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Abstract: β-carbolines (harman and norharman) are potentially mutagenic and have been reported
in some vegetable oils. Sesame seed oil is obtained from roasted sesame seeds. During sesame oil
processing, roasting is the key procedure to aroma enhancement, in which β-carbolines are produced.
Pressed sesame seed oils cover most market share, while leaching solvents are used to extract oils
from the pressed sesame cake to improve the utilization of the raw materials. β-carbolines are
nonpolar heterocyclic aromatic amines with good solubility in leaching solvents (n-hexane); therefore,
the β-carbolines in sesame cake migrated to the leaching sesame seed oil. The refining procedures are
indispensable for leaching sesame seed oil, in which some small molecules can be reduced. Thus,
the critical aim is to evaluate the changes in β-carboline content during the refining of leaching
sesame seed oil and the key process steps for the removal of β-carbolines. In this work, the levels
of β-carbolines (harman and norharman) in sesame seed oil during chemical refining processes
(degumming, deacidification, bleaching and deodorization) have been determined using solid phase
extraction and high performance liquid chromatography-mass spectrometry (LC-MS). The results
indicated that in the entire refining process, the levels of total β-carbolines greatly decreased, and the
adsorption decolorization was the most effective process in reducing β-carbolines, which might be
related to the adsorbent used in the decolorization process. In addition, the effects of adsorbent type,
adsorbent dosage and blended adsorbent on β-carbolines in sesame seed oil during the decolorization
process were investigated. It was concluded that oil refining can not only improve the quality of
sesame seed oil, but also reduce most of the harmful β-carbolines.

Keywords: adsorbent; β-carbolines; harman; norharman; sesame seed oil

1. Introduction

Heterocyclic aromatic amines (HAAs) are a class of polycyclic aromatic compound con-
taining N-heterocycles, which are produced by the reaction of free amino acids, sarcosine,
creatinine and sugars under high temperature. HAAs have carcinogenic and mutagenic
activities [1]. So far, more than 30 HAAs have been identified in various foods [2]. β-
carbolines, mainly including harman (1-methyl-9H-pyrido[3,4-b]indole) and norharman
(9H-pyrido[3,4-b]indole), are very easy to generate in thermal food processing, such as
baking and roasting. These two substances are not mutagenic by themselves, but when co-
existing with aniline, o-toluidine or other HAAs, they will cause strong carcinogenicity [3].
Animal studies have also shown that harman and norharman affected the physiological
behavior of animals, mainly because they bind to certain sites in the liver and brain of
mice [4,5]. In addition, harman and norharman can poison some nerves and inhibit some
key enzymes.

Over the past few decades, β-carbolines (harman and norharman) have been detected
in many processed foods, including thermally processed meats (e.g., pork), coffee products
and tobacco smoke [6–8]. At present, more attention has been paid to HAAs in foods
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of animal origin, but relatively less to HAAs in foods of plant origin. Wojtowicz et al.
revealed that the β-carboline contents in chicory coffee increased rapidly (up to 25-fold)
after roasting at 160 ◦C [9]. Theoretically, plant-protein-based foods can also produce HAAs
after roasting at high temperatures. Coffee beans contain only about 13% protein, but
high-temperature roasting can produce HAAs. Because of the roasting process of oil seeds
(e.g., sesame seed, peanut), some vegetable oils (e.g., sesame seed oil) may be considered as
the main contributor to β-carboline compounds. There are limited reports on the levels
of β-carbolines (harman and norharman) in edible oils, especially in sesame seed oil and
other flavored vegetable oils. Recently, Chang et al. showed that the levels of harman
and norharman in sesame seed oils were 168 µg/kg and 162 µg/kg, respectively, while
HAAs were not detected in other vegetable oils (e.g., linseed oil, soybean oil) [10]. In
addition, Zhang et al. reported that the levels of harman and norharman in sesame seed
oils were 453 µg/kg and 276 µg/kg, respectively, which were much higher than those in
sunflower oil, canola oil and peanut oil [11]. Our group has analyzed commercial sesame
seed oils (pressed fragrant sesame oils, ground fragrant sesame oils, cold-pressed sesame
oils) produced by different processes and found that most of sesame oil samples contained
both harman and norharman [12].

