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Abstract: Diet restriction (DR) ameliorates obesity by regulating mitochondrial function. Cardiolipin
(CL), a mitochondrial phospholipid, is closely associated with mitochondrial function. This study
aimed to evaluate the anti-obesity effects of graded levels of DR based on mitochondrial CL levels
in the liver. Obese mice were treated with 0%, 20%, 40%, and 60% reductions in the normal diet
compared to normal animals (0 DR, 20 DR, 40 DR, and 60 DR groups, respectively). Biochemical and
histopathological analyses were performed to evaluate the ameliorative effects of DR on obese mice.
The altered profile of mitochondrial CL in the liver was explored using a targeted metabolomics
strategy by ultra-high-pressure liquid chromatography MS/MS coupled with quadrupole time-of-
flight mass spectrometry. Finally, gene expression associated with CL biosynthesis and remodeling
was quantified. Tissue histopathology and biochemical index evaluations revealed significant im-
provements in the liver after DR, except for the 60 DR group. The variation in mitochondrial CL
distribution and DR levels showed an inverted U-shape, and the CL content in the 40 DR group was
the most upregulated. This result is consistent with the results of the target metabolomic analysis,
which showed that 40 DR presented more variation. Furthermore, DR led to increased gene expres-
sion associated with CL biosynthesis and remodeling. This study provides new insights into the
mitochondrial mechanisms underlying DR intervention in obesity.

Keywords: diet restriction; obesity; cardiolipin; targeted lipidomics; mitochondria

1. Introduction

The prevalence of obesity has increased globally, reaching pandemic levels and impos-
ing significant economic costs on healthcare systems over the last 50 years [1,2]. Obesity
can increase the risk of premature death and medical conditions such as cardiovascular
disease [3]. There are several methods used to improve obesity, including medication use,
exercise, liposuction, and diet restriction (DR). However, all of these methods are invasive,
expensive, and time-consuming, except for DR [4]. As a basic method to ameliorate obesity,
DR encompasses a variety of regimens characterized by nutrient and/or energy restrictions,
leading to changes at the organismal level [5]. Compared to other anti-obesity strategies,
DR is a safer, more effective, and non-pharmacological intervention.

However, the ideal food intake for optimal health remains controversial. With the
exception of a few existing studies, most of the available DR studies focused largely on
a single level. Previous studies pointed out that 50% DR resulted in increased hydrogen
sulfide production and protection from hepatic ischemia reperfusion injury, and 40% DR led
to the browning of white adipose tissue through type 2 immune signaling [6,7]. In addition,
the conclusions from different studies remain inconsistent. For example, as a common
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method of DR, calorie restriction is commonly prescribed to improve cardiac structure
and function [8]; however, Yu confirmed that a 45% calorie restriction decreased cardiac
function and decreased heart rate [9]. Meanwhile, DR at different levels diversely affects
the physiological and psychological aspects of the organism, including body composition,
behavioral phenotype, oxidative stress and basal metabolic rate [10–12]. Consequently,
there is a lack of systemic evidence showing the appropriate food intake needed for health,
and implementation of DR might require unique considerations to fill in the existing
research gap.

Mitochondrial dysfunction contributes to oxidative stress and systemic inflammation,
which are critical in obesity-related diseases [13]. In contrast, DR improves mitochondrial
bioenergetics and dynamics by increasing efficiency, decreasing oxidant production, and in-
creasing mitochondrial turnover [14–16]. However, mitochondrial mechanisms underlying
DR remain unclear and require further investigation. Cardiolipin (CL), a mitochondria-
specific phospholipid, is a valuable indicator of mitochondrial function in humans [17]. CL
is localized in the mitochondrial inner membrane and exerts numerous biological functions,
such as supporting the folding, sorting, and activity of respiratory chain components and
regulating mitochondrial membrane dynamics [18,19]. Alterations in CL levels are strongly
associated with mitochondrial function. Because the disruption of lipid metabolism could
result in statistically significant changes in mitochondrial CL content, CL may be a critical
regulator of mitochondrial health in such diseases [20,21]. Diabetes and obesity were char-
acterized by CL deficiency and profound remodeling of CL’s acyl composition [22]. On the
other hand, DR showed a significant increase in CL content measured with CL-dependent
nonyl acridine orange staining signal [23]. The acyl length, oxidation, and saturation
have different effects on the shape, binding, stability, and function of CL [24]. However,
most previous studies have demonstrated the role of total CL changes in mitochondrial
dysfunction or related diseases, and there remains a lack of evidence focusing on CL alone.

