almost all the theoretical amount of
CH3OH, which was removed from the reaction mixture by distillation and collected in
a graduate cylinder. In the second step of polycondensation, a vacuum (5.0 Pa) was
applied slowly over a period of time of about 15 min to remove the excess of diols and
to avoid excessive foaming. as well as to minimize oligomer sublimation, which is a
potential problem during the melt polycondensation. The temperature was increased
during vacuum application to 220 ◦C, while the stirring speed was increased to 720 rpm.
The reaction continued at this temperature for 1 h, and after that time, the temperature was
increased to 235 ◦C for 2 h and to 250 ◦C for an additional 2 h. After the polycondensation
reactions were completed, the polyesters were easily removed, milled, and washed with
methanol. Intrinsic viscosity (η) measurements of prepared polyesters were performed
using an Ubbelohde viscometer at 30 ◦C in a mixture of phenol/1,1,2,2-tetrachloroethane
(60/40 w/w), and it was found that their (η) values are as follows: PBF = 0.68 dL/g
(Mn = 18,166 g/mol) and PPF = 0.63 dL/g (Mn = 16,150 g/mol).

The employed compatibilizer/chain extender was a poly(styrene-acrylic-co-glycidyl
methacrylate) (SAGMA), commercially known as Joncryl® ADR 4468 (J). It was supplied
by BASF Gmbh (Ludwigshafen am Rhein, Germany) in the form of colorless solid flakes
and used as received. It shows a density of 1.08 g/cm3 and a glass transition temperature
of 59 ◦C, according to the producer’s datasheet.

3.2. Sample Preparation
3.2.1. Bulk Samples

Samples based on PLA/PPF- and PLA/PBF-compatibilized blends were produced via
melt compounding and hot pressing. PLA, PPF, PBF, and J granules were dried overnight at
80 ◦C in vacuum conditions and added in a proper amount into a melt compounder Thermo
Haake Rheomix 600, where they were processed at 190 ◦C for 10 min, with a rotational
speed of the counter-rotating rotors of 50 rpm (J was added at minute 3, after complete
melting all polymer phases). The melt-compounded material was then hot-pressed with a
Carver hot plate press at 190 ◦C for 10 min, with a load of 7 tons applied on a square mold
of 120 × 120 × 2 mm3 (applied pressure = 4.8 MPa).

The nominal compositions of the prepared blends, in terms of the relative amount
of PPF, PBF, and J, are reported in Table 7. The amount of PPF and PBF ranged from
1 to 20 wt%, as previous studies on PLA/PAF blends showed that the optimal PAF amount
that optimized the mechanical properties fell in this range [40]. For the compatibilized
blends, the amount of J was fixed to 1 phr, as this was selected as the optimal compo-
sition based on previous experiments on similar PLA/PAF systems [40]. However, one
uncompatibilized blend containing 10 wt% of PPF (i.e., PLA-PPF10) was produced to
verify the effectiveness of J as a compatibilizer. The uncompatibilized blend of PLA-PBF10
was not produced due to the scarcity of material available. However, the advantage of
adding a proper compatibilizer was amply demonstrated by verifying the scarce mechani-
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cal properties of the samples PLA-PPF10 (this work) and PLA-PEF10 (containing 10 wt% of
poly(ethylene furanoate), characterized in a previous work of our group [40]).

Table 7. List of the prepared samples with nominal weight compositions.

Label PLA (wt%) PPF (wt%) PBF (wt%) J (phr)

PLA 100 0 0 0
PLA-J1 100 0 0 1
PLA_PPF10 90 10 0 0
PLA_PPF1_J1 99 1 0 1
PLA_PPF5_J1 95 5 0 1
PLA_PPF10_J1 90 10 0 1
PLA_PPF20_J1 80 20 0 1
PLA_PBF1_J1 99 0 1 1
PLA_PBF5_J1 95 0 5 1
PLA_PBF10_J1 90 0 10 1
PLA_PBF20_J1 80 0 20 1

3.2.2. Fiber Samples

Fiber samples were prepared through melt compounding and melt spinning. Melt
compounding was performed with the same parameters adopted for the preparation of
bulk samples. After compounding, the blends were cryogenically grinded with the aid
of liquid nitrogen in an IKA M20 universal blade mill (IKA, Staufen, Germany), for a
total of 10 min in steps of 2 min each, to avoid excessive heat generation. Prior to the
melt spinning process, the obtained coarse powders were dried overnight at 80 ◦C under
vacuum conditions.