Sesame seed oil (sesamum indicum) is a traditional edible oil in China and other Asian
regions. There are four kinds of sesame seed oils in China, including pressed fragrant
sesame seed oil, ground fragrant sesame seed oil, cold-pressed sesame seed oil and refined
sesame seed oil. Pressed fragrant sesame oil is generally produced using mechanical
pressing after high-temperature roasting. The production of pressed fragrant sesame seed
oil leads to a large amount of sesame meal, which can be used to produce refined sesame
seed oil though solvent extraction and the subsequent refining process (Figure 1). Whereas
β-carbolines (harman and norharman) are non-polar HAAs with good solubility in leaching
solvents (e.g., hexane), the β-carbolines in sesame meal migrate into the leached sesame
oil. It has been shown that chemical refining can reduce most of the minor components of
vegetable oils (e.g., soybean oil) such as free fatty acids, vitamin E, phytosterols and other
small molecule compounds [13–15]. Therefore, it is meaningful to investigate the level of
HAAs (β-carbolines) in the refining process of sesame seed oil.
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Figure 1. The processing procedure of sesame seed oils.

Oil refining usually consists of degumming, deacidification, decolorization and de-
odorization steps, of which decolorization is one of the important processes in edible oil
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refining. Some studies have reported that solid adsorbents (e.g., clay and activated carbon)
used in the decolorization process can bind to small molecules (e.g., pigments) in oils via
physical adsorption [16,17]. Recently, it has been shown that decolorization is a key process
to reduce some harmful compounds (e.g., BaP) [18–20]. Thus, the effect of sorbents on the
level of HAAs (β-carbolines) in the oil-refining process can also provide a possible method
for the removal of HAAs. In this work, the level of β-carbolines (harman and norharman) in
crude sesame oil and oils during refining processes (degumming, deacidification, bleaching
and deodorization) has been studied and the effect of the chemical refining process on the
level of harman and norharman in sesame seed oils has been discussed. Importantly, the
effect of adsorbent type, adsorbent dosage and composite adsorbent on the removal of
β-carbolines from sesame seed oil during the decolorization process was investigated as
well. This work will provide new insight into the removal of HAAs (β-carbolines) from
edible oils.

2. Results and Discussion
2.1. Effects of Sesame Seed Oil Refining Process on the Content of β-Carboline Compounds

To explore the changes in HAA content during the refining process of sesame seed
oil, the level of HAAs in sesame crude oil and oils during refining processes (degumming,
deacidification, bleaching and deodorization) have been detected using LC-MS. A flow
chart of the refining process of sesame seed oil is shown in Figure 1. The chemical structures
of the 14 heterocyclic aromatic amines are shown in Figure 2.
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The levels of HAAs in sesame crude oil, degumming oil, deacidification oil, bleached
oil and deodorized oil were determined, respectively. The results showed that the HAAs in
crude sesame seed oil were mainly β-carbolines (harman and norharman) [10,12] (Table 1).
The levels of total β-carbolines (harman and norharman) decreased from 552.34 µg/kg to
502.69 µg/kg and 418.50 µg/kg during degumming and deacidification of sesame seed
oil, respectively (Figure 3). This may be due to the formation of colloids in the hydration
degumming process. The soap formed in the deacidification process adsorbed some small
molecule compounds (e.g., harman and norharman) in sesame seed oil, but the ability to
remove β-carbolines was limited [21,22]. Notably, the bleaching step could significantly
reduce β-carbolines (harman and norharman) in sesame seed oil from 418.50 µg/kg to
1.64 µg/kg, which might be attributed to the absorbents (e.g., activated clay and activated
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carbon) used in this step [23]. Some studies reported that solid adsorbents (e.g., activated
clay and activated carbon) could bind to small molecules (e.g., pigmented substances) in
oils via physical adsorption [24], which also contributed to the removal of β-carboline
compounds. Decolorization is one of the important processes in the refining of edible oils.
In addition to removing pigments and improving the appearance of the oil, it can also
decrease the content of free fatty acids, phospholipids, peroxides, carbonyl compounds
and other small molecular compounds (e.g., polycyclic aromatic hydrocarbons) in oils [23].
Thus, the decolorization process is a key step for the effective reduction of harman and
norharman content in sesame seed oil.

Table 1. The contents of 14 HAAs were determined during the refining of sesame seed oil (µg/kg) a.

