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Abstract: Despite recent scientific advances, the global load of bacterial disease remains high and
has been established against a backdrop of increasing antimicrobial resistance. Therefore, there
is a pressing need for highly effective and natural antibacterial agents. In the present work, the
antibiofilm effect provided by essential oils was evaluated. Of these, cinnamon oil extract showed
potent antibacterial and antibiofilm activities against Staphylococcus aureus at an MBEC of 75.0 µg/mL.
It was revealed that benzyl alcohol, 2-propenal-3-phenyl, hexadecenoic acid, and oleic acid were
the major components of the tested cinnamon oil extract. In addition, the interaction between the
cinnamon oil and colistin showed a synergistic effect against S. aureus. Cinnamon oil that had
been combined with colistin was encapsulated by liposomes to enhance the essential oil’s chemical
stability, demonstrating a particle size of 91.67 nm, a PDI of 0.143, a zeta potential of −0.129 mV, and
an MBEC of 50.0 µg/mL against Staphylococcus aureus. Scanning electron microscopy was employed
to observe the morphological changes in the Staphylococcus aureus biofilm that was treated with the
encapsulated cinnamon oil extract/colistin. As a natural and safe option, cinnamon oil exhibited
satisfactory antibacterial and antibiofilm performance. The application of liposomes further improved
the stability of the antibacterial agents and extended the essential oil release profile.

Keywords: cinnamon oil; antibacterial; antibiofilm; nanoliposome; colistin; combination study

1. Introduction

Biofilms are composed of microbial cells that have collected on surfaces and that are
enclosed by a matrix formed primarily from polysaccharide materials. Biofilm-associated
organisms differ from their planktonic (freely suspended) counterparts [1]. The bacteria in
biofilms exhibit enhanced resistance to antibiotics. This results in persistent and stubborn
infections, owing to their long-term viability. Staphylococcus aureus is prominent among the
pathogenic microorganisms that can form biofilms [2].

The essential oils (Eos) derived from aromatic plants have several applications in com-
plementary medicine and offer potent biological activities [3]. Essential oils are plant-based
secondary metabolites that have a volatile nature, a soothing odor, and a lower density
than water. Owing to their low toxicity, interest in the health benefits and pharmacological
applications of essential oils has increased. Upon direct incorporation into edible prod-
ucts, essential oils demonstrate multiple beneficial activities, including antioxidant and
antimicrobial behavior. As a consequence, the usage of essential oils has continued to
rise in the fields of food and medicine. Essential oils are basically natural extracts com-
posed of phytochemicals and mostly demonstrate biological properties; they present a rich
source of active compounds. Roughly 3000 kinds of essential oils are known, of which
300 essential oils are currently being utilized in various industries. Many modern and
traditional methods and techniques are used for the extraction of essential oils, such as
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hydrodistillation, steam distillation, ultrasound, ohmic- and microwave-assisted hydrodis-
tillation, and supercritical fluid extraction [4]. Cinnamon has been employed as a spice
for flavoring, as well as in medical applications for the treatment of diarrhea and other
digestive system problems [5]. Moreover, cinnamon oil has been classified as a substance
that is generally recognized as safe (GRAS) for food preservation by the US Food and Drug
Administration (FDA) [6]. The main compounds that are present in cinnamon essential
oil are cinnamaldehyde and eugenols, which are the reason for their strong antimicrobial
activity. The phenolic substances present in cinnamon essential oil are the main source of
its antioxidant, anticancer, antidiabetic, and anti-inflammatory activities. Cinnamaldehyde
is an electronegative molecule that plays an important role in the biological processes that
enable a reduction in food-borne bacteria [7]. Low microbial resistance towards EOs may be
a result of their currently limited usage in clinical practice, due to their volatility, oxidation
sensitivity, biological fluctuations, chemical instability, and low solubility. Therefore, a
well-designed delivery system for essential oils is a necessity [8]. Many novel methods have
been developed to enhance the stability and bioavailability of cinnamon oil. One of these
methods involves the use of liposomal encapsulation to prevent the loss of the oil’s active
ingredients during processing and storage. Liposomes, or spherical lipid bilayer vesicles,
are formed by hydrophilic and lipophilic groups with an aqueous core and a hydrophobic
outside layer. Naturally safe constituents (such as lecithin and cholesterol) are the main
components of conventional liposomes. Liposomes have many advantages, including
their bioavailability and biocompatibility, their ability to facilitate the solubilization of
insoluble compounds, and their sustained-release profiles, which make them excellent EO
carriers [9]. With the use of liposome encapsulation, the volatility and chemical instability
of essential oils can be reduced without changing their chemical ingredients. Moreover,
EO-loaded nanoliposomes have shown valuable anti-biofilm [10], anti-quorum sensing [11],
and antibacterial [12] properties. Liposomes can also improve the antimicrobial activity
of essential oils, mainly due to their subcellular size, which can strengthen the passive
absorption mechanism of cells and reduce the transport resistance of materials [10]. Current
research focuses on developing and evaluating novel drug delivery methods that are based
on herbal medicine nanoliposomes. Hence, the present study has been conducted to iden-
tify the new antimicrobial and antibiofilm activities of cinnamon-oil-loaded nanoliposomes
against multi-drug-resistant pathogens.