This study aimed to evaluate the anti-obesity effects of graded levels of DR based on mi-
tochondrial CL levels in the liver. High-fat-diet-induced obese mice were treated with four
levels of DR, including 0 DR, 20 DR, 40 DR, and 60 DR groups. Mitochondrial CL in the liver
was identified and characterized by ultra-high-pressure liquid chromatography MS/MS
coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS/MS). Sub-
sequently, the distribution of CL was compared based on the targeted lipidomic strategy
in different levels of DR groups. The CLs with significant differences were screened to
explore potential mitochondrial roles between DR and obesity. Finally, the expression of
key genes involved in CL biosynthesis and remodeling was examined to search for their
underlying mechanisms.

2. Results
2.1. Mitochondria Enrichment and Identification

The integrity of the mitochondrial fractions was examined by transmission electron
microscopy. Intact inner and outer membranes were observed in the typical morphology
of the isolated mitochondria, suggesting that the liver-enriched mitochondrial fractions
were intact and sufficient for subsequent metabolic analysis (Figure 1a). The quality of
mitochondrial separation was examined by Western blot using representative markers of
different subcellular compartments, including lysosomes, nuclei, and mitochondria. The
mitochondria-enriched fractions and tissue homogenates isolated from the liver were exam-
ined. The use of voltage-dependent anion-selective channel-1 (VDAC-1) as a mitochondrial
marker is suitable because of its abundance on the mitochondrial outer membranes [25]. It
was clear that lysosomal-associated membrane protein-2 (Lamp-2) and Lamin-B1 detected
in the homogenate were more highly expressed than those in the enriched mitochondrial
fraction; however, VDAC-1 was inversely expressed. (Figure 1b). This result further
indicated that the method yielded good mitochondrial enrichment.
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the livers of the high-fat diet (HFD) group showed obvious inflammatory foci (black ar-
row) and numerous large cytoplasmic lipid droplets (clear spaces). This phenomenon in 
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Figure 1. Purity evaluation of isolated mitochondria. (a) Transmission electron micrograph showing
typical morphology of an isolated mitochondria-enriched fraction. (b) Western blot analysis of
protein extracts from liver homogenate and an isolated mitochondria-enriched fraction (with COX4
as loading control). Lamp-2, lysosomal-associated membrane protein-2, lysosomal marker; Lamin-B1,
nuclear marker; VDAC-1, voltage-dependent anion-selective channel-1, mitochondrial marker; COX4,
cytochrome c oxidase-IV. The number above the belt represents the expression value relative to COX4.

2.2. Physiological and Biochemical Parameters

Figure 2 shows the histological examination of the mouse liver using hematoxylin
and eosin (HE) staining to explore the effect of DR on hepatic lipid accumulation. Hepatic
cells in the normal diet (ND) group exhibited normal hepatocellular architecture with a
normal central vein (blue arrow), and the structure of the liver lobule was clear. However,
the livers of the high-fat diet (HFD) group showed obvious inflammatory foci (black arrow)
and numerous large cytoplasmic lipid droplets (clear spaces). This phenomenon in the 0
DR, 20 DR, and 40 DR groups had improved to different degrees. In contrast, the liver of
mice in the 60 DR group was observed with intracytoplasmic vacuoles with hepatic edema
(white arrow) and focal hepatocyte necrosis (yellow arrow).

The physiological and biochemical characteristics of the experimental groups are
presented in Table 1. Statistically significant differences in all indices were observed in the
HFD group compared with the ND group (p < 0.05). Body weights in the four DR groups
were significantly lower than those in the HFD group, and body weights in the 40 DR and 60
DR groups were also significantly lower than those in the ND group. A significant increase
in body mass index (BMI) in the first stage of the HFD and all DR groups indicated the
successful establishment of an HFD-induced obesity model. In the second stage, BMI was
significantly reduced in all DR groups compared with that in the HFD group. Moreover,
BMI was significantly more reduced in the 20 DR, 40 DR, and 60 DR groups than in the
ND group. The liver weights were also decreased in all DR groups compared to the HFD
group, and, similarly, liver weights were significantly more decreased in the 0 DR, 40 DR,
and 60 DR groups than in the ND group. The concentrations of serum total cholesterol
(TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol
(LDL-C) showed an obvious decrease in all DR groups compared to those in the HFD
group. There was no significant difference in TC levels between the 20 DR and 40 DR
groups compared with the ND group. In addition, the HDL-C level in all DR groups was
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different from that in the ND group, and no significant difference in the LDL-C level was
observed between all DR groups and the ND group.
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Figure 2. Microscopic findings in the liver tissue. Hematoxylin and eosin (HE) staining to visualize
tissue morphology, central vein (blue arrow), inflammatory foci (black arrow), hepatic edema (white
arrow), and focal hepatocyte necrosis (yellow arrow). Magnification = 100×.