HAA (µg/kg) Crude Oil Degummed Deacidified Bleached Deodorized

AαC ND b ND ND ND ND
MeAαC ND ND ND ND ND
Trp-P-1 ND ND ND ND ND
DMIP ND ND ND ND ND

Glu-P-2 ND ND ND ND ND
MeIQ ND ND ND ND ND

MeIQx ND ND ND ND ND
IQ ND ND ND ND ND

PhIP ND ND ND ND ND
4,8-DiMeIQx ND ND ND ND ND
7,8-DiMeIQx ND ND ND ND ND

Harman 301 ± 3 274 ± 2 242 ± 4 1.2 ± 0.3 0.52 ± 0.04
Norharman 251 ± 3 229 ± 1 176 ± 4 0.45 ± 0.07 0.35 ± 0.02

Trp-P-2 ND ND ND ND ND
a Note: heterocyclic aromatic amines (HAAs) were detected using LC-MS. b Not detected (ND).
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Figure 3. Changes in β-carboline content during the refining of sesame seed oil. Note: The decolorizer
used in the decolorization process was clay (3% of oil weight). Means (n = 3) across all samples
without a common letter differ significantly (p < 0.05).

2.2. Effect of Different Types of Adsorbents on the Removal of β-Carbolines from Sesame Seed Oil

To investigate the effect of adsorbent type on the removal of the β-carbolines (harman
and norharman) in sesame seed oil, different kinds of decolorizers, including silica gel,
attapulgite, activated carbon and clay, were used in adsorption decolorization experiments.
The results showed that the four adsorbents were all effective in the removal of β-carbolines
(harman and norharman) from sesame seed oil (Figure 4). When the adsorbents silica gel,
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attapulgite, activated carbon and clay were added to the sesame deacidification oil for
decolorization, respectively, the content of β-carbolines decreased from 418.50 µg/kg to
162.64 µg/kg, 50.04 µg/kg, 4.43 µg/kg and 7.16 µg/kg, respectively.

In general, activated carbon and clay were more effective for the removal of β-
carbolines (harman and norharman). The reason may be that activated carbons have
hydrophobic graphene layers, which can interact readily with non-polar compounds (e.g.,
harman and norharman) [25]. Clay had a large specific surface area, high activity and
strong adsorption capacity for minor compounds (e.g., harman and norharman) in sesame
seed oil [26]. However, the adsorption capacity of attapulgite and silica gel for harman
and norharman was relatively inferior. The possible reason was that many adsorption
active points on the pore surface of attapulgite preferentially adsorbed polar substances
and adsorbed non-polar compounds less (e.g., harman and norharman) [27]. Silica gel was
a strong polar adsorbent, which was favorable for adsorbing high polar compounds [28].
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Figure 4. Effects of different types of decolorizing agents on the removal of β-carbolines in sesame
seed oil. Note: The control group was deacidified oil, and the dosage of decolorizers was 1% of the
oil weight. Means (n = 3) across all samples without a common letter differ significantly (p < 0.05).

2.3. Effect of Adsorbent Dosage on the Removal of β-Carbolines from Sesame Seed Oil

The removal effect of β-carbolines (harman and norharman) in the decolorization
process of sesame seed oil was also related to the amount of adsorbents. To investigate
the effect of adsorbent dosage on β-carbolines in sesame seed oil, the decolorization of
sesame seed oil was carried out at different adsorbent dosages (1%, 3%, 5%). The results
showed that the total β-carbolines (harman and norharman) in sesame seed oil gradually
decreased as the amount of adsorbents (silica gel, attapulgite, activated carbon and clay)
increased from 1% to 5% (Figure 5). When the bleaching agents were silica gel, attapulgite,
activated carbon and clay, with the dosage increasing from 1% to 5%, the total β-carbolines
(harman and norharman) in bleached oil decreased from 162.64 µg/kg to 29.76 µg/kg,
50.04 µg/kg to 3.78 µg/kg, 4.43 µg/kg to 1.10 µg/kg and 7.16 µg/kg to 1.24 µg/kg,
respectively (Figure 5). The above results suggested that 5% clay and 5% activated carbon
were more effective in decreasing the content of harman and norharman in sesame seed
oil. Among them, when activated carbon and clay were added at 5% of oil weight, the
contents of harman in decolorized oil were 0.55 µg/kg and 0.72 µg/kg, respectively, and
the contents of norharman were 0.55 µg/kg and 0.52 µg/kg, respectively (Figure 5C,D).
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Figure 5. Effect of adsorbent dosage on the removal of β-carbolines from sesame seed oil. Note: (A–D)
represent the adsorbents used were silica gel, attapulgite, activated carbon and clay respectively. The
control group was deacidified oil, and the dosage of decolorizers was the mass fraction of the oil
weight. Means (n = 3) across all samples without a common letter differ significantly (p < 0.05).

