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Abstract: The subject of this investigation is a new method for the construction of sulfonylated hetero-
cycles which overcomes the limitations of classical approaches using a cheap feedstock sulfonylating
agent, especially under photocatalyst- and metal-free conditions.
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1. Introduction

Sulfonylated heterocycles are important motifs found in many natural products, agro-
chemicals, and pharmaceuticals, with special physiological and biological activities [1–24].
Generally, the oxidation of thioethers is the most popular approach to access sulfones [25,26].
However, in many cases, strong oxidation conditions are not applicable to all functional
groups. As a result, developing the efficient and mild synthesis of value-added sulfony-
lated heterocycles has played a significant role in advancing heterocyclic chemistry, as
well as accelerating the discovery of novel agrochemicals [27–37]. Sodium sulfinates, as
a common and stable sulfonation raw material, are widely applied in the construction
of organic sulfones, including the cascade reaction, direct C–H functionalization, and
oxidative coupling, etc., [38–41]. Among these protocols, radical cascade cyclization of
C–C unsaturated bonds has provided a powerful tool for the collection of sulfonylated
heterocycles by introducing two different functional groups on the both ends of the alkynes
or alkenes in one step [42–48]. From the point of synthetic chemistry, these radical cascade
reactions can be very convenient and efficient to realize direct conversion from relatively
inexpensive C–C unsaturated bonds to high-value-added, complex molecular scaffolds
with abundant bioactivities. For example, Bi and co-workers realized a silver-catalyzed
cascade cyclization of alkynes with sodium sulfinates for the synthesis of 6-methyl sul-
fonylated phenanthridines, where mechanistic studies indicate the transformation should
proceed through an iminyl radical intermediate (Scheme 1a) [42]. Soon afterward, Wu
and Jiang’s groups independently utilized sodium sulfinates and 1,6-enynes to achieve the
sulfonylated benzofurans’ synthesis by using an AgNO3/K2S2O8 system (Scheme 1b) [43].
Very recently, another radical cascade spiro-cyclization of alkenes with sodium sulfinates
for the direct synthesis of sulfonylated spiro[indole-3,3′-pyrrolidines] was reported by
Wang’s group (Scheme 1c) [44]. Although significant progress has clearly been made in
recent years, most of the traditional transformations usually depend on transition-metal

Molecules 2023, 28, 4436. https://doi.org/10.3390/molecules28114436 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28114436
https://doi.org/10.3390/molecules28114436
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://doi.org/10.3390/molecules28114436
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28114436?type=check_update&version=1


Molecules 2023, 28, 4436 2 of 13

catalysts or harsh reaction conditions. As a result, the development of a practical and green
protocol to realize the radical cyclization of alkynes is still an attractive topic.
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Over the past few decades, visible-light-induced organic reactions have emerged as
an essential tool to construct new chemical bonds, featuring mild reaction conditions such
as metal-free, room temperature, and simple operation conditions [49–52]. In 2015, we
reported an example of using sulfinic acids as sulfonation reagents to react with alkyne in
the presence of TBHP under visible-light irradiation [10]. However, the sulfonation reagent
in this work is prepared from sodium sulfonates, leading to increase reaction steps. With
our continuing interest in sustainable and photochemical chemistry [53–58], herein we
disclose a photo-induced radical cascade cyclization of alkynes with sodium sulfinates for
the divergent synthesis of sulfonated benzothiophenes and thioflavones under metal- and
photocatalyst-free conditions (Scheme 1d).
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2. Results and Discussion

Given these considerations, we set out to study this photoinduced cascade cyclization
reaction by the treatment of 4-methylbenzenesulfinate and 2-alkynylthioanisoles in the pres-
ence of 15-W blue LED. Thankfully, the desired product benzothiophene 3a was obtained
with 82% yield using [Ir(dFCF3ppy)2dtbbpy]PF6 as a photocatalyst, KI as an additive, and
K2S2O8 as an oxidant (Table 1, entry 1). After the evaluation of various additives such
as NaI, NaBr, and KCl, KI was found to be the most effective to promote the reaction
(Table 1, Entries 2–4). Then, other oxidants were further investigated, and the yields of
the target products were lower than found using K2S2O8 (Table 1, Entries 5–8). We then
examined the effect of other photocatalysts to this reaction, including 4CzIPN, 4CzIPN-tBu
and Mes-Acr+ClO4 (Table 1, Entries 9–12). It was found that 4CzIPN, 4CzIPN-tBu, and
Mes-Acr+ClO4 exhibited a lower catalytic activity than [Ir(dFCF3ppy)2dtbbpy]PF6 and, to
our surprise, the sulfonated benzothiophenes could be obtained with considerable yield in
the absence of a photocatalyst. This result shows that a photocatalyst is not essential for
this reaction system. Finally, no desired product was observed without the irradiation of
15-W blue LED.

