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Abstract: MOF-based luminescent sensors have garnered considerable attention due to their poten-
tial in recognition and discrimination with high sensitivity, selectivity, and fast response in the last
decades. Herein, this work describes the bulk preparation of a novel luminescent homochiral MOF,
namely, [Cd(s-L)](NO3)2 (MOF-1), from an enantiopure pyridyl-functionalized ligand with rigid bi-
naphthol skeleton under mild synthetic condition. Except for the features of porosity and crystallinity,
the MOF-1 has also been characterized with water-stability, luminescence, and homochirality. Most
important, the MOF-1 exhibits highly sensitive molecular recognition toward the4-nitrobenzoic acid
(NBC) and moderate enantioselective detection of proline, arginine, and 1-phenylethanol.

Keywords: chiral metal-organic framework; luminescence; enantioselectivity; amino acid; chiral
recognition

1. Introduction

Due to rising concern about environmental issues and human health, chemical recog-
nition for industrial and pharmaceutical pollutants has become a hot-topic research focus
over the last decades [1,2]. Particularly in domestic water, both organic pollutants and
heavy-metal anions will cause irreversible organ damage when accumulated to a certain
threshold in the food chain [3,4]. Therefore, the development of a simple and fast-responses
method to recognize these pollutants is a vital but challenging task. Despite of the attentive
study and great successes in discrete complexes as chemical sensors, their practical applica-
tions have been hindered by the limited recyclability and synthetic challenges [5–10]. The
crystalline and luminescent metal-organic frameworks (MOFs) have attracted huge interest
in recent years because of their potential performance in simultaneous recognition and
separation [11–14].

Asa promising alternative, these crystalline MOFs with periodic network structures are
usually assembled from inorganic nodes and organic linkers, equipped with well-defined
pore and channel structures. The superiority of luminescent MOFs for selective recognition
to other report sensory materials is attributed to an additional mechanism for exclusion of
unwanted species in selective sensing [15,16]. Mostly, the reason behind using luminescent
MOFs for recognition and discrimination is closely related to preferential interactions
between the guest species and the pore surfaces [16–19]. The structure-related properties
of these MOFs, such as chemical stability, pore functionality, and structural tunability,
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maximize the promotion of dynamic response for various guest molecules/ions [20]. Thus,
the key prerequisites to achieve high selectivity and sensitivity are the acquisition of
desirable architectures in construction of MOFs [21].

Notably, rational functionalization of organic ligands as linkers is deemed to be an
essential factor for design of corresponding functional materials [22,23]. Occasionally,
the luminescent intensity of MOFs originating from organic linkers is unstable during
the transmission and amplification of recognition signals [24]. To improve luminescence
properties, diverse coordinated linkers with conjugated aromatic units are commonly used
for their intrinsic optical and electronic performance [25–29]. By comparison, N-containing
ligands, as exemplified by pyridine and their derivatives, stand out for their defined
coordination fashion and strong coordination abilities [30,31]. Moreover, the preference
of N-donating ligands to bond with transition-metal ions in a highly organized manner
assures the large-scale synthesis and precise control of MOFs with special structure [32–34].
More than that, if chirality is integrated into crystalline architecture using enantiopure
N-containing ligands, target MOFs will exhibit preferential interaction with one of the
enantiomers rather than another one [35,36]. The inherent features of such strategies in
constructing homochiral MOFs open up unique and valuable possibilities to multifunctional
materials with diversified specific properties.