2.4. Effects of Different Types of Activated Carbons on the Removal of β-Carbolines from Sesame
Seed Oil

Activated carbon is made from a wide range of raw materials, generally from coal, peat,
wood powder, coke from coconut shells and other raw materials through carbonization
and activation processing [26]. Thus, different types of activated carbons (wood powder,
coconut shell powder, coconut shell particles, coal, etc.) were carried out for the adsorption
and decolorization process of sesame oil. Since the capacity of activated carbon is affected
by its specific surface area, pore structure and surface functional groups, etc. [29], different
types of activated carbons had different adsorption capacities for β-carbolines (harman and
norharman) in sesame seed oil. Figure 6 shows the contents of β-carbolines in sesame seed
oil after decolorization by different types of activated carbons (GC, PC, AP, F10 and PW).
PW significantly decreased the harman and norharman levels in sesame seed oil compared
with those of the control (418.50 µg/kg) to 1.10 µg/kg, followed by F10 (2.88 µg/kg), AP
(3.10 µg/kg), PC (3.24 µg/kg) and GC (22.52 µg/kg). Among the activated carbons, GC
was less effective in the removal of β-carbolines from sesame seed oil, probably because
it is a granular activated carbon and had relatively less contact area with sesame seed oil
during decolorization. The surface properties of activated carbon such as porosity and
specific surface area differ based on the raw materials used [30]. Lee et al. demonstrated
that powdered activated carbon made from wood had a larger specific surface area than
powdered activated carbon made from other raw materials [31]. Thus, the powdered
activated carbon PW was more effective in reducing the β-carboline level of the sesame
seed oil compared with activated carbon F10, AP and PC.
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Figure 6. Effects of different types of activated carbons for the removal of β-carbolines from sesame
seed oil. Note: The control group was deacidified oil, and amount of activated carbons was 1% of the
oil weight. The symbols for each activated carbon are as follows: GC, granular type activated carbon
made from coconut shell; PC, powdered type activated carbon made from coconut shell; AP, F10,
powdered type activated carbon made from peat; PW, powdered type activated carbon made from
wood. Means (n = 3) across all samples without a common letter differ significantly (p < 0.05).

2.5. Removal of β-Carbolines from Sesame Seed Oil Using Blended Decolorizers

In general, in the process of oil decolorization, too much clay results in the acid value
rising and an earthy smell, while too much activated carbon causes large oil loss. In
the present study, activated carbon compounded with a clay mixture was usually used
for decolorization in the grease decolorization process [19,32]. It not only improved the
decolorization capacity and reduced the risky substances (e.g., harman and norharman), but
also decreased the adsorbent dosage and loss of oil. Therefore, the adsorption decolorization
experiments were carried out by using a blended decolorizer of white clay and activated
carbon (PW) with a mass ratio of 1:1, and the amount of decolorizer added was 1% and
3% of the oil weight, respectively. The results showed that when adding 1% and 3%
blended decolorizer for the decolorization process, respectively, the contents of β-carboline
compounds decreased from 418.50 µg/kg to 1.05 µg/kg and 0.80 µg/kg, respectively
(Figure 7). The blended decolorizer was more capable of removing heterocyclic aromatic
amines (HAAs) than a single type of adsorbent. Meanwhile, the introduction of activated
carbon (PW) could improve the decolorization performance of clay for edible oils and
also effectively reduce the content of risk substances (e.g., harman and norharman). A
possible reason was that clay preferentially removed impurities (e.g., pigments) from
sesame seed oil, preserving the adsorption capacity for the removal of β-carbolines by
activated carbon (PW). Thus, a blended decolorizer consisting of activated carbon and
clay could effectively remove HAAs from sesame seed oil while meeting the process
requirements for the decolorization of edible oils.
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Figure 7. Effects of blended decolorizer on the removal of β-carbolines from sesame seed oil. Note:
The control group was deacidified oil, and the dosage of blended decolorizer was the mass fraction
of the oil weight. The blended decolorizer was a 1:1 mass ratio of clay and activated carbon (PW).
Means (n = 3) across all samples without a common letter differ significantly (p < 0.05).

2.6. Changes in Basic Physicochemical Properties of Sesame Seed Oil Refining Process

To evaluate the changes in physicochemical indexes during the refining process of
sesame seed oil, the acid value (AV), peroxide value (POV) and color of sesame seed oil
were determined (Tables 2 and 3).Therein, the AV and POV are important indicators of
basic edible oil quality, which are closely related to oil stability. The AV and POV of the
leached sesame seed oil (crude oil) were 1.72 mg/g and 0.037 mmol/kg, respectively. The
AV of sesame seed oil decreased continuously in the process of chemical refining, probably
due to the adsorption of small amounts of free fatty acids by the oil soap horns during
the deacidification process. The AV and POV in the final refined sesame seed oil were
0.28 mg/g and 0.003 mmol/kg, respectively, which reached the quality index of first-grade
refined sesame seed oil. The deodorization process removes most of the small molecules
and unstable compounds (e.g., peroxide compounds). Therefore, except for improving the
quality of sesame seed oil, refining could reduce most of the harmful substances as well.

