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Abstract: Calcium phosphate is the main inorganic component of bone. Calcium phosphate-based
biomaterials have demonstrated great potential in bone tissue engineering due to their superior
biocompatibility, pH-responsive degradability, excellent osteoinductivity, and similar components to
bone. Calcium phosphate nanomaterials have gained more and more attention for their enhanced
bioactivity and better integration with host tissues. Additionally, they can also be easily functionalized
with metal ions, bioactive molecules/proteins, as well as therapeutic drugs; thus, calcium phosphate-
based biomaterials have been widely used in many other fields, such as drug delivery, cancer
therapy, and as nanoprobes in bioimaging. Thus, the preparation methods of calcium phosphate
nanomaterials were systematically reviewed, and the multifunction strategies of calcium phosphate-
based biomaterials have also been comprehensively summarized. Finally, the applications and
perspectives of functionalized calcium phosphate biomaterials in bone tissue engineering, including
bone defect repair, bone regeneration, and drug delivery, were illustrated and discussed by presenting
typical examples.

Keywords: calcium phosphate; nanomaterials; bone tissue engineering; multifunction; drug
delivery; bioimaging

1. Introduction

Nowadays, over two million bone grafts are needed for bone defects [1,2], which are
caused by trauma, infection, and tumors, since the size of the defect is far larger than the
self-healing capability of bone tissue. Autologous bone grafts are still considered the gold
standard to achieve bone defect repair [3,4]. Allografts also show excellent bioactivity, but
the drawbacks are still obvious, including possible disease transmission, immune rejection,
second injury, and donor site morbidity [5]. Thus, various bone substitutes have been made
to solve the limitation of bone repair caused by the autologous bone, such as inorganic
implants or organic implants. Usually, inorganic implants used for bone defects tend to
be peri-implantitis [6], be non-degradable [7], and lack osteoinductivity [8], which bring
about the continuous inhibition of bone regeneration and cause the absence of strong and
effective mechanical support from newborn bone. Thus, patients may suffer a lot from
default treatment.

Bone tissue engineering is a promising approach for the regeneration and repair of
damaged bone tissues. Biomaterial-based approaches have emerged as an alternative to
these traditional methods. Biomaterials can provide a scaffold for cell adhesion, prolif-
eration, and differentiation, and they can also release growth factors and other bioactive
molecules to promote bone regeneration. Biomaterials used for bone tissue engineering
should have properties such as biocompatibility, biodegradability, osteoconductivity, and
osteoinductivity. Biomaterials can be classified into the following four categories based on
their composition: calcium phosphate-based biomaterials, metallic biomaterials, polymeric
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biomaterials, and composite biomaterials. Among these, calcium phosphate-based bioma-
terials have received the most attention due to their excellent biocompatibility, bioactivity,
and similarity to the mineral component of bone [9,10].

Compared to conventional calcium phosphate-based graft materials, calcium phos-
phate nanomaterials offer several distinct advantages and show unique properties for bone
tissue engineering, including enhanced bioactivity, tailored physical and chemical proper-
ties, controlled drug delivery, better integration with host tissue, and ease of fabrication
and scalability. Specifically, these biomaterials have a high surface area to volume ratio,
which provides more space for cell adhesion and proliferation and also promotes cell differ-
entiation [11,12], as well as loading more therapeutic ingredients [13,14]. Additionally, the
nano-sized particles can enhance the mechanical properties and show a profile of controlled
drug release.

Thus, calcium phosphate nanomaterials have attracted more and more attention, and
various preparation strategies have been developed to satisfy clinical requirements. The
preparation methods include wet chemical precipitation, solvothermal synthesis, the sol-
gel method, microwave-assisted method, sonochemical synthesis, the enzyme-assisted
method, as well as spray drying and electrospinning. Among these, the precipitation
method is the most commonly used method for the preparation of nano-calcium phosphate-
based biomaterials, while the other methods also have their advantages, which are further
discussed in the following section.

Furthermore, calcium phosphate-based nanomaterials can be tailored by adjusting
their size, shape, and surface chemistry. Functionalized calcium phosphates are endowed
with osteogenic properties, angiogenic properties, antimicrobial properties, bioimaging
capabilities, and so on. Herein, calcium phosphate-based nanomaterials showed great
potential in bone regeneration, antitumor therapy, and drug delivery. Thus, the review is
intended to give a comprehensive summary of the preparation, multifunctionality, and
application of nano calcium phosphate-based biomaterials for bone tissue engineering,
and it also addresses the attention of readers and provides inspiration for the design of
bioactive materials for bone tissue engineering.

2. Synthesis Strategies for Calcium Phosphate-Based Nanomaterials

Recently, lots of synthesis methods have been developed to prepare calcium phosphate
nanomaterials, such as wet chemical precipitation, solvothermal synthesis, the sol-gel
method, the microwave-assisted method, sonochemical synthesis, the enzyme-assisted
method, as well as spray drying and electrospinning. This section gives a thorough
introduction of the above-mentioned synthesis methods due to their unique advantages for
the fabrication of calcium phosphate-based nanomaterials.