Table 1. Optimization of the reaction conditions a.
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Entry Photocatalyst Oxidant Additive Yield (%) b

1 [Ir(dFCF3ppy)2dtbbpy]PF6 K2S2O8 KI 82
2 [Ir(dFCF3ppy)2dtbbpy]PF6 K2S2O8 NaI 47
3 [Ir(dFCF3ppy)2dtbbpy]PF6 K2S2O8 NaBr 29
4 [Ir(dFCF3ppy)2dtbbpy]PF6 K2S2O8 KCl 35
5 [Ir(dFCF3ppy)2dtbbpy]PF6 Na2S2O8 KI 67
6 [Ir(dFCF3ppy)2dtbbpy]PF6 O2 KI trace
7 [Ir(dFCF3ppy)2dtbbpy]PF6 DTBP KI 15
8 [Ir(dFCF3ppy)2dtbbpy]PF6 TBHP KI 23
9 4CzIPN K2S2O8 KI 41
10 4CzIPN-tBu K2S2O8 KI 47
11 Mes-Acr+ClO4 K2S2O8 KI 65
12 – K2S2O8 KI 84
13 – K2S2O8 – 30
14 – – – 24

Reaction conditions: a 1a (0.20 mmol), 2a (0.4 mmol), photocatalyst (1 mol%), additive (30 mol%), oxidant (2 equiv),
CH3CN/H2O (3:1, 2.0 mL), N2, 15-W blue LED at room temperature for 12 h; b isolated yield of the product based
on 1, reaction progress is monitored through TLC.

After the standard reaction condition was optimized, we tested a variety of sodium
sulfinates to explore the reaction scope, and the results are summarized in Scheme 2. The
sodium sulfinates with electron-donating and electron-withdrawing groups on the phenyl
ring proceeded through this reaction smoothly. For example, sodium sulfinates containing
a halogen group (F or Cl) were all favorable, affording the corresponding products with 63%
and 75% yields. In addition, sodium sulfinates containing OMe or OEt were also suitable
substrates. As shown in Scheme 2, when sodium sulfinates containing a substituent group
on the Ar ring were employed for this transformation, 51–79% yields of the products (3g–3i)
were obtained.
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for 12 h; isolated yield of the product based on 1, reaction progress is monitored through TLC.

In order to further prove the practicability and efficiency of the photochemi-
cal approach, we further expand the substrate scope on 2-alkynylthioanisoles. As
shown in Scheme 3, a variety of substituted 2-alkynylthioanisoles could react with 4-
methylbenzenesulfinate to produce the corresponding sulfonated benzothiophenes (3j–3u)
with 53–89% yields. The 2-alkynylthioanisoles bearing strong electron-donating groups on
the Ar ring were compatible, affording the corresponding products (3m and 3n) with 76%
and 62% yields. Moreover, substrates possessing a heteroaromatic ring, such as pyridine
and thiophene, could also undergo the reaction smoothly, generating the corresponding
products with reasonable yields (3t and 3u). There is no doubt that the bromine-substituted
sodium sulfinate could be successfully transformed into the corresponding product 3v,
which will allow further complex molecule synthesis via cross-coupling reactions. We next
examined the alkynes systems to evaluate their applicability to this transformation, synthe-
sizing and applying aryl ynones as cascade substrates to provide sulfonated thioflavones
(5a–5b) with good yields.
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performed with 1 (0.20 mmol), sodium sulfinates (2, 2.0 equiv), KI (30 mol%), K2S2O8 (2 equiv),
CH3CN/H2O (3:1, 2.0 mL), N2, 15-W blue LED at room temperature for 12 h; isolated yield of the
product based on 1, reaction progress is monitored through TLC.