Table 2. Changes in basic physical and chemical indexes of sesame seed oil refining process.

Oil Sample Acid Value Peroxide Value

(mg/g) (mmol/kg)

Crude oil 1.7 ± 0.0 a 0.037 ± 0.00 b

Degummed oil 1.6 ± 0.0 b 0.069 ± 0.00 a

Deacidified oil 0.24 ± 0.02 c 0.024 ± 0.00 c

Bleached (3% blended decolorizer) oil 0.29 ± 0.04 c 0.037 ± 0.00 b

Deodorized oil 0.28 ± 0.04 c 0.003 ± 0.00 d

Note: The letters a, b, c and d represent the differences among crude, degummed, deacidified, bleached and
deodorized oils; the same letter indicates no significant difference (p > 0.05), different letters indicate a significant
difference (p < 0.05).

Changes to the color of sesame seed oil during the refining process were investigated.
L*, a* and b* denote the chromaticity value of the object color, where any color has a unique
coordinate value for the color space coordinates. L* denotes brightness (black and white),
a* denotes green to red and b* denotes blue to yellow. Crude sesame oil exhibited lower L*
and a* values and higher b* values (Table 3, Figure 8). This meant that crude sesame oil
was darker, greener and more yellow than the refined sesame seed oil. The color formation
in sesame seed oil was probably due to nonenzymatic browning (Maillard reaction), which
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occurred during the roasting of sesame seeds [33]. Some studies have demonstrated that
roasting increased the color of dark and yellow units as well as caused the production of
green pigments, especially chlorophyll [34–36]. In contrast, pigments could be removed
during the degumming, deacidification and decolorization processes, so that the color of
sesame seed oil was clear and transparent with less green and yellow during refining (L*
and a* values gradually increase, while b* values gradually decrease). Notably, compared
with other decolorizers, the color of sesame seed oil after decolorization with 3% blended
decolorizer was clear and transparent with less yellow (L*: 89.58; a*: 1.72; b*: −4.47). This
means that the removal of pigments from sesame seed oil is related to the adsorbent type
and dosage.

Table 3. Changes in color of sesame seed oil during the refining process.

Oil Sample L* a* b*

Crude oil 84.64 ± 0.02 a −9.29 ± 0.22 a 16.55 ± 0.03 a

Deacidified oil 86.20 ± 0.01 b −6.42 ± 0.02 c 8.24 ± 0.03 c

Deacidified oil 86.20 ± 0.01 b −6.42 ± 0.02 c 8.24 ± 0.03 c

Bleached (3% blended decolorizer) 89.68 ± 0.02 c 1.69 ± 0.01 d −3.88 ± 0.06 d

Deodorized oil 88.77 ± 0.01 c 1.72 ± 0.02 d −4.47 ± 0.01 d

Note: The letters a, b, c and d represent the differences among crude, degummed, deacidified, bleached and
deodorized oils; the same letter indicates no significant difference (p > 0.05), different letters indicate a significant
difference (p < 0.05).
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Figure 8. The color of sesame seed oil after decolorization with different decolorizers. Note: The
dosage of decolorizers was 3% of the oil weight. PW, powdered type activated carbon made from
peat. The blended decolorizer was a 1:1 mass ratio of clay and activated carbon (PW).

3. Materials and Methods
3.1. Materials

White sesame seed was purchased from a local supermarket. The five adsorbents
of activated carbons used in the present study were as follows: powdered type activated
carbon made from peat (AP, F10), powdered type activated carbon made from wood (PW),
powdered type activated carbon made from coconut shell (PC) and granular type activated
carbon made from coconut shell (GC). F10, PW, PC and GC were purchased from Xin
Sen Carbon Co., Ltd. (Nanping, China). AP was obtained from Aladdin Biochemical
Technology Co., Ltd. (Shanghai, China). Acetonitrile (HPLC grade) was purchased from
Thermo Fisher Scientific (Shanghai, China). Ammonium hydroxide and hydrochloric
acid (HPLC grade) were obtained from Kemiou Chemical Reagent Co., Ltd. (Tianjin,
China). Methyl alcohol, acetic acid and n-hexane were of HPLC grade, and other chemicals
were of analytical reagent grade. Oasis MCX solid-phase extraction cartridge (150 mg,
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6 mL) was purchased from Waters (Milford, CT, USA). Additionally, the water used was
Wahaha purified water purchased from a local supermarket. The standards AαC, MeAαC,
DMIP, Trp-P-1, Trp-P-2, Glu-P-2, MeIQ, MeIQx, IQ, PhIP, 4,8-DiMeIQx, 7,8-DiMeIQx were
purchased from Toronto Research Chemicals (Toronto, ON, Canada). Harman, Norharman
and 4,7,8-TriMeIQx were purchased from Alta scientific (Tianjin, China).