2.1. Wet Chemical Precipitation

Wet chemical precipitation is thought to be the simplest method to prepare calcium
phosphate nanomaterials, including amorphous calcium phosphate, which is the first solid
phases of calcium phosphate, as well as hydroxyapatite, by providing mixed aqueous
solutions of calcium ions and phosphate ions. As shown in Figure 1, the preparation of
calcium phosphate-based nanomaterials usually involves the dispersion of the starting
materials, typically calcium and phosphate precursors, in an aqueous solution, followed by
a reaction between them to form a precipitate. The reaction is typically carried out under
controlled conditions, such as fixed pH values and reaction times, to obtain the desired
properties of the final biomaterials. After the reaction, the precipitate is washed with water
or other solvents to remove impurities and obtain the final compound. The specific method
used for the preparation of calcium phosphate-based nanomaterials may vary depending
on the desired properties and application of the biomaterials.

The wet chemical precipitation method is a relatively simple and widely used method
for the preparation of calcium phosphate-based nanomaterials [1]. However, there are
some limitations and drawbacks to this method. For instance, the reaction time required
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for the precipitation process can be quite long, which may result in an incomplete reaction
or the formation of impurities [15]. In addition, the resulting compound may not have
optimal properties or functionality for certain applications. To overcome these limitations,
researchers have explored various modification strategies. For example, the addition of
dopants such as magnesium, cerium, and silicon can improve the functionality of the
resulting biomaterials [16]. Surfactants, polymers, proteins, and bioactive molecules have
been used to regulate the formation of CaP nanomaterials to regulate their components
and phase. For example, in the presence of special medium, mimicking the situation of
biomineralization in vivo, proteins and calcium ions can generate a kind of nanoparticle,
which leads to a sustained release profile and increased bioactivity [17]. Additionally,
microwaves and ultrasounds have also been introduced to improve reaction efficiency.

Moreover, precursor concentration, pH value, reaction temperature, mixing and stir-
ring, and solvent influence the structure, morphology, and properties of nano calcium
phosphate obtained through wet chemical precipitation [18,19]. Higher precursor con-
centrations can lead to larger particle sizes and increased crystallinity, while lower con-
centrations may result in smaller and more amorphous particles [20]. The optimization
of precursor concentrations helps to achieve desired particle properties. The pH value
of the reaction solution influences the solubility of calcium and phosphate ions and also
affects the precipitation kinetics. Varying the pH can lead to different crystalline phases
and morphologies of calcium phosphate nanoparticles, and it can also affect the subsequent
implications for bioactivity and biocompatibility [21]. Higher temperatures during the
precipitation process generally promote faster crystal growth, leading to larger particles
with enhanced crystallinity. Conversely, lower temperatures tend to favor the formation of
amorphous or poorly crystalline particles [22]. The method and intensity of mixing or stir-
ring have an impact on particle size distribution, agglomeration, and homogeneity. Proper
mixing promotes the uniform dispersion of precursors, resulting in more homogeneous
nanoparticles. The solvent being in wet chemical precipitation can also affect the reaction
kinetics [23], solubility of precursors, and crystal growth.

Overall, though the wet chemical precipitation method has its limitations, it remains
an important and widely used method for the preparation of calcium phosphate-based
nanomaterials. Researchers continue to explore and optimize this synthesis method to
enrich the functionality of CaP nanomaterials for bone tissue engineering.

Figure 1. Schematic representation of wet chemical precipitation for the preparation of calcium
phosphate-based biomaterial. Reprinted with permission from Ref. [24], Copyright 2019, American
Chemical Society (Washington, DC, USA).

2.2. Solvothermal Synthesis

The solvothermal synthesis method is a variation of the hydrothermal method, where
organic solvents are used instead of water. This method allows for the use of higher
temperatures and pressures, which can increase the solubility of the reactants and promote
more rapid reaction rates (Figure 2) [25,26].
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In a typical solvothermal synthesis procedure, the starting materials are mixed in
a solvent using magnetic stirring. The mixture is then loaded into a sealed container,
such as an autoclave, and heated to a high temperature for a fixed period of time. The
pressure inside the container is also increased, which can further enhance the solubility
of the reactants and accelerate the reaction. After the reaction is complete, the resulting
product is typically washed with water or alcohol to remove any impurities or residual
reactants. Finally, the product is vacuum-dried to remove any remaining solvent, and
the final product can be obtained. Temperature and pressure, reaction time, precursor
concentration, solvent, additives, and catalysts influence the structure, morphology, and
properties of nano calcium phosphate obtained through solvothermal synthesis. Solvother-
mal synthesis involves heating the reaction mixture at elevated temperatures and pressures
within a sealed autoclave. Temperature and pressure conditions have a significant effect
on crystal growth, phase formation, and particle size distribution. Higher temperatures
and pressures generally promote faster crystal growth, resulting in larger particles with
enhanced crystallinity [27]. Longer reaction times allow for more extensive crystal growth,
leading to larger particles, while prolonged reaction times may also result in increased
agglomeration or phase transformation [28]. Higher precursor concentrations can lead
to the formation of larger particles with increased crystallinity, but at excessively high
concentrations, particle agglomeration may occur [29]. Different solvents have varying
solubility properties, which affect the precursor dissolution and subsequent precipitation
processes. Additional additives or catalysts can also be introduced in solvothermal synthe-
sis to modify the particle characteristics [30]. For example, surfactants or templates can be
employed to control particle size or morphology. Catalytic agents may be used to enhance
the reaction rate or promote specific crystal phases.