2. Results and Discussion
2.1. Antimicrobial and Antibiofilm Activities of Specific Essential Oil Extracts

A range of essential oils, namely cinnamon, ginger, fennel, lavender, rosemary, lemon,
geranium, and tea tree oils, were tested for possible antimicrobial activity against various
MDR bacteria, using the disc-diffusion method. The data shown in Table 1 reveal that
cinnamon oil was the most potent essential oil extract, followed by tea tree oil, while
the lowest level of activity was noted for the ginger oil extract. The highest inhibition
zone diameters of 31.5 mm and 31 mm were recorded against S. aureus and P. aeruginosa,
respectively, as seen upon using cinnamon oil extract. Therefore, antibiofilm activity was
assessed against S. aureus and P. aeruginosa. The results revealed that the lowest MIC, MBC,
and MBEC values for the cinnamon oil extract were 50, 100, and 75 µg/mL, respectively,
when used against S. aureus (Table 2). Hence, the biological activity of cinnamon oil extract
(COE) against S. aureus was chosen for further analysis.
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Table 1. Antimicrobial activity of specific essential oils against MDR pathogens.

Tested
Pathogens

Inhibition Zone Diameter (mm) ± SD

Cinnamon Ginger Fennel Lavender Rosemary Lemon Geranium Tea Tree

E. coli 30.5 ± 6 6.0 ± 2 6.0 ± 0 6.0 ± 0 10.0 ± 2 6.0 ± 0 6.0 ± 0 6.0 ± 0
S. aureus 31.5 ± 3 6.0 ± 0 8.0 ± 1 6.0 ± 0 15.0 ± 2 23.0 ± 4 17.0 ± 2 21.0 ± 4

E. faecalis 1 * 19.0 ± 5 6.0 ± 0 15.0 ± 4 6.0 ± 0 8.0 ± 4 20.0 ± 2 12.0 ± 3 9.0 ± 2
E. faecalis 2 * 30.0 ± 6 6.0 ± 0 12.0 ± 2 6.0 ± 0 13.0 ± 2 6.0 ± 0 19.0 ± 1 29.0 ± 1

K. pneumonia 1 * 19.0 ± 2 6.0 ± 0 7.0 ± 1 15.0 ± 3 15.0 ± 2 6.0 ± 0 14.0 ± 1 24.0 ± 3
K. pneumonia 2 * 22.0 ± 1 6.0 ± 0 10.0 ± 1 6.0 ± 0 6.0 ± 0 6.0 ± 0 21.0 ± 2 22.0 ± 1

P. vulgaris 30.0 ± 2 6.0 ± 0 6.0 ± 0 6.0 ± 0 14.0 ± 4 6.0 ± 0 8.0 ± 2 28.0 ± 4
P. aeruginosa 31.0 ± 6 6.0 ± 0 6.0 ± 0 6.0 ± 0 6.0 ± 0 6.0 ± 0 8.0 ± 1 8.0 ± 3
A. bauminii 30.0 ± 2 6.0 ± 0 6.0 ± 0 6.0 ± 0 16.0 ± 3 6.0 ± 0 6.0 ± 0 12.0 ± 1

MRSA 21.0 ± 3 6.0 ± 0 8.0 ± 3 6.0 ± 0 12.0 ± 2 10.0 ± 2 12.0 ± 3 13.5 ± 1

MRSA: methicillin resistant Staphylococcus areus, * different numbers indicate different strain.