3.2. Methods
3.2.1. Roasting Treatment and Extraction of Oil from Sesame Seeds

The sesame seeds were roasted using an oven at 220 ◦C for 20–30 min. The roasted
sesame seeds were cooled naturally at room temperature and then fed into an oil press to
obtain sesame seed oil and sesame cake. The sesame cake was extracted with n-hexane three
times. The obtained mixture (oil–hexane) was processed under reduced pressure to remove
the solvent (n-hexane), and the leached sesame seed oil for the following experiments was
afforded.

3.2.2. Hydration Degumming

The above-prepared oil sample was stirred in a water bath at 60 ◦C for 30–40 min.
The distilled water was heated to the oil temperature and added to the above oil sample.
The water should be sprayed evenly, and the added water was 2~3 times the phosphorus
content. At the end of hydration, a reduction in stirring speed was beneficial for flocculation
separation. After hydration, the degummed oil was obtained via centrifugation.

3.2.3. Alkali Refining Deacidification

The specified concentration of NaOH was added to the obtained oil sample to neutral-
ize the free fatty acids and additional NaOH was infused to ensure the complete formation
of soaps. This process was initially carried out at 30 ◦C with stirring. Once the NaOH was
added, the temperature was immediately raised to the specified temperature, maintaining
the temperature for the required time. Then, the soaps were separated via centrifugation
at 5000 r/min. To remove the remnants of the soap and reagents dissolved in the treated
oil, the oil obtained in the previous stages was washed with 90 ◦C pure water three times
successively. Finally, the deacidified oil was obtained by heating under reduced pressure to
remove the washing water.

3.2.4. Adsorption Decolorization

The removal of HAAs using the oil bleaching procedure was conducted using different
adsorbents. The different amounts of adsorbent (1%, 3%, 5%) adopted were added to the
prepared oil sample, and the mixture was kept at 80 ◦C for 30 min by stirring in a vacuum
atmosphere. Then, the adsorbent was removed under filtration and the bleached oil was
obtained.

3.2.5. Distillation Deodorization

The deodorization was a type of distillation process to remove volatile compounds
and heat-instable pigments. Deodorization parameters were set as follows: 240 ◦C of
deodorization temperature, 80 Pa of deodorization pressure and 60 min of deodorization
time. Then, the oil samples was cooled down to room temperature and the deodorized oil
was obtained.

3.2.6. Extraction and Purification of HAAs

The extraction of HAAs from oil samples was according to the reference with slight
modification [37]. Approximately 2 g of oil samples was placed into a 50 mL centrifuge
tube. Then, 10 µL 5 mg/L internal standard working solution (4,7, 8-TriMeIQx) and
10 mL acetonitrile solution containing 1% (volume fraction) acetic acid were added. The
mixture was homogenized for 1 min, followed by ultrasound for 10 min and cryogenic
centrifugation at −4 ◦C (10,000 r/min, 10 min). The supernatant was collected into a 50 mL
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centrifuge tube. The above acetonitrile extraction operation was repeated twice. All extracts
were collected together.

The solid phase extraction column Oasis MCX cartridges (150 mg/6 mL) were pre-
activated with 10 mL methanol and 10 mL 0.1 mol/L hydrochloric acid/methanol (80:20,
v/v). All extracts were transferred to the MCX column for enrichment and purification.
Then, 10 mL water, 10 mL methanol and 10 mL methanol/ammonia/water (25:5:75, v/v/v)
were added to the MCX column successively for washing and purification. Finally, 10 mL
methanol/ammonia mixed solution (95:5, v/v) was used for elution and collection. All elu-
ent was collected and dried with nitrogen. A mixture of 10 mL 5% formic acid/acetonitrile
(95:5, v/v) was added to the blow-dried sample and then filtered through a 0.45 µm
microporous filter for LC/MS analysis.