The solvothermal synthesis method has been used to prepare a variety of calcium
phosphate-based nanoparticles with controlled size, morphology, and composition. This
method allows for greater control over the reaction conditions and can result in the pro-
duction of biomaterials with improved properties and functionality compared to those
obtained by other methods [31]. One of the main benefits of the solvothermal synthesis
method is its ability to dissolve almost any material in the solvent, which can be heated and
pressurized to its melting point. This allows for the synthesis of highly ordered nanostruc-
tures with controlled size, morphology, and composition. For example, the solvothermal
method has been used to synthesize highly ordered arrays of microtubes made from a
calcium chloride (CaCl2) powder precursor, which can form a block of three-dimensional
structure. In addition, the solvothermal method has also been used to transform unstable
di-tert-butyl phosphate into a stable precursor for calcium phosphate ceramic biomaterials
using different calcium sources [32].

However, the solvothermal method does have some challenges; one of the major
weaknesses is the difficulty in controlling the morphology and structure of the resulting
nanostructures. This is due to multiple variables, such as the type, volume ratio, and con-
centration of the starting materials, as well as the reaction conditions, such as temperature
and pressure [33]. Furthermore, the use of organic solvents can also pose some challenges,
such as the need for appropriate safety precautions and the potential for toxicity [34].
Despite these challenges, the solvothermal method remains an important technique for the
synthesis of CaP nanoparticles with tailored properties and functionality for bone tissue
engineering and other applications.

2.3. Sol-Gel Method

As shown in Figure 3, the sol-gel method is another wet-chemical method for the
synthesis of calcium phosphate-based nanoparticles. It is a relatively new procedure that
does not require high temperature to help the compound reaction [35]. The sol-gel method
typically involves several stages, including hydrolysis and polycondensation, gelation,
drying, and crystallization. In the first step, inorganic materials, such as chlorides, nitrates,
and sulfides, or metal alkoxides are dissolved in an acidic or alkaline solution and are stirred
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for a long time to obtain precursors. Metal alkoxides are then added to the precursors for
polymerization, which leads to the development of a gel. Finally, the gel is converted into
solid materials by freeze-drying or drying with high temperature [36,37] and can be used
for coating scaffolds without any other drying.

Figure 2. Schematic representation of solvothermal synthesis for the preparation of calcium
phosphate-based biomaterial. Reprinted with permission from Ref. [31], Copyright 2016, Royal
Society of Chemistry (London, UK).

Figure 3. Schematic representation of the classical sol-gel procedure for the preparation of calcium
phosphate-based bio-material. Reprinted with permission from Ref. [35], Copyright 2020, Elsevier
(Amsterdam, The Netherlands).
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Precursor composition, pH and solvent, hydrolysis and condensation ratios, drying
methods, and annealing and heat treatment contribute to the regulation of the structure,
morphology, and properties of nano calcium phosphate obtained through the sol-gel
method [38]. Different precursors, such as inorganic salts or alkoxides, can lead to variations
in the stoichiometry, crystallinity, and phase composition of the nanoparticles [39]. Varying
the pH can affect the hydrolysis and condensation reactions, which, in turn, influence
the particle size, surface charge, and morphology. The hydrolysis of the precursor and
polycondensation of the resolved chemical products are the most significant steps in
this synthesis [40]. Through this process, a wide range of diameters of nanoparticles
can be synthesized by varying the ratio of materials [41]. These steps also affect the
features of the final composites, such as specific surface area and microporosity, which
can be influenced by using different reagents, various ratios of raw materials, or different
temperature ranges [36,42,43]. Different drying techniques, such as freeze-drying or high-
temperature drying, can lead to variations in the particle size distribution, agglomeration,
and phase composition. Annealing can induce phase transformations, crystal growth, and
improved crystallinity. The temperature and duration of heat treatment can be optimized
to achieve desired properties, such as enhanced crystallinity, improved stability, and
controlled release behavior.

Though there are still big challenges, the sol-gel method is still widely used due to its
ability to produce CaP nanomaterials with high purity, good crystallinity, and controllable
morphologies, making it suitable for various biomedical applications, including bone
tissue engineering.

2.4. Microwave-Assisted Method

Microwave-assisted synthesis is a method of heating and accelerating the chemical
reaction between materials to obtain CaP particles [44,45]. As shown in Figure 4 [45], the
process involves dissolving soluble materials in a solvent, adjusting the pH value of the
mixture, subjecting the mixture to microwave irradiation at a fixed temperature and time,
and finally isolating the product through centrifugation, cleaning, and drying [46,47].