Table 2. The MIC, MBC, and MBEC of the various essential oils against the tested pathogens.

Oil Extracts Tests
(µg/mL)

S. aureus P. aeruginosa

Cinnamon
MIC 50.0 125.0
MBC 100.0 250.0

MBEC 75.0 250.0

Ginger
MIC 125.0 250.0
MBC 250.0 350.0

MBEC 375.0 400.0

Fennel
MIC 250.0 500.0
MBC 400.0 1000.0

MBEC 500.0 1000.0

Lavender
MIC 450.0 500.0
MBC 500.0 1000.0

MBEC 750.0 1000.0

Rosemary
MIC 500.0 1000.0
MBC 750.0 1500.0

MBEC 1000.0 1500.0

Lemon
MIC 125.0 500.0
MBC 250.0 750.0

MBEC 500.0 1000.0

Geranium
MIC 150.0 250.0
MBC 300.0 500.0

MBEC 500.0 1000.0

Tea tree
MIC 125.0 300.0
MBC 250.0 500.0

MBEC 500.0 750.0

2.2. GC–MS Analysis of Cinnamon Oil Extract (COE)

The COE was prepared and analyzed using GC–MS (Figure S1). Benzyl alcohol,
2-propenal-3-phenyl, hexadecenoic acid, and oleic acid were identified as the major com-
ponents of the extract being tested, with area percentages of 23.5, 52.1, 8.1, and 7.7%,
respectively (Table S1). Adinew [13] extracted Ethiopian cinnamon bark essential oil via a
process of hydrodistillation and identified the presence of 2-propenal, 3-phenyl (87.013%),
eugenol (9.317%), O-methoxy cinnamic aldehyde (0.236%), α-muurolene (0.133%),
naphthalene,1,2,3,4-tetrahydro-1,6-dime (0.195%), tricyclo [3.3.1.0 (2,8)], and nona-3,6-dien-
9-on (0.173%). The main compounds in COE are 2-propenal and 3-phenyl, which have
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been reported as the compound that is most responsible for cinnamon bark’s aroma and
therapeutic effect.

2.3. Combination Effect of COE with Some Commonly Used Antibiotics

The interaction of COE with some commonly used antibiotics was evaluated against
S. aureus, using the disc-diffusion method. The data shown in Table 3 reveal that the com-
bined action of COE with colistin (COE/C) showed a synergistic effect against
S. aureus. Combination therapy has been widely applied in the medical industry to combat
multi-drug-resistant microbes [14]. As the public becomes more health-conscious, novel
antimicrobials are being sourced from plant-based compounds, such as essential oils, due to
their reduced side effects and cost-effectiveness when developed commercially [15]. Only
synergistic combinations (FICI ≤ 0.5) have been investigated further regarding their mech-
anism of action. Si et al. found that 5 of the 11 antibiotic–oregano essential oil combinations
demonstrated synergism, whereas the other combinations interacted additively [16]. Van
Vuuren et al. [17] examined 25 synergistic essential oil–antibiotic combinations out of 72;
of these, 65% demonstrated additivity. Karpanen et al. [18] found that all four combina-
tions of thymol, a plant secondary metabolite, and antibiotics only worked against MRSA.
Chovanová et al. [19] performed another antimicrobial screening against MRSA and found
that 50% of the plant extracts tested showed synergism with the antibiotic oxacillin, while
the other 50% of the extracts being tested interacted additively. In addition, Yap et al. [20]
tested 35 combinations of essential oils and antibiotics for synergism against the multi-drug-
resistant pathogen Escherichia coli. Of these, only five combinations showed synergism,
while the other 30 interacted additively [20]. Due to their high fractional concentrations,
none of these synergistic combinations have been tested in clinical trials [21]. Two of the
five combinations mentioned in [18] were studied for their modalities of action [22,23].
Yang et al. [24] combined cinnamon oil and meropenem, whereupon the FICI value reached
1 against K. pneumoniae, with a 64-fold FICI reduction in the meropenem dosage.