3.2.7. LC/MS Analysis of HAAs

The determination of HAAs was performed on an Agilent ZORBAX Eclipse XDB-
C18 column (3.5 µm, 150 mm × 2.1 mm) at 35 ◦C. The gradient elution was carried out
with 5% formic acid/5 mM ammonium formate aqueous solution (A) and 5% formic
acid/ 5 mM ammonium formate methanol solution (B) as binary mobile phases at a
flow rate of 0.4 mL/min. The gradient elution program was as follows: 0–0.01 min,
5%B; 0.01–1.00 min, 5%B; 1.00–1.10 min, 5–60%B; 1.10–5.00 min, 60–80%B; 5.00–6.00 min,
80–95%B; 6.00–8.00 min, 95%B; 8.00–8.10 min, 95–5%B; 8.10–8.20 min, 5%B; 8.20–10.00 min,
adjusting mobile phase balance to initial state. The injection volume was 5 µL. The internal
standard method was used to quantify the samples, and the results were analyzed under
the standard curve established with 14 HAAs (gradient dilution to 0.10, 0.50, 1.00, 2.50,
5.00, 10.00, 20.00, 25.00 ng/mL).

Mass spectrometry was analyzed using positive electrospray ionization (ESI+). The
multiple reaction monitoring conditions were automatically optimized. The capillary volt-
age was 5.5 kV, and the ion source temperature was 550 ◦C. The qualitative and quantitative
characteristic ions and optimized mass spectrometry parameters of 14 heterocyclic aromatic
amines (HAAs) and internal standards are shown in Table 4. The chromatograms of harman
and norharman in sesame seed oil samples are shown in Figure 9.
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Table 4. Qualitative and quantitative characterization of 14 HAAs with internal standard and
optimized mass spectrum parameters.

HAAs Precursor Ion
[M + H]+ (m/z)

Diagnostic
Productions (m/z)

Cone
Voltage (V)

Collision
Voltage (eV)

Dwell Time
(ms)

AαC 184.0
167.2 108 32

30140.0 108 32

MeAαC 198.2
154.1 104 40

30127.1 104 45

Trp-P-1 212.0
168.0 80 30

30195.2 80 40

DMIP 162.9
147.3 90 45

30105.0 90 45

Glu-P-2 185.2
131.1 80 40

3078.2 80 40

MeIQ 213.1
198.0 100 35

30144.0 100 60

MeIQx 214.1
199.0 100 40

30131.0 100 55

IQ 199.1
184.0 100 40

30157.0 100 50

PhIP 225.3
210.2 120 45

30183.2 120 50

4,8-DiMeIQx 228.1
211.8 100 45

30160.0 100 40

7,8-DiMeIQx 228.0
131.3 100 55

30213.2 100 40

4,7,8-DiMeIQx 242.0
227.1 120 40

30145.0 120 50

Harman 183.0
115.0 120 50

30168.3 120 40

Norharman 169.2
115.0 100 45

30142.0 100 40

Trp-P-2 198.0
154.0 60 40

30128.0 60 40

3.2.8. Physicochemical Properties of Sesame Seed Oil

The peroxide value (POV) of sesame seed oil was characterized according to GB
5009.229-2016, while the acid value (AV) was analyzed based on the methods described in
GB 5009.229-2016. Briefly, for POV, 2.0 g oil sample was titrated with 0.01 mol/L sodium
thiosulfate standard solution and POV was expressed as reactive oxygen in mmol/kg of
oil. For AV, 2.0 g oil sample was titrated with 0.01 mol/L KOH standard solution and AV
was expressed as KOH in mg/g of oil. The sample color was measured using a Chroma
Meter CR-400 and the L* value (lightness), a* value (red-green intensity) and b* value
(yellow-blue intensity) were measured.

3.2.9. Statistical Analysis

All experiments were carried out in triplicate, and the data were expressed as mean
± standard deviation. Multi Quant software was used for heterocyclic aromatic amines
data analysis. Origin Pro software (Origin Lab Co., Northampton, MA, US) was used for
charting. The difference between groups was tested using ANOVA and Duncan’s multiple
range tests. Means were compared and were considered significant when p < 0.05.