Figure 4. Schematic representation of the microwave-assisted procedure for the preparation of calcium
phosphate-based biomaterials. Reprinted with permission from Ref. [45], Copyright 2020, Elsevier.
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Power and duration, solvent and pH, precursor concentration and ratio, additives and
surfactants, and cooling rate influence the formation of CaP nanoparticles [48]. Higher
power and longer durations can lead to increased heating and higher reaction tempera-
tures, affecting the nucleation, growth, and crystallinity of the nano calcium phosphate
particles [49]. Different solvents and pH conditions can affect the particle size, morphology,
and phase composition of the nano calcium phosphate [17]. Varying the precursor con-
centrations and ratios can affect the nucleation and growth kinetics, leading to variations
in particle size, crystallinity, and surface properties [50]. These additives can act as nucle-
ation promoters, growth modifiers, or surface modifiers, resulting in controlled particle
formation, improved dispersibility, and enhanced stability. Rapid cooling can lead to the
formation of amorphous or partially crystalline phases, while slower cooling rates may
promote the growth of larger crystals [51]. The cooling rate can influence the phase com-
position, crystallinity, and surface properties of the synthesized nanoparticles. Thus, the
structure, morphology, phase, as well as particle size can be regulated via the parameters.

Microwave-assisted synthesis has some advantages, such as high energy efficiency,
shorter synthesis time, as well as consuming few samples [39], which make it a promising
method for the laboratory. However, the high heat generated can also lead to some
disadvantages, such as the deterioration of the sample constituents and the high cost of
industry-level equipment maintenance. It is important to consider both the advantages and
disadvantages of this method before using it in research or industrial applications.

2.5. Sonochemical Synthesis

As shown in Figure 5, sonochemical synthesis has the potential to offer several ad-
vantages over other synthesis methods, such as being safer and more environmentally
friendly, as it does not require the use of toxic solvents [52]. This method also has the
advantage of the reduction in reaction time, the ability to control particle size, and the
production of highly homogeneous materials. The method can also be carried out at rel-
atively low temperatures and does not require high-pressure conditions, which reduces
the energy consumption and cost of the process. Additionally, sonochemistry can be used
to modify the surface properties of materials, such as increasing their porosity, improving
their biocompatibility, and enhancing their drug delivery capabilities. Additionally, the
cavitation effect can lead to smaller and more uniform particle size, which can increase the
protein absorption of the nanoparticles [53]. Herein, ultrasonic power and frequency, [54]
reactant concentration, [55] pH and temperature, the addition of surfactants and additives,
and reaction time [56] all influence the formation of calcium phosphate nanoparticles via
sonochemical synthesis.

Further research is needed to fully understand the effects of sonochemical synthesis
on the properties of calcium phosphate-based nanoparticles, including their crystallinity
and morphology [56]. With continued exploration and the refinement of this method, it
may prove to be a valuable approach for the synthesis of high-quality calcium phosphate-
based materials with a wide range of potential applications. The main disadvantage of
sonochemistry is that it is difficult to scale up to industrial-level production due to the
limitations of the equipment and the variability in the cavitation effect.

2.6. Enzyme-Assisted Method

There is also research that shows that calcium phosphate-based nanoparticles, ob-
tained in the enzymatic approach, have strong bioactivity in vivo/vitro experiments due to
functional enzymes in promoting biomineralization [57]. As shown in Figure 6, Jiang et al.
developed bioactive minerals via the enzymatic reaction based on the use of alkaline phos-
phatase (ALP) to catalyze the hydrolysis of ATP molecules and the release of phosphate
ions combined with the unconstrained calcium ions in the precursor solutions. Thereafter,
the organic-inorganic composites containing amorphous calcium phosphate, ATP, ADP,
and AMP were obtained, and the composites showed superior biocompatibility, enhanced
osteogenic differentiation, and reduced repair time for bone regeneration [58]. Additionally,
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the control of rate of deposition and final coating morphology can be reached by adjusting
the value of the pH, the concentration of the enzyme, the ratio of calcium and phosphate
ions, and the time of reaction [59].

Figure 5. Schematic representation of the sonochemical synthesis for the preparation of calcium
phosphate-based biomaterials. Reprinted with permission from Ref. [52], Copyright 2018, Nature
Publishing Group (Berlin, Germany).

Figure 6. Schematic representation of the enzyme-assisted method for the preparation of organic-
inorganic nanocomposites. Reprinted with permission from Ref. [58], Copyright 2018, Wiley
(Hoboken, NJ, USA).
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Enzymatic methods offer several advantages in the synthesis of calcium phosphate-
based biomaterials. Firstly, they are mild and environmentally friendly because the reaction
is performed under mild conditions without the use of harsh chemicals or high tempera-
tures [60]. Secondly, the obtained materials are usually of highly purity, which is essential
for their biological activity. Thirdly, enzymatic methods have the potential to mimic the
biomineralization processes that occur in living organisms, leading to the synthesis of
biomaterials with unique properties that are not possible to achieve via other methods [57].
The enzymatic synthesis method also has some drawbacks. The enzymatic reaction is often
slow and requires longer reaction times than other methods. Additionally, the enzyme
used in the process can be expensive and can affect the final product yield.

2.7. Spray Drying and Electrospinning

Spray drying and electrospinning are two other methods used for the preparation
of calcium phosphate nanomaterials. In the spray drying method, a solution containing
the calcium and phosphate precursors is sprayed into a hot air stream, resulting in the
formation of nanoparticles. In addition, the spray process can also be applied to the
preparation of calcium phosphate coating [61]. In the electrospinning method, a polymer
solution containing calcium and phosphate precursors is used to form nanofibers, which
are then calcined to obtain the desired calcium phosphate nanomaterials.