2. Results and Discussion
2.1. Synthesis and Characterization

In this context, we aim to present a fluorescent MOF-based sensor comprised of
chiral N-containing ligands derived from pyridyl-functionalized binaphthol (BINOL).
This distinctive framework is fluorescent and homochiral, which is expected to have
good enantioselective performance in chemical recognition [37]. Colorless octahedral
crystals of composition [Cd(s-L)](NO3)2 (MOF-1) {s-L = (s)-4,4′,4′′,4′ ′′-(2,2′-diethoxy-[1,1′-
binaphthalene]-4,4′,6,6′-tetrayl)tetrapyridine} (CCDC2254999 (1)) were formed on a large
scale by coordination-driven self-assembly of Cd(NO3)2·4H2O and s-L in 1,4-dioxane/H2O
at 30–40 ◦C for several hours-. The phase purity of bulk samples of MOF-1 was confirmed
by comparison of its observed and simulated powder XRD (PXRD) patterns. In addition,
MOF-1 was characterized by single crystal X-ray diffraction, infrared (IR) spectroscopy,
thermal gravimetric analysis (TGA), and circular dichroism (CD) spectroscopy.

Single crystal X-ray diffraction analysis reveals that MOF-1 crystallizes in the hexag-
onal P64 space group with a Flack parameter of −0.036(12), indicating the enantiomeric
purity of the single crystal. The asymmetric unit of MOF-1 contains one Cd2+ ion, half of L
ligand and one nitrate ion, with the guest solvent molecules squeezed. The central Cd2+ ion
is hexa-coordinated by four pyridyl nitrogen atoms from four L ligands and two oxygen
atoms from two NO3

−, displaying slightly distorted [CdN4O2] octahedral coordination
geometry (Figure 1a). The s-L ligand adopts a tetradentate coordination mode to connect
four metal centers via pyridine units (Figure 1b), thus forming a novel three-dimensional
(3D)MOF long the a axis. The s-L ligand in MOF-1 is twisted with an axially chiral S-
conformation because of the steric hindrance between the naphthyl and ethoxy groups,
and the corresponding dihedral angle within the fixed structure is ca. 97.45. As shown in
Figure 1d, the MOF-1 possessed 1Dregular hexagonal channels about 9.0 Å in diameter
along the c axis (Figure 1d). The total solvent-accessible volume of MOF-1 is estimated
to be 27.3%, calculated by using PLATON. To better understand the intrinsic structure,
MOF-1 was analyzed by TOPOS 4.0 program 30. Each Cd2+ ionandeachligand simplify
to a 4-connected node, respectively, and thus the whole framework could be regarded as
binodal (4,4)-connected topology with a point symbol of (43·82).
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Figure 1. (a) Coordination environment of Cd2+ ion in MOF-1. (Symmetry codes: #1: 1-x, 1-y, z; #2: 
2-x, 1-x+y, 1/3-z; #3: -1+x, x-y, 1/3-z; #4: 1-x+y, y, 1-z); (b) Coordination style of s-L ligand; (c) Poly-
hedral view of 3D framework of MOF-1 from a axis; (d) Space-filling of the porous 3D framework 
of MOF-1 with 1D hexagon channel; (e) (4,4)-connected topology. Hydrogen atoms and solvent 
molecules are omitted for clarity. 

The Fourier transform-infrared (FT-IR) spectrum of MOF-1 showed strong peaks at 
1604 cm−1 and 1382 cm−1, which can be attributed to the characteristic peaks of naphtha-
lene and pyridine rings. Furthermore, the stretching vibration adsorption of typical C-O 
in aromatic ether appears as a middle peak at 1223 cm−1 (Figure S6). Framework stability 
of MOF-1 was estimated before practical application in complicated actual conditions. 
The water stability of MOF-1 was validated by PXRD measurements (Figure 2a). After 
immersion in water for two weeks, all the observed diffraction peaks are nearly identical 
to those of MOF-1untreated, demonstrating the high stability of MOF-1 under neutral 
aqueous solution. The TGA curve of MOF-1revealed the removal of solvent molecules at 
80−150 °C, and the decomposition of crystal framework at 300 °C (Figure S1). According to 
the analysis of single-crystal structure, there are no solvents or water molecules that coordi-
nate to Cd ions. Thus, the weight loss in the first stage is a consequence of the liberation of 
free solvent molecules. The permanent porosity of activated MOF-1 was examined by N2 
adsorption measurements at 77 K, and the BET surface areas were found to be 290.2 m2/g 
(Figures S2 and S3). 