In order to elucidate the reaction mechanism of this reaction, a free-radical inhibition
experiment was conducted, in which stoichiometric amounts of radical scavengers were
added and the reaction was fully suppressed (Scheme 4a). In addition, a well-known free
radical accepter N-arylacrylamide, which was widely used in radical tandem reactions,
was applied instead of 2-alkynylthioanisoles to give sulfonylated oxindole at a 76% yield
(Scheme 4b). These results indicated that the free radical process may be involved in this
transformation. A plausible reaction mechanism is outlined in Scheme 4 based on the above
observations and previous reports [59]. Initially, I2 is generated from KI by the oxidation
of K2S2O8, which would then transfer to the excited state I2* with the irradiation of 15-W
blue LEDs. Subsequently, the reaction between I2*, SO4

•–, and 4-methylbenzenesulfinate
produces a sulfonyl radical, followed by the radical addition of the sulfonyl radical with
alkyne in 1a to give a vinyl radical intermediate. After that, the addition of a vinyl radical



Molecules 2023, 28, 4436 6 of 13

to the sulfur atom produces the intermediate C. Finally, the corresponding cascade product
3a is obtained via oxidation and demethylation.
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3. Materials and Methods
3.1. General Information

All reactions were carried out under a nitrogen atmosphere. 1H NMR 13C NMR,
and 19F NMR spectra were measured on a Bruker Avance NMR spectrometer (600 MHz/
151 MHz/565 NMR) in CDCl3 as solvent and recorded in ppm relative to the internal
tetramethylsilane standard. 1H NMR data are reported as follows: δ, chemical shift;
coupling constants (J are given in Hertz, Hz) and integration. Abbreviations to denote
the multiplicity of a particular signal are s (singlet), d (doublet), t (triplet), q (quar-
tet), dd (doublet of doublets), and m (multiplet). The 15-W blue LED was purchased
from https://item.taobao.com/item.htm?id=524749100016&ali_refid=a3_430673_1006:1121
803562:N:FxDVk1sg3f08W8u%2BfdnZUtGvFtTT9lsR:af40c0c0536da02c91473a14c4e25edc&
ali_trackid=1_af40c0c0536da02c91473a14c4e25edc&spm=a2e0b.20350158.31919782.21&mt=
(accessed on 15 May 2023). Due to the fact that the target compound is known, mass spec-
trometry analysis for compound characterization was not conducted in the article.

3.2. Preparation of the Starting Materials

The 2-alkynylthioanisoles (1a) derivatives were prepared according to the reported
method [56,60]. The solvents and oxidants including DMF, THF, K2S2O8, DTBP, etc., were
purchased from commercial suppliers including Bidepharm (Shanghai, China); functional-
ized anilines, photocatalysts, and functionalized aryl sulfonyl chlorides were purchased

https://item.taobao.com/item.htm?id=524749100016&ali_refid=a3_430673_1006:1121803562:N:FxDVk1sg3f08W8u%2BfdnZUtGvFtTT9lsR:af40c0c0536da02c91473a14c4e25edc&ali_trackid=1_af40c0c0536da02c91473a14c4e25edc&spm=a2e0b.20350158.31919782.21&mt=
https://item.taobao.com/item.htm?id=524749100016&ali_refid=a3_430673_1006:1121803562:N:FxDVk1sg3f08W8u%2BfdnZUtGvFtTT9lsR:af40c0c0536da02c91473a14c4e25edc&ali_trackid=1_af40c0c0536da02c91473a14c4e25edc&spm=a2e0b.20350158.31919782.21&mt=
https://item.taobao.com/item.htm?id=524749100016&ali_refid=a3_430673_1006:1121803562:N:FxDVk1sg3f08W8u%2BfdnZUtGvFtTT9lsR:af40c0c0536da02c91473a14c4e25edc&ali_trackid=1_af40c0c0536da02c91473a14c4e25edc&spm=a2e0b.20350158.31919782.21&mt=
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from Energy Chemical (Shanghai, China); petroleum ether and ethyl acetate were pur-
chased from Shanghai Chemical Company (Shanghai, China). All solvents were dried and
freshly distilled in N2 prior to use. Products were purified by flash chromatography on a
200–300 mesh silica gel.