Table 1. Physiological and biochemical parameters of mice (mean ± SD, n = 9).

ND HFD 0 DR 20 DR 40 DR 60 DR

Body weight (g) 42.86 ± 4.49
** 50.63 ± 3.06 46.24 ± 2.46

**
38.30 ± 4.15

***
31.26 ± 3.43

***,#
29.16 ± 0.95

***,###

BMI at the first stage 309.15 ± 3.60
** 315.41 ± 2.00 316.58 ± 3.36

##
316.16 ± 3.56

##
316.65 ± 3.39

##
316.60 ± 2.88

##

BMI at the second stage 313.73 ± 6.86
** 330.18 ± 4.66 314.65 ± 9.41

***
299.91 ± 7.82

***,##
288.66 ± 5.99

***,###
294.04 ± 3.96

***,###

Liver weight 1.94 ± 0.23
* 2.27 ± 0.26 1.77 ± 0.14

***,#
1.85 ± 0.29

**
1.47 ± 0.16

***,##
1.42 ± 0.24

***,##

TC (mmol L−1) 2.65 ± 0.29
*** 6.74 ± 0.91 3.23 ± 0.27

***,##
2.54 ± 0.45

***
2.88 ± 0.79

***
3.22 ± 0.47

***,#

HDL-C (mmol L−1) 2.05 ± 0.27
*** 3.20 ± 0.44 2.45 ± 0.33

**,#
1.61 ± 0.35

***,#
1.65 ± 0.37

***,#
1.63 ± 0.21

***,##

LDL-C (mmol L−1) 0.45 ± 0.13
*** 1.26 ± 0.27 0.49 ± 0.08

***
0.34 ± 0.12

***
0.38 ± 0.18

***
0.47 ± 0.13

***
The results were presented as the means ± SD. The Lee index was calculated as the body mass index (BMI) of
mice according to the following formula: [3√body weight (g)/length (mm)] × 104; TC: total cholesterol, HDL-C:
high-density lipoprotein cholesterol, LDL-C: low-density lipoprotein cholesterol. Mann–Whitney U test was used
to calculate significant differences. * p < 0.05, ** p < 0.01, *** p < 0.001 significantly different from HFD group; # p <
0.05, ## p < 0.01, ### p < 0.001 significantly different from ND group.

2.3. Identification of Mitochondrial CLs in the Liver

The CLs share structural similarities (Figure S1). They mainly consist of four fatty
acid chains, three glycerol groups, and two phospholipid groups. Because of their similar
core structures, a variety of regular product ions were obtained. In the negative mode,
[PA − H]− (PA, phosphatidic acid), [M − R]− (R, C13H27COO), and fatty acyl ions were
the main characteristic fragment ions of the CLs. Before analyzing the CL species, the CL
(18:1)4 standard was detected and characterized primarily as [M − H]− ions in mouse liver
mitochondria. The ions at m/z 591.4043, 1011.6308, and 227.2006 were the most sensitive
diagnostic product ions for CL (18:1)4 (Figure S1).
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Mitochondrial CL profiles in the liver were obtained by integrating the 58 CLs us-
ing UHPLC-QTOF-MS/MS (Figure 3). The UHPLC-QTOF-MS/MS information of the
characterized mitochondrial CL in the liver is presented in Table S1.
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Figure 3. The established metabolite profile of 58 CLs in liver mitochondria. The extracted ion
chromatograms (A–C) of the 58 targeted CLs ((A), CLs with peak intensity >1.01 × 105 cps; (B), CLs
with peak intensity >2.20 × 104 and <1.01 × 105 cps; (C), CLs with peak intensity >2.18 × 103 and
<2.00 × 104 cps). The number on the peak represents the compound number.