Melt spinning was performed in a Friuli Filiere (Udine, Italy) TCM500 single-screw
laboratory extruder, equipped with a screw of 14 mm diameter (L/D ratio = 20) and a
single nozzle circular spinneret with a diameter of 1 mm. A representation of the laboratory
extruder along with the main components of the melt spinning apparatus and the most
important spinning parameters (temperature profile and collection rates) are presented in
Figure 12. The instrument had temperature control through four different heating bands
along the extrusion cylinder (one of which on the spinneret), and a cooling jacket in the
feeding zone to avoid immediate melting of the material and possible clogging of the
cylinder. Two sets of cooling fans were placed in series with the extruder, one immediately
after the die and another set of four at 30 cm from the die. The collection system was
made of a moving spool that directed the fibers and a rotating drum for the collection; two
different cylinders were employed (respectively with a diameter equal to 5 cm and 20 cm),
depending on the required collection rates.
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The rotational speed of the screw was set to 25 rpm, and the four different temperatures
along the barrel were set at 140, 170, 190, and 210 ◦C. This temperature profile was chosen,
after some preliminary trials, as a trade-off between the optimal profile for the blends
containing 1 wt% and 20 wt% of furanoate polyester, i.e., the blends with the highest
and lowest viscosity, respectively, as highlighted by the rheological tests performed before
spinning. The choice of the processing temperatures was further supported by other studies
from the literature about the melt spinning of both PLA Ingeo® Biopolymer 6100D [59]
and its blends [60], with a single-screw extruder set at an ascending temperature profile
ranging approximately between 180 ◦C and 220 ◦C.

The three selected collection rates applied on all compositions were 10 m/min,
40 m/min, and 80 m/min. Some samples could also be collected at 100 m/min, but only
for the PBF-containing blends. Some preliminary trials were also performed by collecting
the fibers at 20 m/min. The samples were labelled as the bulk samples with the additional
indication of the collection speed. For instance, the sample PLA_PBF20_J1_40 m/min is
the composition containing 20 wt% of PBF, 1 phr of Joncryl, and collected at 40 m/min.

3.3. Characterization

The rheological properties of the prepared blends were investigated with a Discov-
ery HR-2 hybrid rheometer (TA instrument, New Castle, DE, USA), in a parallel-plate
configuration (gap = 1.9 mm), in frequency sweep mode from 0.05 to 600 rad/s at 190 ◦C.
The tests were performed on disc specimens that were laser-cut from the prepared sheets
(diameter = 25 mm, thickness = 2 mm). This test allowed for the measurement of the com-
plex viscosity η∗, the shear storage and loss moduli (G′, G′′ ), and the tanδ as a function of
frequency.

The microstructural properties of the prepared blends were analyzed via a field-
emission scanning electron microscope (FE-SEM) Zeiss Supra 40 (Carl Zeiss AG, Oberkochen,
Germany) by analyzing the cryofracture surface after Pt-Pd sputtering.

Fourier-transform infrared (FT-IR) spectroscopy was performed in attenuated total
reflectance (ATR) mode on the surface of the prepared samples via a Perkin-Elmer Spectrum
One IR spectrometer (Perkin Elmer GmbH, Waltham, MA, USA), equipped with a ZnSe
crystal. In total, 100 scans were superimposed for each spectrum in a wavenumber range
of 650–4000 cm−1 (resolution = 4 cm−1).

Thermogravimetric analysis (TGA) was performed with a Mettler TG50 thermobal-
ance (Mettler Toledo, Columbus, OH, USA). Specimens of approximately 20 mg were
cut from the prepared sheets and subjected to a thermal ramp of 10 ◦C/min from room
temperature up to 700 ◦C, under a nitrogen flow of 20 mL/min. One specimen was tested
per composition. The tests allowed for measuring the temperatures associated to a mass
loss of 1 wt%, 3 wt%, and 5 wt% (T1%,T3%,T5%), the onset degradation temperature (Tonset)
via the tangent method, the degradation temperature (Td), corresponding to the peak of the
derivative thermogravimetry (DTG) curve, and the final mass after the test (mr).

Differential scanning calorimetry (DSC) was carried out with a Mettler DSC30 calorime-
ter (Mettler Toledo, Columbus, OH, USA) on specimens of approximately 15 mg cut from
the prepared sheets. The specimens were subjected to a heating–cooling–heating cycle at
10 ◦C/min between 0 ◦C and 250 ◦C, under a nitrogen flow of 100 mL/min. One specimen
was measured per each composition. The test resulted in the determination of the glass
transition temperature (Tg) and the melting, crystallization, and cold crystallization tem-
peratures and enthalpies (Tm, Tc, Tcc, Hm, Hc, Hcc) of the PLA phase in the blends. Where
possible, the degree of crystallinity of PLA, PPF, and PBF (χPLA, χPPF, χPBF) was calculated
via Equation (1) [61]:

χ =
∆Hm − ∆Hcc

∆H0·ω
·100 (1)

where ∆H0 is the theoretical melting enthalpy, equal to 93.7 J/g for PLA [62] and 129 J/g
for PBF [63], respectively, and ω is the weight fraction of PLA or PEF.
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The mechanical properties of the prepared blends were investigated, for bulk sheet
samples, on dumbbell 1BA specimens (UNI EN ISO 527-2) via quasi-static tensile tests,
performed on an Instron 5969 universal testing dynamometer (Norwood, MA, USA),
equipped with a 1 kN load cell. The elastic modulus (E) was determined by testing five
specimens at 0.25 mm/min while measuring the strain with a resistance extensometer
Instron 2620, having a gauge length of 12.5 mm. The elastic modulus was evaluated as
the slope of the stress–strain curve between the strain levels of 0.05% and 0.25%. Five
additional specimens were tested at 1 mm/min until rupture, and these properties allowed
for the measurement of the ultimate tensile strength (UTS), evaluated as the maximum
stress and the strain at break (εb).