Additionally, plasma spraying can also be used for the preparation of calcium phos-
phate coating, which can effectively prevent the corrosion and loosening of metal implants
in clinic. Plasma spraying requires a high cost; therefore, the application is limited. Liu et al.
developed a double-layer calcium phosphate-sandwiched siloxane composite coating that
can decrease the cost by using the chemical conversion method and the sequential mineral-
ization method to promote the loading of Ca and P elements with the coating so that this
magnesium alloy with the composite coating can achieve good mineralization ability and
biocompatibility in vivo [62]. Moreover, calcium phosphate coatings can also be obtained
via sequential mineralization in SBF [63] or electrochemical-assisted deposition [64].

For spray drying and electrospinning, the concentration of the calcium and phosphate
precursors in the spray drying and electrospinning solutions affects the viscosity and sur-
face tension of the solution. Higher concentrations typically result in increased particle
size and improved crystallinity. Different solvents have varying evaporation rates and
compatibility with the precursors, [65] leading to differences in particle size, porosity, and
surface characteristics. Higher airflow rates and temperatures generally result in smaller
particle sizes and improved crystallinity. Optimal feed rates ensure uniform particle distri-
bution [66]. Different polymers have varying viscosities, conductivity, and compatibility
with the precursors, leading to differences in fiber morphology, diameter, and mechanical
properties [67]. Post-treatment techniques, such as heat treatment or cross-linking, can
influence the crystallinity, porosity, and mechanical strength of the nanoparticles.

As described above, each synthesis method has its own unique advantages and
limitations for the preparation of calcium phosphate nanomaterials, and a summary is given
in Table 1. Proper synthesis methods can be employed for preparing calcium phosphate
nanomaterials with desired properties.

Table 1. A summary of synthesis methods for the preparation of calcium phosphate-based nanomaterials.

Synthesis Methods Advantages Disadvantages

Wet chemical precipitation
1. Simple, efficient [68]
2. Easy control of the reaction system

environment [19]

1. Needs a long reaction time [19]
2. Difficult to purify composites [69]

Solvothermal synthesis
1. Short reaction time [28]
2. Simple operation process [29]

1. Security risks in the reaction process [70]
2. Hard to control materials’ properties [71]
3. More energy consumption [72]
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Table 1. Cont.

Synthesis Methods Advantages Disadvantages

Sol-gel method
1. Simple synthesis process [73]
2. Excellent calcium phosphate

crystallization [74]

1. The physicochemical properties of the
product are uncontrollable [75]

2. Mixed with impurities [76]

Microwave-assisted method
1. Short reaction time [51]
2. Less raw material consumption [48]

1. Raw materials require full dissolution [45]
2. Limited application range [17]
3. High equipment maintenance costs [77]

Sonochemical synthesis
1. Less cost of the process [55]
2. The cavitation effect [52]

1. Few studies on the preparation of calcium
phosphate materials [78]

2. Hard to industrialize [53]

Enzyme-assisted method
1. Environmentally friendly [79]
2. The reaction conditions are

controllable [58]

1. Longer reaction time [80]
2. Whole process monitoring [81]

Spray drying and electrospinning
1. Machine parameters control

product structure [82]
1. High equipment costs [83]
2. Difficult preparation of precursor

solution [84]

3. Multifunctional Properties of Calcium Phosphate-Based Nanomaterials

The various synthesis methods contribute to the diversity of calcium phosphate-
based nanoparticles. Herein, calcium phosphate-based nanomaterials have favorable
properties, involving biocompatibility, biodegradability, and the fact that calcium is a
critical mineral composition of human bones and teeth [85], and calcium phosphate-based
nanomaterials can also decompose in an aqueous solution with the pH value in human
internal environment [86]. Thus, it can be used as a great carrier to load drugs and can
protect them in blood [87], leading to controllable release in the human internal situation.

Moreover, large specific surface areas of calcium phosphate-based nanomaterials lead
to loading more therapeutic drugs, increasing the concentration of the drug around the
targeted sites to achieve efficient bone healing [88,89]. Based on this reason, Kans et al.
developed CaP-based coatings with interconnected pores via ultrasound-assisted microarc
oxidation method. The porous structure of the coatings contributes to the improvement
of the vancomycin loading capacity to achieve more effective antibacterial properties.
Additionally, by taking advantage of the electrostatic interaction between Ca2+ ions, on the
surface of the CaP, and COO- in bovine serum albumin (BSA), Kanupriya et al. found that
anhydrous dicalcium phosphate synthesized via rapid microwave-assisted synthesis had
higher porosity (77.8 m2/g), providing more binding sites for BSA. The porous anhydrous
dicalcium phosphate showed about a 59 wt% loading capacity of BSA, which is much
higher than that of hydroxyapatite with a lower specific surface area (16.1 m2/g) [90].