Table 3. The combination effect of cinnamon oil extract with commonly used antibiotics.

Antibiotics Inhibition Zone
Diameter (mm) MIC (µg/mL) FIC FICI

Vancomycin Alone 21.0 ± 4 32.0
2.0 6.0With COE 36.5 ± 6 64.0

Ampicillin/Cloxacillin Alone 8.0 ± 3 500.0
1.0 2.0With COE 38.0 ± 6 500.0

Colistin
Alone 6.0 ± 0 16.0

0.125 0.4With COE 38.0 ± 3 2.0

Cefuroxime
Alone 6.0 ± 0 32.0

2.0 5.0With COE 32.5 ± 2 64.0

Doxycycline Alone 30.0 ± 7 500.0
1.0 7.0With COE 31.0 ± 3 500.0

Ampicillin Alone 33.0 ± 2 500.0
1.0 6.0With COE 34.0 ± 1 500.0

Ceftazidime
Alone 6.0 ± 1 32.0

0.5 1.0With COE 33.5 ± 3 16.0

Erythromycin Alone 30.0 ± 2 125.0
1.0 6.0With COE 34.5 ± 2 125.0

Cotrimoxazole
Alone 15.0 ± 4 32.0

2.0 3.0With COE 35.5 ± 4 64.0

Cefoxitin
Alone 6.0 ± 0 16.0

0.5 0.9With COE 29.5 ± 3 8.0

2.4. Synthesis and Characterization of Nanoliposomes

The different COE/colistin-loaded liposomes were synthesized using half-MIC, MIC,
and double-MIC values (COE (2, 5, and 10 µg) and colistin (2 and 5 µg), in addition
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to combined COE and colistin (2 µg COE/2 µg colistin and 5 µg COE/5 µg colistin)).
Interestingly, the characterization of the synthesized liposomal formulations (Table 4)
revealed that all the nanoformulations exhibited optimum particle sizes ranging from 88.44
to 156.6 nm, with acceptable PDI values in the range of 0.129–0.338. The COE-loaded
liposomes 2 had the smallest vesicle size of 91.67 nm among all the loaded liposomes, with
a PDI value and zeta potential of 0.143 and −0.129, respectively. Moreover, the colistin-
loaded liposomes (2 and 5 µg) possessed comparably low particle sizes, with good PDI
and zeta potential values. In the case of the samples combining COE and colistin, the
COE/colistin-loaded liposomes (5 µg each) exhibited the smallest particle size, with a PDI
value and zeta potential of 0.289 and −19.9, respectively (Figures 1 and 2 and Figure S2 in
the Supplementary Materials).

Table 4. Characterization of the different nano-liposomes.

Formula Particle Size (nm) Polydispersity Index Zeta Potential (mV) Encapsulation Efficiency (%)

Blank liposomes 88.44 0.185 −12.80 NA
COE 2 91.67 0.143 −0.129 90.2
COE 5 129.7 0.209 −0.309 81.7
COE 10 124.8 0.129 −0.168 80.4

Colistin 2 137.2 0.221 −15.9 63.5
Colistin 5 132.8 0.338 −21.4 67.9

COE/Colistin 2 156.6 0.260 −22.8 83.8
COE/Colistin 5 150.0 0.289 −19.9 93.7

NA: not available.
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As suggested by Cui et al. [25], liposomes with smaller particle sizes (<200 nm) can
achieve a high utilization ratio in terms of the entrapped compound. The surface zeta
potential is a vital parameter that characterizes the dispersibility and stability of liposome
systems. The higher zeta potential provides a repelling force between the particles, thus
increasing the stability of the liposomes [26].