2.4. Distribution of Mitochondrial CLs in the Liver

In this study, 58 CL compounds were detected in the extracts of liver mitochondria,
and there were 54 CLs for further analysis (the low abundance of the other four CLs led
to inaccurate results). An overview of the distribution of 54 CLs in each sample is shown
as a heatmap in Figure 4a. In the HFD group, most CLs are shown in a darker blue color,
indicating a low CL level in the liver mitochondria in this group. There was a noticeable
red color in the same CL in the 40 DR group, indicating that the 40 DR group had the most
pronounced increase in CL content. In addition, the CL content in the other groups was
between those of the above two groups.

To further analyze the data, the CLs were classified (Figure 4b). The column chart
depicts the relative content of the total CL and each type of CL stratified by the number
of C atoms, including CL66, CL68, CL70, CL71, CL72, CL74, CL76, CL78, and CL72-O.
Among the nine CL species, the CL72 group was the most anteriorly distributed in the liver
mitochondria, the content of which was dominated by the total CL content. The total CL
content in the liver mitochondria among the six groups was in the following order: 40 DR >
60 DR > 20 DR > 0 DR > ND > HFD. Furthermore, the content of all individual CL species
showed the same trend, except for the CL74 group, which showed an increase in the HFD
group compared to that in the ND group.
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2.5. Targeted Metabolomic Analysis of Mitochondrial CLs in the Liver

To further explore the regulatory role of CLs in the amelioration of obesity induced
by graded DR, a targeted metabolomic strategy was used to screen for CLs in different
groups. A scoring plot of principal component analysis (PCA) was performed to verify
the repeatability of the present method and differentiation between groups (Figure 5). The
separation was significant (R2X = 0.833, Q2 = 0.641), showing a difference in the content
of CLs among the six groups. The results showed that the ND and HFD groups were
completely separated and distant, and the difference remained after the graded DR.

The orthogonal partial least squares discriminant analysis (OPLS-DA) score plots for
the ND group and HFD groups showed a clear separation (Figure 5b), and the results
(R2Y = 0.993, Q2 = 0.969) indicated that the models had good abilities for both prediction
and reliability. Variable importance in the projection (VIP) values was statistically estimated
using the OPLS-DA model for different groups for subsequent analysis. A 999-permutation
test was performed on the aforementioned model. The values of predicted R2 and Q2 from
the regression lines were 0.638 and −0.74, respectively, which were both smaller than those
from the actual models, indicating that the OPLS-DA model did not overfit (Figure 5c). The
OPLS-DA models of other groups are shown in Figure S2.
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2.6. The Screening of Mitochondrial CLs Related to DR Ameliorate Obesity

CLs that met the following three criteria were regarded as differential metabolites
compared to the HFD group. First, if the VIP values in the corresponding OPLS-DA model
were greater than 1.0. Second, if the CL content was significantly different (p < 0.05). Third,
if the fold changes of CLs were >1.50 or <0.75. Consequently, a total of 23 CLs were selected
in the ND group, including 15, 18, 19, and 18 differential CLs in the 0 DR, 20 DR, 40 DR,
and 60 DR groups, respectively. However, when the fold changes were further confined
(fold change > 2.0 and fold change < 0.5) to identify CLs with greater variability, there were
10, 10, 17, and 14 differential CLs in the 0 DR, 20 DR, 40 DR, and 60 DR groups, respectively.
The VIP, p, and fold change values of the 23 CLs are presented in Table S2.

For further quantitative analysis, the changes in the contents of the 23 CLs were
analyzed (Figure 6). Each of the 23 CLs in the ND and DR groups was assessed in terms of
their basic levels in the HFD group. The points on the right side of the abscissa = 1 indicate
that the CL content increased in comparison with the HFD group, and the points on the
left side represent the opposite. There was an overall upward trend in CL content after
DR. There were several CLs whose contents were clearly reduced in both the ND and DR
groups, such as compounds 6, 36, 37, 38, and 43, compared to the HFD group. Most of the
differential CLs in the 40 DR group were at the far right of Figure 6, which indicates that
40 DR promoted a greater effect on mitochondrial CL growth than other DR levels.