Figure 1. (a) Coordination environment of Cd2+ ion in MOF-1. (Symmetry codes: #1: 1-x, 1-y, z;
#2: 2-x, 1-x+y, 1/3-z; #3: -1+x, x-y, 1/3-z; #4: 1-x+y, y, 1-z); (b) Coordination style of s-L ligand;
(c) Polyhedral view of 3D framework of MOF-1 from a axis; (d) Space-filling of the porous 3D
framework of MOF-1 with 1D hexagon channel; (e) (4,4)-connected topology. Hydrogen atoms and
solvent molecules are omitted for clarity.

The Fourier transform-infrared (FT-IR) spectrum of MOF-1 showed strong peaks at
1604 cm−1 and 1382 cm−1, which can be attributed to the characteristic peaks of naphthalene
and pyridine rings. Furthermore, the stretching vibration adsorption of typical C-O in
aromatic ether appears as a middle peak at 1223 cm−1 (Figure S6). Framework stability
of MOF-1 was estimated before practical application in complicated actual conditions.
The water stability of MOF-1 was validated by PXRD measurements (Figure 2a). After
immersion in water for two weeks, all the observed diffraction peaks are nearly identical
to those of MOF-1 untreated, demonstrating the high stability of MOF-1 under neutral
aqueous solution. The TGA curve of MOF-1 revealed the removal of solvent molecules at
80–150 ◦C, and the decomposition of crystal framework at 300 ◦C (Figure S1). According
to the analysis of single-crystal structure, there are no solvents or water molecules that
coordinate to Cd ions. Thus, the weight loss in the first stage is a consequence of the
liberation of free solvent molecules. The permanent porosity of activated MOF-1 was
examined by N2 adsorption measurements at 77 K, and the BET surface areas were found
to be 290.2 m2/g (Figures S2 and S3).

The solid-state luminescence spectra of MOF-1 shows only one strong emission peak
at 467 nm upon excitation at 380 nm, ascribed to intra ligand electron transitions (Figure 2b).
The strong emission indicates that MOF-1 is atypical bluish-light material calculated with
CIE coordinates. Considering its relatively chemical stability and good fluorescence per-
formance, the luminescence sensing activities of MOF-1 in aqueous solutions were inves-
tigated. The crystals of MOF-1 were carefully ground to a powder and well dispersed in
aqueous solution with the assistance of ultrasound. Fluorescence emission of the given
suspension appeared at a similar position. As expected, 4-nitrobenzoic acid (NBC)as a toxic
and explosive molecule, common in waste water, has a negative impact on the fluorescence
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intensity of the suspension of MOF-1. To further quantitative analyze the luminescence
response of the MOF-1 to NBC, a luminescence titration experiment was carried out by
gradually increasing the concentration of NBC in the suspension. As depicted in Figure 2c,
it was obvious that a certain linear relationship exists between the quenching effect and the
amount of NBC in the low concentration. The quenching efficiency was evaluated from the
traditional Stern-Völmer equation: I0/I = Ksv[Q]+1, where I0 is the luminescence intensity
of the initial suspension of MOF-1, and I is the intensity of the suspension resulting from
the addition of the analyte; [Q] is the molar concentration of NBC. The slope of the equation
(Ksv) represents the quenching constant. The Ksv value and the limited of detection (LOD)
were calculated to be 3.08 × 104 M−1 and 24 ppm (Figure 2d), respectively, which reveal
that MOF-1 has excellent sensitivity to recognize NBC in aqueous solution [38–43].
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Figure 2. (a) The PXRD patterns of MOF-1; (b) Normalized solid-state emission and excitation
spectraof MOF-1; (c) Luminescent emission spectra of MOF-1 in aqueous solution with different
concentrations of NBC at room temperature (λex = 380 nm); (d) Relationship between the quenching
effect (I0/I) and the molar concentration of NBC (Q) (experimental conditions: aqueous solution,
λex = 380 nm, λem = 446 nm, and room temperature).