FT-IR Analysis

FT-IR spectroscopy was utilized to evaluate the structural and functional group infor-
mation regarding correlations with the prepared nanoparticles. The FT-IR spectra of the
COE, COE-loaded liposomes, colistin-loaded liposomes, and COE/colistin-loaded lipo-
somes are illustrated in Figure 3. The formation of the loaded liposomes was confirmed by
comparing the spectrum of the loaded liposomes with those of the individual components.
The FT-IR spectrum of the COE showed a broad band at around 3430 cm−1 correspond-
ing to the O–H group, in addition to characteristically intense bands at 1669 cm−1 and
1624 cm−1, corresponding to cinnamaldehyde C=O and the aromatic C=C groups, re-
spectively. Moreover, the FT-IR analysis of the COE-loaded liposomes revealed two char-
acteristically sharp bands at 2923 and 2852 cm−1, which correspond to the lipoid CH2
groups, in addition to a characteristically intense band at 1734 cm−1 corresponding to the
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lipoid C=O group. The FT-IR analysis also showed the disappearance of the C=O band
(at 1669 cm−1) of the COE, which could be a sign of H-bonding, suggesting the presence of
some weak physical interactions between the COE carbonyl group and the lipoid phosphate
group [27]. Furthermore, the FT-IR analysis of the colistin-loaded liposomes showed a very
broad band at around 3443 cm−1, corresponding to the lipoid O–H group overlapping
with the NH band of colistin, in addition to the characteristically sharp bands at 1734 cm−1

and 1655 cm−1 corresponding to the C=O groups of the lipoid and colistin, respectively.
However, some of the characteristic COE and colistin bands were masked in the nano-
COE/colistin spectrum, suggesting the entrapment of the COE and colistin in the liposomal
vesicles [28].
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2.5. Antibacterial and Antibiofilm Activities of the Most Potent Nano-Formula Identified (COE/C)

The results of the present investigation revealed that the encapsulated nano-liposome/
colistin “COE/colistin” (5 µg/mL each) showed potent antimicrobial and antibiofilm
activities, with an IZ diameter, MIB, MBC, and MBEC values of 33.5 mm, 25, 50, and
50 µg/mL, respectively, when used against S. aureus (Table 5). The bacterial lethality curve
presented in Figure 4 proves the superior effect of the prepared COE/colistin 5 with com-
plete bacterial eradication after 12 h incubation. Further analyses that applied TEM were
performed to assess the possible antimicrobial effect of the prepared nanoliposomes. The
results presented in Figure 5 indicated that the nanoparticles were adsorbed to the cell
surface, followed by cell penetration and interaction with the intracellular components,
whereupon the cells turned into ghost cells. Zhang et al. [29] elucidated the mechanism of
the antibacterial action of cinnamon oil when used against E. coli and S. aureus by observing
any significant changes to cell permeability and membrane integrity. Zhang et al. [29] and
Yap et al. [22] attributed the synergistic effect between cinnamon oil and meropenem
to a postulated mode of action of cinnamon oil that eventually facilitated the influx
of meropenem.

Table 5. The antimicrobial and antibiofilm activities of nanoliposome-encapsulated COE/C.

Tested Nanoformula IZ (mm) MIC (µg/mL) MBC (µg/mL) MBEC (µg/mL)

COE/Colistin 5 33.5 ± 3 25.0 50.0 50.0
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The SEM analysis of the control biofilm revealed that the bacterial culture of S. aureus
exhibited the expected normal cellular morphology, with smooth cell surfaces, and the bac-
terial cells were arranged in a noticeable exopolysaccharide matrix (Figure 6). When under
the same growth conditions but in the presence of nanoliposome-encapsulated COE/C,
the S. aureus-treated biofilm showed dramatically restricted bacterial colonization. The
biofilm formation was markedly uneven, with visible changes in the cellular morphology,
and microbial colonization was inhibited. It was clear that the prepared nanoformula had
penetrated the pre-formed biofilm and eradicated the microbial cells. The degradation of
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established biofilms occurs either by inhibiting the growth of the formed bacteria or by
detaching the living cells (Figure 6). Biofilm formation plays an essential role in enabling
bacteria to invade the host’s immune defenses and in increasing antibiotic resistance, which
encourages the persistence of microbial infections [30]. The highest antibiofilm and an-
timicrobial activities of essential oils are attributed to their high proportion of phenols and
aldehydes. Hydrophobicity impacts EO activity by increasing cell permeability, resulting
in cell leakage [31]. Most EOs, including cinnamon oil, cause lipopolysaccharides release,
ATP balance change, quorum sensing inhibition, DNA disruption and internal cytoplasmic
changes, such as the coagulation of cytoplasmic material [31].
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3. Materials and Methods
3.1. Extraction of Bioactive Material