2.7. The Biosynthesis and Remodeling Gene Expression of CLs

To further explore the basis of this graded response, we measured the messenger RNA
expression, including cardiolipin synthase 1 (crls1) and tafazzin (taz). The crls1 is closely
involved in the regulation of CL biosynthesis while taz is involved in the regulation of CL
remodeling. CL biosynthesis and remodeling are key factors in the modulation of CL metabolic
function. After de novo CLs synthesis and acyl remodeling, different CLs were prepared.
First, CLs were formed by the condensation of one molecule of phosphatidylglycerol and
one molecule of cytidine diphosphate-diacylglycerol by crls1. Subsequently, remodeling was
performed using enzymes, such as taz, which converted the acyl chains of nascent CLs to
mature CLs; this process was a bidirectional modulation (Figure 7a).

There was no significant difference in the expression of crls1 between the ND and HFD
groups (Figure 7b). The expression of crls1 in the DR groups was significantly higher than
that in the HFD group, except in the 20 DR group, where it was significantly lower than
that in the HFD group. Taz expression was increased in the HFD group. The expression of
taz was markedly increased in the 20 DR, 40 DR, and 60 DR groups compared to the HFD
group, which showed no difference from the 0 DR group. In particular, higher expression
of crls1 and taz was observed in both the 40 DR and 60 DR groups.
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3. Discussion

In this study, we investigated the role of CL in the amelioration of obesity induced by
DR to discover a theoretical basis for targeted treatment. Targeted metabolomic analysis
based on UHPLC-QTOF-MS/MS was used to identify and distinguish variations in CL at
different DR levels. Genes related to CL synthesis and remodeling were further quantified
to explore their underlying mechanisms.

CL plays a pleiotropic role in regulating mitochondrial bioenergetic processes and
inner membrane stability, including mitochondrial lamellar cristae formation, respiratory
chain complexes, mitochondrial substrate carriers, association of enzymes with the inner
mitochondrial membrane, and ATP synthesis [26]. In the progress of obesity and type 2 dia-
betes, CL deficiency plays a crucial role in mitochondrial dysfunction [22]. A previous study
demonstrated that liver mitochondrial dysfunction occurs when CL and/or tetralinoleoyl-
cardiolipin content was reduced by 35% [27]. Rats with non-alcoholic fatty liver disease
have decreased levels of CL but increased levels of peroxidized CL in the liver tissue [28].

Our data indicated an absolute decrease in mitochondrial CL concentration in the liver
of obese mice, which is in line with the results of other studies [29,30]. This reduction was
associated with CL damage, which contributed to an increase in electron leakage from the
electron transport chain, generation of more superoxide radicals, and perpetuation of a cycle
of oxygen-radical-induced mitochondrial membrane damage, all of which ultimately led
to liver damage. During this process, mitochondrial lipid peroxidation is induced, which
generally occurs in organs such as the heart, liver, placenta, kidneys, and subcutaneous
adipose tissue in individuals with diabetes and obesity [31].

Our data confirmed that DR induced a considerable increase in CL concentrations
in the liver mitochondria of obese mice. This result demonstrates that DR is of particular
interest for liver mitochondrial membrane lipids. Here, DR alters the physical properties of
mitochondrial membranes by increasing CL density. DR might be a vital promoter of energy
factors in the liver tissue by upregulating CLs to diminish energy-metabolism-associated
disturbances. In addition, calorie restriction can promote CL distribution between mitochon-
drial membranes due to the additional CL caused by calorie restriction in the mitochondrial
outer membranes [32]. On this basis, several phenomena can be generated by DR, such
as a decrease in oxygen consumption, membrane potential, and reactive oxygen species,
to induce mitochondrial biogenesis and bioenergetic efficiency [23]. Through a series of
comprehensive analyses, some differential CLs indicated different variations between obese
mice and mice with different levels of DR. Detailed information on mitochondrial CL may
explain the unique efficacy of DR, a basic method to ameliorate obesity. These different CLs
could contribute to the mitochondrial mechanism of action or play a role in DR and obesity.

Maintaining normal species and CL content is crucial for mitochondrial function and
structural integrity. Our study pinpointed the difference in CL content after graded levels of
DR. The level of DR did not have a proportional effect on CL content, and the associations
had an inverted U-shape. Our results showed that 40% DR had a more dramatic effect on
mitochondrial CL regulation in the liver than 0%, 20%, or 60% DR in obese mice. A previous
study indicated that calorie restriction could promote the biosynthesis and remodeling of
the CL [32]. This was consistent with our results that the expression of crls1 and taz was
higher after 40% and 60% DR. From the DR intervention on obesity, the 40 DR group could
repair severe hepatocyte steatosis, but the liver of 60 DR mice showed marked striking
intracellular edema and focal hepatocellular necrosis. Based on these results, we provide
evidence that 40% DR achieved relatively good amelioration of obesity.