As shown above, calcium phosphates have the ability to incorporate biomolecules,
inside or on the surface, to reach the target sites and deliver therapeutic compounds. In
addition, some biomolecules can combine with inorganic structures to repair bone defects
by suppressing the acute inflammatory response [91,92] or various active ingredients,
promoting the formation of new blood vessels, inhibiting the fusion and migration of
osteoclasts [93] or directly encouraging osteogenic differentiation [94–96]. As shown in
Figure 7a, Kai-Chi et al. developed uniform carbonate-based apatite nanorods, which
upregulate cellular attachment and mineralization, by combining ferulic acid through the
regulation of heparin [97]. Additionally, many growth factors show various functions
to control the evolution, differentiation, and metabolism of stem cells in the process of
bone regeneration, including platelet-derived growth factor (PDGF), transforming growth
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factor beta1 (TGFbeta1), vascular endothelial growth factor (VEGF), basic fibroblast growth
factor (bFGF), hepatocyte growth factor (HGF), epidermal growth factor (EGF), insulin-like
growth factor-1 (IGF-1), and so on. Bone-morphogenetic proteins (BMP) show especially
promising results when used in bone regeneration. As shown in Figure 7b, Seong et al.
combined BMP-2 with the crosslinked porous biphasic calcium phosphate, invented by
applying a water-in-oil emulsion technique with camphene as a pore generator, to achieve
high loading efficiency and constant release [95]. In another study shown in Figure 7c, there
is a phenomenon that the calcium pyrophosphate can keep the shape of nanofiber micro-
spheres in the presence of a low pH value (pH~4), consisting of a stomach environment, and
can reorganize into fiber and even into mineral plates in the intestinal environment (pH~7),
which means that the large specific surface area of 65 m2/g turns into only 1.5 m2/g; thus,
the loaded protein can keep its high activity when exposed to the stomach environment.
Subsequently, the loaded proteins would be released in the intestinal environment, which
leads to targeted enteric delivery [98].

Figure 7. Strategies for the component engineering of nano-calcium phosphate-based biomaterials.
(a) Calcium phosphate-based biomaterial coated with heparin to crosslink with ferulic acid; reprinted
with permission from Ref. [97], Copyright 2021, MDPI (Basel, Switzerland). (b) The crosslinked
porous biphasic calcium phosphate loading more BMP-2; reprinted with permission from Ref. [95].
(c) The structure of the calcium phosphate-based biomaterial influenced by the pH value, leading to
the drug release; reprinted with permission from Ref. [98], Copyright 2019, Elsevier.

Stem cells, such as hBMSCs [10], hESC-MSCs [99], and hiPSC-MSCAs [100], play a
critical role in the process of bone regeneration. Several studies have investigated that
calcium-based materials can load these cells [101], and the interaction between nanostruc-
tures and cells contributes to bone healing [102,103]. Calcium phosphate bone cement
(CPC) was compounded with bone marrow mesenchymal stem cells (BMSCs) and was
condensed in alginate chitosan alginate (ACA) microcapsules. This can protect cells from
the negative influence of the CPC setting reaction and effectively form macropores in the
composite to help CPC display better bone regeneration functions in the performance of



Molecules 2023, 28, 4790 12 of 23

ectopic osteogenesis and high effective degradability in vivo compared to the CPC with
the addition of pure microcapsules or cell microcapsules [103]. Calcium phosphates, which
are osteoconductive, injectable, and moldable, can provide strong sites for the proliferation
and differentiation of cells and can promote bone healing.

Gene therapy is a potential and new approach to achieve highly efficient bone regen-
eration [104]. Calcium phosphate nanomaterials can be used as carriers for RNA [85,105]
or DNA [106,107]. BMP-2 promotes bone regeneration effectively, and a high dosage of
it can be loaded on the calcium phosphate nanocarriers to achieve the satisfied release
of the growth factor during the stage of bone regeneration. However, there is difficulty
in achieving the controlled release of growth factors during bone regeneration. A fast
degradation rate leads to the release of BMP-2 at a high level, as well as bone or tooth
resorption. To solve this problem, achieving larger, longer, and a more gradual release of
BMP-2, as shown in Figure 8a, Tenkumo et al. designed a multi-shell calcium phosphate
nanoparticle as a carrier with BMP-2-encoding-plasmid DNA. Thereafter, the drug delivery
system was incorporated with a nanohydroxyapatite-collagen scaffold to promote gene
transfection successfully [96]. The efficient cellular uptake of nanoparticle-loaded nucleic
acid molecules has a huge influence on the efficiency of bone regeneration. In Figure 8b,
it is shown that Bogyu Choi et al. found that nucleic acid-loaded CaP nanoparticles with
a Gln-Ochi chitosan coating can protect these particles from forming large aggregates
due to electrostatic repulsion and can achieve higher cellular uptake to promote bone
tissue regeneration.

Figure 8. Strategies for calcium phosphate-based material loading genes. (a) Calcium phosphate-
loading DNA fixed in a scaffold to promote BMP-2 protein; reprinted with permission from Ref. [96],
Copyright 2018, Elsevier. (b) The nucleic acid-loaded nanoparticles, combining nucleic acid molecule-
loaded CaP nanoparticles with a Gln-Ochi chitosan coating to avoid aggregating; reprinted with
permission from Ref. [108], Copyright 2015, Royal Society of Chemistry.
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Metal ions can also be integrated within calcium phosphate-based nanomaterials,
regulating gene expression and promoting bone repair [109–113]. As shown in Figure 9,
Wu et al. introduced strontium ions, which came from SrCO3, into the modified calcium
phosphate cement, composed of 20 wt% pregelatinized starch and 10 wt% BaSO4, to
improve the flexibility, uniformity, and radiopacity performance of the cement. A total of
0.25 M of the Na2HPO4 solution acted as the setting liquid. This mixture performed well in
a calvarial defect model of a rat and showed suitable mechanical strength [114].