A conventional hydrodistillation method was used for the extraction of essential oil
from Cinnamomum verum (cinnamon) bark, Zingiber officinale (ginger) roots, Foeniculum
vulgare (fennel) leaves, Lavandula angustifolia (lavender) leaves, Salvia rosmarinus (rosemary)
leaves, Citrus limon (lemon) peel, Geranium sanguineum (geranium) flowers, and Melaleuca
alternifolia (tea tree) leaves [32].

3.2. Antimicrobial Effect of Essential Oil Extracts

Antimicrobial activity was carried out using the disc-diffusion method, according to
CLSI guidelines [33]. By measuring the lowest inhibitory concentration (MIC) and the min-
imum bactericidal concentration (MBC), further antibacterial activity was evaluated [34].

3.3. Minimal Biofilm Eradication Concentration (MBEC)

The microbial cultures were grown overnight in Mueller Hinton and Saboraud Dex-
trose broth for bacterial and fungal strains, respectively. An overnight culture (of each
strain under test) at 108 CFU/mL was diluted to 1:100 with a fresh medium for the biofilm
assays. The biofilm was allowed to grow for 48 h in a 96-well microtiter plate in both
the absence and presence of the prepared oil extracts, which were tested one at a time.
The wells were subsequently washed thoroughly with water to remove the free-floating
and loosely adherent microbial cells, then the titer-plate wells were fixed with 2% sodium
acetate and treated with 0.1 mL of crystal violet (0.4%) for 15 min [35].

3.4. GC–MS (Gas Chromatography–Mass Spectroscopy) Analysis

The chemical analysis and component identification of the oil extract using GC–MS
analysis were assessed according to the method developed by Hamza et al. [36].

3.5. Combination Effect of the Most Promising Essential Oil with Commonly Used Antibiotics
Using the Disc-Diffusion Method

Different antibiotics were selected for use in the present experiment, namely, van-
comycin (VA, 30 µg), ampicillin/cloxacillin (AX, 10 µg), colistin (CT, 10 µg), cefuroxime
(CXM, 30 µg), doxycycline (DO, 5 µg), ampicillin (AMP, 10 µg), erythromycin (E, 10 µg),
cefoxitin (FOX, 30 µg), ceftazidime (CAZ, 30 µg), and cotrimoxazole (COT, 25 µg). The
antibiotic discs were loaded with 20 µL of each extract (20 µg), one at a time, and were then
placed on the surface of the inoculated Müeller–Hinton agar. When the combined effect
was equal to the sum of the individual effects, the action was considered to be additive.
Antagonism was considered to be present when the effect of the combined compounds was
less marked than when the substances were individually applied. Synergism was consid-
ered to be present when the effect of the combined compounds was greater than the sum of
the individual effects, while the absence of interaction was defined as indifference [37].

Checkerboard Assay

A checkerboard assay was performed via a two-fold dilution essay of each tested
antibiotic and potent essential oil to determine the combinatory effects of the essential
oils and colistin against S. aureus. In 96-well plates, 25 µL of the tested antibiotic and
25 µL of the potent essential oil were inoculated with 40 µL of the bacterial suspension
(1 × 105 CFU/mL) and were then incubated at 37 ◦C for 20 h. The combinatory relationship
between the tested antibiotic and the potent essential oil was expressed in terms of the
fractional inhibitory concentration index (FICI), as described previously by Lorian [38] and
Yang et al. [24]: FICI ≤ 0.5 (synergistic); FICI > 0.5–4.0 (additive); FICI > 4.0 (antagonistic).