4. Materials and Methods
4.1. Chemicals and Materials

Commercial kits for TC, HDL-C, and LDL-C were purchased from Jiancheng Bio
(Nanjing, China). Radioimmunoprecipitation assay (RIPA) lysis buffer was purchased
from ServiceBio (Wuhan, China). HPLC-grade methanol, chloroform, and acetonitrile were
obtained from Fisher Scientific (Waltham, MA, USA). Antibodies against cytochrome c oxi-
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dase IV (COX4), VDAC-1, Lamp-2, and Lamin-B1 were obtained from ServiceBio (Wuhan,
China). Sodium dodecyl sulfate, 2.5% glutaraldehyde, polyacrylamide gel electrophoresis,
Tween-20 (TBST), phosphate buffer (PB, pH 7.4), and osmic acid were purchased from
ServiceBio (Wuhan, China). TRIzol reagent was obtained from Bioleuki (Wuhan, China).
The primers were purchased from Sangon (Shanghai, China).

4.2. Animals and DR

The Institutional Animal Care and Use Committee of Hubei University of Chinese
Medicine approved all animal experiments. The Huazhong University of Science and Tech-
nology (Wuhan, China) provided 54 Kunming mice (20–25 g). Laboratory animal certificate
number: SCXK (e) 2017-0067. All experimental animals were individually housed in cages
with standard conditions (temperature, 23± 2 ◦C; humidity, 55%± 5%; 12 h light/dark). In
this animal experiment, normal and high-fat diets were prepared. The HFD formula was as
follows: 78.8% normal feed, 10% lard, 10% egg yolk, 1% cholesterol, and 0.2% cholate [33].
All mice were fed for one week for adaptation and then randomized into six groups (nine
mice each): the normal mice + ND (ND), obese mice + HFD (HFD), obese mice + normal
diet (0 DR), obese mice + 20% normal diet DR (20 DR), obese mice + 40% normal diet DR
(40 DR), and obese mice + 60% normal diet DR (60 DR) groups. All groups were treated
with a two-step dietary plan. In the first stage, the ND group was fed a normal diet, and all
other groups were fed a high-fat diet. Two weeks of the high-fat diet resulted in mice with
a BMI ≥ 310, which was considered obese [34]. The BMI of the mice was evaluated using
the Lee index [35]. In the second stage, the diet of the mice in the ND and HFD groups
remained unchanged, the 0 DR group was replaced with a normal diet ad libitum, and the
20 DR, 40 DR, and 60 DR groups were also replaced with a normal diet but reduced by 20%,
40%, and 60% relative to the ND group, respectively. The second stage lasted for 2 weeks.

4.3. HE Staining and Morphometric Analysis

To examine the effects of DR on HFD-induced hepatic steatosis, tissue samples were
collected for histological examination immediately after the mice were anesthetized and
sacrificed by cervical dislocation at the end of the study. Briefly, fixed liver specimens
were paraffin-embedded, sectioned at 4 µm, and subjected to HE staining for evaluating
the pathologic changes. Images from six different groups of sections were analyzed using
Imageview software version 3.7.

4.4. Biochemical Analysis

The experimental period for the entire dietary intervention was 28 days. Food con-
sumption was monitored daily, and body weight and nasal–anal length were measured
every 3 days. After completion of the second stage, the fasting whole blood samples were
obtained by ophthalmectomy under anesthesia (isomobarbital, 100 mg·kg−1) and finally
collected into clean test tubes without anticoagulant. Serum samples were separated by
centrifugation. Serum TC, HDL-C, and LDL-C concentrations were measured using an
enzymatic colorimetric method and the values were determined using an Infinite F50
microplate reader (Tecan, Grödig, Austria).