Mechanical tensile tests were also performed on all the collected fiber samples. In this
case, the Instron 5969 was equipped with a 100 N load cell. To perform mechanical tensile
tests on fibers, 10 specimens per sample were prepared gluing the fibers onto paper frames
with a gauge length of 20 mm, to facilitate their handling. The as-spun fibers were mounted
in the tensile testing grips, fixed at a distance of 20 mm, and tested at 10 mm/min till
break. The elastic modulus, ultimate tensile strength, and strain at break were evaluated as
described for the bulk samples. All the mechanical tests were performed at a temperature
of 25 ◦C and with a relative humidity of 40%.

4. Conclusions

This work demonstrated the successful preparation of PLA/PPF and PLA/PBF blends
in the form of bulk (sheet) samples and, for the first time, also in the form of melt-spun
fibers. The detailed physical, thermal, and mechanical characterization highlighted the
positive contribution of PPF and PBF in tuning PLA performance as a function of the PAF
concentration (1 to 20 wt%) and compatibilization.

For bulk samples, although all the prepared blends showed a sea–island morphology,
indicating blend immiscibility, the addition of 1 phr of a commercial compatibilizer reduced
the size of PAF domains and improved the interfacial adhesion with the PLA matrix.
Conversely, the PAF domain size slightly increased with increasing PAF content, possibly
due to coalescence of PAF droplets during melting, and PBF domains were larger than
those of PPF, likely due to differences in viscosity and compatibilization efficacy between
the two furanoate polyesters. The immiscibility between PLA and either of the considered
PAFs was also evident from the DSC analysis, in which the Tg measured on the blends was
similar to that of PLA. Moreover, the slow crystallization rate of PPF results in amorphous
PPF domains, while the PBF domains are likely semicrystalline.

For the mechanical properties, PLA-PPF5-J1 demonstrated the highest stress at break
of 59.8 MPa (+6% compared to neat PLA) and a strain at break of 7.7% (+48% compared
to PLA). PLA/PBF blends with 5–10 wt% PBF exhibited a distinct yield point, followed
by remarkable necking propagation, resulting in a significant increase in strain at break.
Samples PLA-PBF5-J1 and PLA-PBF10-J1 displayed similar elastic modulus and UTS to neat
PLA, but with strain at break values of 22% (+320% compared to neat PLA) and 55% (+960%
compared to neat PLA), respectively. Hence, although the PLA/PPF blends appeared better
when compatibilized, as evident from smaller domain size in SEM micrographs, PBF
exhibited an improved toughening abilities on bulk PLA, likely due to PBF’s lower Tg and
greater toughness.

Quite different are the results of the mechanical tests on the prepared fibers. Increasing
the PPF and PBF fraction resulted in higher elastic modulus and mechanical strength,
particularly for PBF-containing fibers collected at higher take-up speeds. Notably, cer-
tain compositions showed exceptional strain at break, such as PLA-PBF10-J1 collected
at 80 m/min (strain at break = 333%) and PLA-PBF5-J1 collected at 40 m/min (strain at
break = 293%), which confirmed the plasticizing effect of PBF observed in bulk samples.
Interestingly, a similar plasticizing effect was observed for PPF, with the PLA-PPF5-J1
composition collected at 10 m/min exhibiting a remarkable strain at break of 455%, which
was significantly higher than neat PLA collected at the same speed.
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These differences can be explained by the fact that the fiber spinning process promoted
microstructural homogenization, resulting in smaller PPF and PBF domains. Additionally,
the impact of J was enhanced, potentially completing its reaction during melt spinning.
These effects improved load transfer between the PLA matrix and PAF domains, effectively
toughening PLA. SEM analysis revealed considerable deformation of PPF domains in the
tensile direction, indicating their contribution to the toughness of the material. The presence
of a “plastic–rubber” transition during the tensile test, induced by internal friction and heat,
may explain the softening and deformation of PPF and PBF. The orientation of PPF and
PBF domains could also induce their own crystallization, contributing to the simultaneous
increase in tensile strength and elastic modulus observed in some compositions.

Overall, this work demonstrated the potential of PPF and PBF in tuning the thermo-
mechanical properties of PLA, both in the bulk and fiber form, and expanded the potential
applications of these biopolymers in the packaging and textile fields.
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