3.6. Synthesis of Liposome Nanoparticles

Lipoid S100 (75 mg) and cholesterol (18.75 mg), in addition to the requisite amounts of
cinnamon oil extract (COE) and/or colistin (Table 6), were dissolved in absolute ethanol
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(1.5 mL). The resulting organic phase was injected by means of a syringe pump into
20 mL of distilled water undergoing magnetic stirring. Spontaneous liposome formation
occurred as soon as the ethanolic solution came into contact with the aqueous phase. The
liposome suspension was then maintained, with stirring, for 1 h at room temperature.
Finally, the ethanol and part of the water were removed via rotary evaporation under
reduced pressure [39].

Table 6. The nanoliposome preparations and formulations.

Nanoformula Lipoid S100 (mg/mL) Cholesterol (mg/mL) Cinnamon Oil Extract
(COE) (µg/mL) Colistin (µg/mL)

Blank liposomes 75.0 18.75 - -
COE 2 75.0 18.75 2.0 -
COE 5 75.0 18.75 5.0 -

COE 10 75.0 18.75 10.0 -
Colistin 2 75.0 18.75 - 2.0
Colistin 5 75.0 18.75 - 5.0

COE/Colistin 2 75.0 18.75 2.0 2.0
COE/Colistin 5 75.0 18.75 5.0 5.0

3.7. Characterization of the Synthesized Nanoliposomes

The prepared nanoparticles were characterized using dynamic light scattering (DLS)
techniques to determine the vesicle size, polydispersity index (PDI), and zeta potential and
to conduct FT-IR analysis. The ultra-structure of the prepared nanoparticles was analyzed
via transmission electron microscopy (TEM) [40].

3.8. Antimicrobial and Antibiofilm Activities of the Synthesized Nanoliposomes

The antimicrobial activity of the prepared nanoparticles was evaluated using the
disc-diffusion method, minimal inhibitory concentration (MIC) and minimum bacterici-
dal concentration (MBC) values, microbial lethality curve and a TEM examination of the
microbially treated cells [40]. Moreover, antibiofilm activity was assessed using MBEC,
as previously described by Dorgham et al. [41]. The fixed cells were oriented, mounted
on aluminum stubs, and coated with gold before imaging took place [35]. The topo-
graphic features of the biofilms were visualized using SEM (JEOL JSM-6390LV, JOEL,
Shanghai, China).

3.9. Statistical Analysis

The obtained data are presented as the mean value ± standard deviation (SD). The
statistical significance was set at p < 0.05.

4. Conclusions

Increased antimicrobial resistance is considered a global crisis, resulting from antibi-
otic misuse and abuse over the years. Moreover, biofilm formation increases the microbial
resistance by 1000 times and high percentages of nosocomial infections were due to biofilm
forming pathogens. Hence, we aimed to combat some multi-drug resistant/biofilm forming
microbes. In this study, the optimal synthesized nanoformula for liposome-encapsulated
cinnamon oil and colistin (5.0 mg mL−1 each) was established. As a natural and safe spice,
cinnamon oil exhibits an excellent level of antibacterial effect against S. aureus (individual
cells) and S. aureus biofilm. The introduction of liposomes can significantly improve the
stability of cinnamon oil in the elimination of S. aureus biofilms. The formulated nanolipo-
somes caused increased cell permeability, resulting in cell leakage. The concept explored in
the present study may be useful in the future for delivering a variety of antimicrobials and
antibiotics for use in the treatment of various microbial biofilm infections.
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a,b), COE 5 (5 µg/mL; c,d), COE 10 (10 µg/mL; e,f), Colistin 2 (2 µg/mL; g,h), Colistin 5 (5 µg/mL;
i,j), COE/Colistin 2 (2 µg/mL each; k,l), and COE/Colistin 5 (5 µg/mL each; m,n); Table S1: The
main predicted compounds of cinnamon oil extract structures.
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