4.5. Isolation and Purity Verification of Mitochondria
4.5.1. Isolation of Mitochondria

Differential centrifugation was used to enrich the mitochondria in the mouse liver using a
mitochondrial isolation kit purchased from Biovision (Milpitas Blvd, Milpitas, CA, USA) [36].
Briefly, after the livers were collected, washed, and homogenized using pre-cooled glass
homogenizers, the resulting homogenates were immediately centrifuged at 600× g for 10 min
with the isolation buffer provided by the kit. Subsequently, the supernatant was carefully
collected and centrifuged at 7000× g for 10 min to precipitate the mitochondria, which were
washed again by centrifugation with an isolation buffer. Finally, the supernatants were
removed and the mitochondria were re-suspended in the storage buffer provided with the kit.
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4.5.2. Western Blot Analysis

Proteins from purified mitochondria and liver homogenate were extracted with RIPA
lysis buffer, resolved by 10% SDS-PAGE at 120 V, transferred to 0.45 mm PVDF (polyvinyli-
dene fluoride) for 30 min at 300 mA, and finally analyzed by immunoblotting. All mem-
branes were blocked with 5% non-fat dry milk in Tris-buffered saline containing Tween
20 (TBST) for 30 min at 23 ± 2 ◦C following incubation with primary antibodies in milk
at 4 ◦C. At the specified dilutions, primary antibodies were used against the following
proteins: Lamp-2 (120 KD, 1:1000), Lamin-B1 (69 KD, 1:1000), and VDAC-1 (32 KD, 1:5000).
After washing with TBST thrice for 5 min each, the membranes were incubated with the
appropriate secondary antibodies in milk (1/5000) for 30 min at room temperature. Finally,
the membranes were washed three times for 5 min each with TBST. Visualization was
performed by enhanced chemiluminescence staining.

4.5.3. Transmission Electron Microscopy

Enriched mitochondria were immersed in a solution of glutaraldehyde solution (2.5%)
for 3 h at 4 ◦C, washed in 0.1 M PB (pH = 7.4), and postfixed for 2 h in the dark, at room
temperature, with 1% osmic acid. The samples were subsequently washed three times in
phosphate buffer, dehydrated using a graded series of 50%–100% ethanol solutions and
100% acetone, and embedded in paraffin. Sections at 812.70 nm were counterstained for
15 min with 2% uranyl acetate in ethanol and lead citrate. This was followed by observation
under an HT7700 transmission electron microscope (Hitachi High-Tech Co., Tokyo, Japan).

4.6. Extraction of CL from Isolated Liver Mitochondria

CL extraction was completed with minor adjustments, as described in previous re-
ports [37]. Briefly, purified mitochondria were added sequentially to 3 mL of a CHCl3/MeOH
1/1 (v/v) mixture and 1.8 mL of 9% NaCl, vortexed for 30 s, and ultrasonically extracted for
10 min. The resulting mixture was centrifuged at 1425× g for 10 min at room temperature
(23 ◦C). After the phase separation, the bottom layer (chloroform layer) was collected. The
supernatant was recovered and a second extraction was performed using 2.0 mL of chloro-
form. The combined extracts were aspirated, dried by blowing with N2, and reconstituted
in 200 µL 1/1 (v/v) acetonitrile/isopropanol. Finally, the supernatant was centrifuged
at 12,830× g for 10 min and collected in sample vials. Standard CL (14:0)4 with a final
concentration of 100 ng mL−1 was used not only as an internal standard but also as an
inter-batch quality control (QC) sample.

4.7. Identification of Mitochondrial CLs by UHPLC-QTOF-MS/MS

Reversed-phase liquid chromatography was performed on the C18 column
(100 mm × 2.1 mm i.d., 1.7 µm, Waters, Milford, MA, USA) with 5 mM ammonium
formate water (A) and 5 mM ammonium formate in methanol/2-propanol (1:1, v/v) (B).
The UHPLC column was maintained at 40 ◦C with a flow rate of 0.3 mL/min and the
injected volume of each sample was 2.0 µL. The LC gradient elution conditions followed a
binary gradient with linear interpolation: 0 min, 90% B; 6 min, 95% B; 15 min, 98% B;
18 min, 98% B; 18.1 min, 90% B; and 20 min, 90% B. Samples were analyzed on a Waters
Xevo G2-XS QTof mass spectrometer equipped with an electrospray ionization source.
The sequential negative ion method of MS data collection was carried out with the
following MS tuning parameters: capillary voltage 2.5 kV, cone gas flow 50 L·h−1, source
temperature 100 ◦C, desolvation temperature 500 ◦C, desolvation gas flow 500 L·h−1, cone
voltage 40 V. The MS data were acquired in the MSE continuum mode, and the full scans
ranged from 50 to 1800 Da with a scan duration of 1 s.