4. Conclusions

In this paper, the levels of β-carbolines (harman and norharman) in sesame seed oil
during the refining process were investigated systematically. The results showed that the
levels of the total β-carbolines (harman and norharman) in refined sesame seed oils were
much lower than those in pressed fragrant sesame seed oils. Adsorption decolorization
was the most effective process to reduce the content of β-carboline compounds, which
was related to the adsorbent used in the decolorization process. Three percent blended
decolorizer consisting of activated carbon and clay achieved the best results for removing
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β-carbolines. After refining, the basic physicochemical indexes of sesame seed oil, such as
AV, POV and color, reached the quality index of first-grade refined sesame seed oil. It was
concluded that oil refining could not only improve the quality of sesame seed oil, but also
reduce most of the harmful substances (e.g., β-carbolines). This study will be meaningful to
prove that decolorizers are effective to remove small molecule compounds (e.g., nonpolar
heterocyclic aromatic amines harman and norharman) in edible oils.
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32. Kiralan, S.S.; Toptancı, İ.; Tekin, A. Further evidence on the removal of polycyclic aromatic hydrocarbons (PAHs) during refining

of olive pomace oil. Eur. J. Lipid Sci. Technol. 2019, 121, 1800381. [CrossRef]
33. Yoshida, H.; Takagi, S. Effect of roasting temperature and time on the quality characteristics of sesame (Sesame indicum) oil. J. Sci.

Food Agric. 1997, 75, 19–26. [CrossRef]
34. Li, T.; Guo, Q.; Qu, Y.; Li, Y.; Liu, H.; Liu, L.; Zhang, Y.; Jiang, Y.; Wang, Q. Solubility and physicochemical properties of resveratrol

in peanut oil. Food Chem. 2022, 368, 130687. [CrossRef]
35. Oomah, B.D.; Busson, M.; Godfrey, D.V.; Drover, J.C.G. Characteristics of hemp (Cannabis sativa L.) seed oil. Food Chem. 2002, 76,

33–43. [CrossRef]
36. Elleuch, M.; Besbes, S.; Roiseux, O.; Blecker, C.; Attia, H. Quality characteristics of sesame seeds and by-products. Food Chem.

2007, 103, 641–650. [CrossRef]
37. Barceló-Barrachina, E.; Moyano, E.; Galceran, M.T.; Lliberia, J.L.; Bagó, B.; Cortes, M.A. Ultra-performance liquid chromatography–

tandem mass spectrometry for the analysis of heterocyclic amines in food. J. Chromatogr. A 2006, 1125, 195–203. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3746/jkfn.2014.43.4.564
https://doi.org/10.1002/ejlt.202100143
https://doi.org/10.1155/2017/7824761
https://doi.org/10.3390/foods10030644
https://doi.org/10.1007/s11746-006-1253-4
https://doi.org/10.1080/02652039809374682
https://doi.org/10.1007/s11694-019-00058-y
https://doi.org/10.1016/j.lwt.2014.05.028
https://doi.org/10.1002/1438-9312(200108)103:8&lt;505::AID-EJLT505&gt;3.0.CO;2-7
https://doi.org/10.1021/acssuschemeng.8b05823
https://doi.org/10.1007/s10973-017-6097-7
https://doi.org/10.1016/S0378-3820(02)00042-5
https://doi.org/10.1061/(ASCE)0733-9372(2006)132:5(463)
https://doi.org/10.1186/s13765-021-00655-w
https://doi.org/10.1002/ejlt.201800381
https://doi.org/10.1002/(SICI)1097-0010(199709)75:1&lt;19::AID-JSFA830&gt;3.0.CO;2-C
https://doi.org/10.1016/j.foodchem.2021.130687
https://doi.org/10.1016/S0308-8146(01)00245-X
https://doi.org/10.1016/j.foodchem.2006.09.008
https://doi.org/10.1016/j.chroma.2006.05.060

	Introduction 
	Results and Discussion 
	Effects of Sesame Seed Oil Refining Process on the Content of -Carboline Compounds 
	Effect of Different Types of Adsorbents on the Removal of -Carbolines from Sesame Seed Oil 
	Effect of Adsorbent Dosage on the Removal of -Carbolines from Sesame Seed Oil 
	Effects of Different Types of Activated Carbons on the Removal of -Carbolines from Sesame Seed Oil 
	Removal of -Carbolines from Sesame Seed Oil Using Blended Decolorizers 
	Changes in Basic Physicochemical Properties of Sesame Seed Oil Refining Process 

	Materials and Methods 
	Materials 
	Methods 
	Roasting Treatment and Extraction of Oil from Sesame Seeds 
	Hydration Degumming 
	Alkali Refining Deacidification 
	Adsorption Decolorization 
	Distillation Deodorization 
	Extraction and Purification of HAAs 
	LC/MS Analysis of HAAs 
	Physicochemical Properties of Sesame Seed Oil 
	Statistical Analysis 


	Conclusions 
	References