Figure 9. Strategies for mixing metal ions with calcium phosphate. Calcium phosphate cement mixed
with Ba/Sr ions to achieve bone regeneration. Reprinted with permission from Ref. [114], Copyright
2021, Royal Society of Chemistry.

4. Applications of Calcium Phosphate-Based Nanomaterials in Bone Tissue Engineering

Calcium phosphate-based nanomaterials show superior biocompatibility, show os-
teoinductivity, and have high surface area and porosity. Thus, they have been widely used
for bone regeneration [115]. Additionally, calcium phosphate-based nanomaterials can be
doped with special compounds to promote bone repair directly. Susmita et al. designed 3D
calcium phosphate scaffolds, resembling the structure of cortical and cancellous bones, to
provide a stronger, denser structure to develop compressive strengths of the scaffold and
maintain the central interconnected porosity for cell proliferation and vascularization. The
scaffold was incorporated with natural compounds from ginger root and garlic powder,
which can enhance bone healing when used in vivo, and improved the bioavailability of
these medicinal compounds [116] (Figure 10a). Furthermore, many metal elements also
have various influences on the process of bone regeneration, such as silicon, magnesium,
cerium, and so on. Based on this theory, Fe and Zn were combined with tricalcium phos-
phate (TCP) via co-deposition because these two elements can improve new blood vessel
formation, which can significantly promote bone regeneration; then, the Fe/Zn-modified
TCP powders were turned into a solid, and micropores were formed inside at room temper-
ature. The composites achieved the sustained release of metal (Ca2+, Zn2+ and Fe3+) ions,
which can promote the process of bone repair [117] (Figure 10b). Additionally, because of
the low mechanical strength, brittleness, and quick resorption rate, CaP-based scaffolds
need to be reinforced with mechanical strength and be improved regarding bioactivity. It is
reported that bioceramic powders (hydroxyapatite and β-tricalcium phosphate) have been
embedded in mixed solutions of chitosan and silk fibroin to improve both the mechanical
properties and the differentiation of mesenchymal stem cells since chitosan and silk fibroin
have shown better bioactivity in supporting the growth and differentiation of BMSCs.
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Additionally, the polymer solution can be used as the bioink of robocasting equipment to
print 3D scaffolds with fixed system parameters at room temperature, and this scaffold
achieved great performance regarding mechanical properties and biocompatibility [118].
Calcium phosphate-based materials can also be used as carriers to load cells or growth
factors, which can improve effective therapeutic ingredients in bone defect areas, can keep
the sustained release of these factors, and can provide enough room for osteoblasts and
new blood vessels [119]. Li et al. reported that bone marrow mesenchymal stem cells and
platelet-rich plasma combined with a calcium phosphate cement scaffold achieved more
newly formed bone areas than normal calcium phosphate cement scaffolds in an in vivo
experiment [120].

Figure 10. Calcium phosphate composite materials with different properties for bone repair. (a) Cal-
cium phosphate scaffolds loaded with ginger and garlic extracts can improve bone regeneration and
osteogenic differentiation (* p < 0.05; ** 0.05 < p < 0.01; and *** p < 0.01); reprinted with permission
from Ref. [116], Copyright 2022, American Chemical Society. (b) Calcium phosphate materials were
combined with Zn/Fe ions to turn micropores into a dispersed solid; reprinted with permission from
Ref. [117], Copyright 2019, Royal Society of Chemistry.

Recently, near-infrared-emitting persistent luminescence nanoparticles have been
used as an optical probe for bioimaging and biosensing [121,122]. Though they show low
absorptivity in deep-tissue imaging, achieving stable in vivo luminescence is still a great
challenge [123]. Chen et al. developed Eu3+/Gd3+ ion-dual-doped CaP nanoparticles via
co-precipitation using block copolymer polylactide-block-monomethoxy as a template. The
nanoparticles showed prolonged stability (more than 80 days), improved the T1-weighted
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MRI signal intensity, and decreased T2-weighted MRI signal intensity, which resulted in
darker images for the better observation of changes in local areas in vivo [124] (Figure 11a).
Additionally, to monitor the in vivo performance of calcium phosphate cements, which
show a high structural similarity to bone [125], calcium phosphate cements linked with
gadolinium (III) by bisphosphonates were developed, and they showed shortened T1
relaxation times of the water in tissues and achieved signal enhancement in a T1-weighted
MRI. In this way, the highly accurate evaluation of the implant shape both in MRI and CT
for a prolonged time period (about 8 weeks) was achieved [126] (Figure 11b).