CLs were matched based on the retention time and charge–mass ratio according to a
previously established method [38]. The chromatographic behavior of the products and
precursor ions was examined for presence and consistency. Correspondingly, unreasonable
ions such as isotopic and false-positive peaks were excluded during the matching process.
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4.8. Targeted Metabolomic Analysis

Targeted metabolomic analysis was performed on mitochondrial CLs in the livers
of all groups. Following mitochondrial CLs identification, CLs were quantified based
on their relative abundance (the relative area of the corresponding peak). The relative
content of each CL was calculated as the CL peak area divided by the CL peak area (14:0)4.
Multivariate statistical analysis was based on the transformed relative quantitation results
(log10 transformation), and missing values were set at 1 × 10−9. Multivariate statistical
analysis with unit variance (UV) scaling methods was performed on the entire data table
during target metabolomic profiling.

To explore the role of DR-induced CL compounds caused by DR in the amelioration
of obesity, PCA was used for multivariate exploration of clusters and trends among the
six groups. Subsequently, OPLS-DA was used to identify clusters and trends in the ND
and HFD groups. Moreover, 999 random-permutation tests were performed to investigate
the overfitting of the OPLS-DA model, and R2Y and Q2 were calculated for goodness-of-fit
and goodness-of-prediction, respectively. VIP values were calculated using the OPLS-DA
model. The importance of the variables for classification was measured based on whether
the VIP value was greater than 1.0 [39,40]. Significantly differential CLs were further
screened according to their VIP values.

4.9. Real-Time Polymerase Chain Reaction (RT-PCR) Analysis

Total RNA was isolated from the liver using TRIzol and quality-checked using
260/230 nm and 260/280 nm scores added to a NanoDrop 2000/2000C micro nucleic
acid protein concentration analyzer (Thermo Fisher Scientific, Waltham, MA, USA). The
SweScript RT II First Strand cDNA Synthesis Kit (Servicebio, Wuhan, China) was used to
reverse transcribe the mRNAs into cDNAs. The cDNAs were subsequently mixed with
the indicated primers and 2 × Universal BlueSYBR Green qPCR Master Mix (Servicebio,
Wuhan, China) for PCR detection. RT-PCR was performed using the CFX96 Real-Time PCR
System (Bio-Rad, Hercules, CA, USA). The following oligonucleotides were used: crls1
forward ATCCTTGCTATGCCACTGCT and reverse AAACTGGAGCTGCCAGAGAA; taz
forward GAATTGGACGGCTGATTGCT and reverse GGAAGTAGGGTGGGCTGTTA.

4.10. Data Analysis

MassLynx 4.1 software (Waters, Milford, MA, USA) was utilized not only to operate
and process the UHPLC-QTOF-MS/MS system but also to process and analyze the MS/MS
spectra. Statistical analysis was performed using multivariate analysis with SIMCA-P
(v14.1, Umetrics, Umeå, Sweden). Significant differences were analyzed with a Mann-
Whitney U test using SPSS (version 26.0; IBM, Armonk, NY, USA). Statistical significance
was defined as p values < 0.05. GraphPad Prism 8.0.1 (GraphPad Software Inc., San Diego,
CA, USA) was used for visual analysis.

5. Conclusions

Our results showed that the mitochondrial CL content in the liver increased the most
in the 40 DR group. In addition, the differential CLs caused by different levels of DR, based
on the statistical model analysis, could serve as efficient selection indices for mitochondrial
dysfunction in obesity. This has great practical significance in providing guidance for
improving obesity based on mitochondrial mechanisms. Future studies will be dedicated
to obtaining more transcriptomic response data on CLs changes after different degrees of
DR for comprehensive analyses of mitochondrial mechanisms.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules28114522/s1, Figure S1: The chemical structure and characteristic
product ions of CL (18:1)4; Figure S2: OPLS-DA scores scatter plot of 0 DR, 20 DR, 40 DR, and 60 DR group
vs. HFD group, respectively; Table S1: The detailed information of CLs obtained from liver mitochondria
using UHPLC-QTOF-MS/MS; Table S2: The screened differential CLs in experimental groups.

https://www.mdpi.com/article/10.3390/molecules28114522/s1
https://www.mdpi.com/article/10.3390/molecules28114522/s1
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