2.2. Enantioselective Fluorescent Sensing

To confirm the homochirality of MOF-1, the CD spectrum of bulk crystal was mea-
sured in the solid state (Figure S5). The CD signals of the crystalline state were accordant
with those of the corresponding enantiomer of ligand, indicating it senantiopurity and
chirality derived from the chial 1,1′-naphthyl skeletons. The characteristics of the chiral
channels, functional ethoxy group, and good fluorescence performance prompted us to
further explore the enantioselectivity of MOF-1 in aqueous solution. When MOF-1 was
treated with D/L-Proline (Pro), the emission position of the suspension stayed at 446 nm
with no obvious translocation. The fluorescence intensity was decreased along with the
D- and L-enantiomers affiliation, but the decrease rate caused by L-Pro was much greater
than that by D-Pro, clearly manifesting enantioselectivity in the fluorescence recognition
(Figure 3a,b). In addition, the fluorescence quenching of D and L enantiomers at 446 nm also
follows the linear relationship of the Stern-Völmer equation. Figure 3c shows Stern-Völmer
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plots for MOF-1 (1.0 × 10−5 M) in the presence of L- and D-Pro in aqueous solution. The
association constants Ksv were calculated to be 718.59 M−1 with L-Pro and 458.54 M−1 with
D-Pro, giving an enantioselectivity factor Ksv(MOF-1−L)/Ksv(MOF-1−D) of 1.69. These results
encouraged us to further study the enantioselectivity of MOF-1 toward amino acids. Inter-
estingly, the microcrystal MOF-1 dispersed in the suspension, displayed enantioselective
binding with L-Arginine (Figure 4). The selectivity factor Ksv(MOF-1−L)/Ksv(MOF-1−D) was
determined as 1.51. The enantioselectivity probably decreased because the guanidyl group
of Arginine interferes with host–guest interaction in the chiral cavity of MOF-1. More
importantly, MOF-1 can also enantioselectively recognize1-Phenylethanol, a widely used
edible flavoring. The relative intensity of I/I0 at 446 nm can also be linearly fitted with
the concentration of the analyte (Figure 5). Based on the Stern-Völmer equation, MOF-
1 exhibited comparable enantioselectivity toward the 1-Phenylethanol quencher with a
Ksv(MOF-1−S)/Ksv(MOF-1−R) ratio of 1.55.The sensitivity of MOF-1 essentially benefited from
the preconcentration of the channels, which allows these small molecules to easily access
the binding sites in low concentration. Furthermore, the fluorescence quenching behaviors
were probably traceable to the supramolecular interactions between analyte with MOF-1 in
the ground. It should also be pointed out that the crystallinity of MOF-1 remains intact after
the chiral recognition process confirmed by PXRD patterns. The above results suggest that
MOF-1 as a new fluorescence sensor has the potential to perform enantioselective detection
and discrimination in water.
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3. Materials and Methods
3.1. General

All of the chemicals and solvents were purchased from commercial sources and
used as supplied unless otherwise mentioned. The ligand of (s)-4,4′,4′′,4′ ′′-(2,2′-diethoxy-
[1,1′-binaphthalene]-4,4′,6,6′-tetrayl)tetrapyridine(s-L) was synthesized as modified in the
literature [44]. Powder X-ray diffraction (PXRD) data were recorded on a Bruker D8 dis-
cover powder diffractometer with Cu Kα radiation. The calculated PXRD pattern was
produced using the SHELXTL-XPOW program and single crystal reflection data. Thermo-
gravimetric analysis (TGA) measurements were conducted under nitrogen atmosphere at a
heating rate 10 ◦C/min with a Shimadzu DTG-60H. Elemental analyses were performed
on an Elementar Vario EL III analyzer. IR spectra of the solid samples (KBr tablets) in the
range 400–4000 cm−1 were recorded on a Nicolet Magna 750 FT-IR spectrometer. The N2
adsorption/desorption isotherms were measured volumetrically using a Micromeritics
ASAP 2020 surface area.UV/vis absorption spectra were recorded on a TU-1810 UV/vis
spectrophotometer. The solid cicular dichroism (CD) spectra was obtained by using a
BRIGHTTME Chirascan CD spectrometer. Single-crystal XRD data of MOF-1 were all
collected on a Bruker APEX area-detector X-ray diffractometer with Mo-Kα radiation
(λ = 0.71073 Å). The empirical absorption correction was applied by using the SADABS
program. The structures were solved using direct methods, and refined on F2 by a full-
matrix least-squares method. All calculations were carried out with the SHELXTL program.
Disordered solvent molecules that could not be restrained properly were removed using
the SQUEEZE routine in all data sets. Crystal data, data collection parameters, and the
results of the X-ray diffraction studies are given in Table S1.