Figure 11. Multi-application in the imaging area. (a) Calcium phosphate-based materials used in
bioimaging; reprinted with permission from Ref. [124], Copyright 2012, Elsevier. (b) Simple flow chart
of calcium phosphate composite gadolinium and for CT and MRI bone defect repair evaluation. Green
arrows indicate the bright area which appears in the middle of the implant on the MRI acquisitions
after 4 weeks from the surgery. Red arrow displays the calcium phosphate cements that become
indistinguishable from the surrounding bone after 8 weeks from implantation in vivo; reprinted with
permission from Ref. [126], Copyright 2018, Wiley.

Calcium phosphate-based nanoparticles are also desirable materials for drug deliv-
ery [127]. Doxorubicin could activate the immunogenic cell death of tumor cells through
an apoptosis pathway, including reactive oxygen species, which could lead to DNA cleav-
age and mitochondrial dysfunction [128], while the multidrug resistance of cancers may
result in poor prognosis [129]. To address this issue, a selenium-doped CaP, serving as
the doxorubicin carrier, was designed for reversing the multidrug resistance of tumors.
Se-doped CaP is pH-sensitive and dox can be released specifically in the tumor sites due
to the acid microenvironment. Thus, the uptake of anticancer drugs of tumor cells was
raised, and Se ions released could decrease reactive oxygen species of tumor cells and the
expression of ATP-binding cassette transporters, which reverse multidrug resistance [130]
(Figure 12a). The surgery of bone tumors causes large bone defects, and calcium phosphate
bone pastes have been widely used as bone substitutes in clinics to replace allogenous bone,
providing strong and stable support for the defect sites without internal fixation [131,132],
for many years, and the result of anticancer is also well described in the long run [133,134].
Furthermore, there is the theory that calcium ions play a vital role in tumor necrosis by
regulating the stability of the intracellular concentration of calcium ions [135–137], and a
high concentration of calcium in the microenvironment of the tumor can encourage tumor
calcification [138,139]. Based on this phenomenon, calcium phosphate can combine with
some special materials, such as ferritin, which is a promising load for targeted delivery, to
protect ferritin from interception to achieve the function of targeted delivery to the tumor
effectively, and the shell of calcium phosphate not only counterbalances the acidic microen-
vironment around tumors but also accelerates the immunomodulation and calcification of
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cancers [140,141]. CaP nanoparticles can also be coated to camouflage, which may result in
intracellular calcium overload and induce apoptosis. For example, TiO2-coated CaP can
elevate the generation of reactive oxygen species, due to the demonstrative property of
inorganic sonosensitizers, and can provide calcium ions due to the acidic microenvironment
of the tumor (Figure 12b) [142–144].

Figure 12. Strategies for calcium phosphate-based materials to kill cancer cells. (a) Reversal of the
multidrug resistance of tumors by combining calcium phosphate with Se element; reprinted with
permission from Ref. [130], Copyright 2020, Elsevier. (b) Construction of calcium phosphate and TiO2

to promote cancer therapy; reprinted with permission from Ref. [142], Copyright 2021, Wiley.

5. Conclusions and Perspectives

Nano-calcium phosphate-based biomaterials have shown great potential in bone tissue
engineering due to their unique properties, including their small size, high surface area
to volume ratio, and multifunctionality. Various preparation methods, including sol-gel,
hydrothermal synthesis, spray drying, and electrospinning, have been used to obtain these
biomaterials with controlled size, morphology, and composition.

The multifunctionality of nano-calcium phosphate-based biomaterials is attributed to
their abilities to enhance the osteogenic differentiation and mineralization of mesenchymal
stem cells, to promote angiogenesis, and to exhibit antimicrobial properties. These proper-
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ties make them attractive for various applications in bone tissue engineering, including
bone defect repair, bioimaging, and anticancer applications.

The preparation, multifunctionality, and application of nano-calcium phosphate-based
biomaterials for bone tissue engineering have been extensively studied and reviewed in
the literature. These biomaterials have shown great potential in the regeneration and
repair of bone tissues and can provide a scaffold for the adhesion, proliferation, and
differentiation of stem cells. Further research is needed to optimize the preparation methods,
functionalization, and characterization of these biomaterials to improve their performance
and clinical outcomes. Nonetheless, these biomaterials represent a promising avenue for
the development of effective and safe bone tissue engineering therapies.

The future exploration of calcium phosphate-based nanomaterials could be based on
the following points: more effective binding of active substances; more effective targeting
methods to achieve more effective treatment goals in local areas; and the interaction
mechanism between calcium phosphate and substances. Calcium phosphate binds to the
active ingredient and can protect the bioactivity of the component from being affected to
maximize the function of the ingredient, such as promoting bone regeneration and anti-
cancer properties. In addition, effective targeting strategies can deliver calcium phosphate-
loaded components to the relevant areas so that the local area has a high concentration of
therapeutic components, which minimizes the harm caused by therapeutic components.
In order to achieve the above objectives, it is necessary to further explore the interaction
mechanism between calcium phosphate and various substances to achieve the stable
synthesis of calcium phosphate materials with related functions and even commercial
production into clinical applications. Thus, it is conducive to the stable output of bioactive
calcium phosphate material for large-scale production and application in practice.

Thus far, based on the consideration of biosafety, only a few calcium phosphate-based
nanoparticles have been applied in clinics. Therefore, we hope that this review inspires
readers to obtain more ideas for the design of bone repair materials.
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