3.2. Synthesis of [Cd(s-L)](NO3)2(MOF-1)

A mixture of Cd(NO3)2·4H2O (15.4 mg, 0.28 mmol), s-L (46.0 mg, 0.07 mmol), 1,4-
Dioxane (10.0 mL) and H2O (0.5 mL) in a capped vial (20 mL) was stand at 30–40 ◦C
for several hours. Elongated octahedron crystals of MOF-1 suitable for single-crystal
X-ray diffraction were harvested after simple filtration, washed with water and activated
with acetone. Data for MOF-1: yield: 56.7 mg, 90%. Elemental analysis calcd (%) for
CdC44H34O8N6 (M = 887.17): C, 59.52; H, 3.83; N, 9.47. Found: C, 59.76; H, 3.85, N, 9.49. IR
(KBr pellet, cm−1): v = 3446.9 (m), 2978.9 (w), 2427.4 (w), 1604.9 (s), 1587.0 (s), 1543.3 (m),
1488.0 (m), 1454.0 (w), 1382.3 (vs), 1342.1 (w), 1318.2 (w), 1223.8 (m), 1113.7 (w), 1065.9 (w),
1039.6 (w), 837.9 (w), 824.6 (m), 814.3 (m).

4. Conclusions

In summary, we have successfully prepared a novel luminescent MOF with good water
stability through the coordination-directed assembly of homochiralpyridyl-functionalized
precursor based on rigid binaphthol skeleton. The high-quality crystals can be achieved on
a large-scale in a few hours, benefiting from its mild synthetic condition. The fluorescence
titration experiments imply that MOF-1 has good sensitivity to detect the organic pollutant
NBC in water. Interestingly, the MOF-1 was developed into a fluorescent probe for the
chiral sensing of Proline and Arginine with moderate enantioselectivity. In addition, further
investigation found that the MOF-1exhibits enantioselective molecule recognition toward
1-Phenylethanol. This work opens an avenue toward the design and synthesis of homochi-
ral MOFs as a potential probe for luminescent sensing of pollutants and enantioselective
detection of racemates in water.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28124593/s1, Figure S1: The TGA Curve of MOF-1;
Figure S2: N2 adsorption isotherm of MOF-1; Figure S3: The BET plots of MOF-1; Figure S4: UV/Vis
diffuse reflectance spectrum of MOF-1; Figure S5: CD spectra of s-L and MOF-1 in the solid at
room temperature; Figure S6: The FT-IR spectrum of MOF-1; Figure S7: Fluorescence excitation
spectra of MOF-1 (1.0 × 10−5 M in water) and in the presence of L-Pro (1.0 × 10−2 M) and D-Pro
(1.0 × 10−2 M); Figure S8: Fluorescence excitation spectra of MOF-1 (1.0 × 10−5 M in water) and in
the presence of L-Arg (1.0 × 10−2 M) and D-Arg (1.0 × 10−2 M); Figure S9: Fluorescence excitation
spectra of MOF-1 (1.0 × 10−5 M in water) and in the presence of R-1-Phenyethanol (1.0 × 10−2 M)
and S-1-Phenyethanol (1.0 × 10−2 M); Table S1: Selected materials for detection of LODs and Ksv of
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