3.3. General Procedure for the Synthesis of 3a

A dry 15-mL tube was charged with 2-alkynylthioanisole (1a, 0.20 mmol), sodium
sulfinates (2a, 0.40 mmol), CH3CN:H2O (3:1, 2 mL), KI (30 mol%), K2S2O8 (2 equiv), and
a magnetic stir bar. Then, the mixture was reacted under a 15-W blue LED light at room
temperature and a nitrogen atmosphere for 12 hours. After the reaction, the mixture was
concentrated to obtain the crude product, and the crude product was further purified by
rapid chromatography (silica gel, petroleum ether (PE)/ethyl acetate (EA) = 30/1 to 15/1)
to obtain the required product 3a. The 1H NMR, 13C NMR and 19F NMR spectra of the
products can be found in the Supplementary Materials.

Product 3a: 2-phenyl-3-tosylbenzo[b]thiophene. The sulfonylation product was purified by
flash column chromatography on silica gel (PE/AcOEt: 30/1–15/1) to afford 3a as a white
solid (58 mg, 84% yield). 1H NMR (600 MHz, CDCl3: δ 8.62 (d, J = 8.4 Hz, 1H), 7.76 (d,
J = 8.1 Hz, 1H), 7.53 (d, J = 8.3 Hz, 2H), 7.52–7.48 (m, 1H), 7.47–7.43 (m, 1H), 7.43–7.37 (m,
5H), 7.10 (d, J = 8.1 Hz, 2H), 2.30 (s, 3H). 13C NMR (151 MHz, CDCl3): δ 152.5, 143.9, 139.4,
138.2, 136.1, 131.7, 130.5, 130.3, 129.5, 129.4, 127.6, 127.0, 125.9, 125.6, 124.6, 121.8, 21.5.

Product 3b: 2-phenyl-3-(phenylsulfonyl)benzo[b]thiophene. The sulfonylation product was
purified by flash column chromatography on silica gel (PE/AcOEt: 30/1–15/1) to afford
the 3b as a white solid (56 mg, 80% yield). 1H NMR (600 MHz, CDCl3): δ 8.64 (d, J = 8.4 Hz,
1H), 7.80 (d, J = 8.0 Hz, 1H), 7.64 (dd, J = 8.4, 1.1 Hz, 2H), 7.55–7.51 (m, 1H), 7.48–7.43 (m,
3H), 7.43–7.39 (m, 4H), 7.33 (t, J = 7.9 Hz, 2H). 13C NMR (151 MHz, CDCl3): δ 152.9, 142.3,
138.1, 136.2, 132.9, 131.6, 130.5, 130.0, 129.5, 128.7, 127.7, 126.9, 126.0, 125.6, 124.6, 121.7.

Product 3c: 3-((4-fluorophenyl)sulfonyl)-2-phenylbenzo[b]thiophene. The sulfonylation
product was purified by flash column chromatography on silica gel (PE/AcOEt: 30/1–15/1)
to afford 3c as a yellow solid (46 mg, 63% yield). 1H NMR (600 MHz, CDCl3): δ 8.65 (d,
J = 8.3 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.64–7.59 (m, 2H), 7.56–7.51 (m, 1H), 7.49–7.43 (m,
2H), 7.42–7.38 (m, 4H), 7.01–6.94 (m, 2H). 13C NMR (151 MHz, CDCl3): δ 166.0, 164.3, 152.8,
138.3 (d, J = 3.1 Hz), 138.1, 136.0, 131.4, 130.5, 130.0, 129.8, 129.7 (d, J = 22.7 Hz), 126.9 (d,
J = 252.1 Hz), 125.7, 124.5, 121.8, 115.9 (d, J = 22.8 Hz).

Product 3d: 3-((4-chlorophenyl)sulfonyl)-2-phenylbenzo[b]thiophene. The sulfonylation
product was purified by flash column chromatography on silica gel (PE/AcOEt: 30/1–15/1)
to afford 3d as a yellow solid (57 mg, 75% yield). 1H NMR (600 MHz, CDCl3): δ 8.63 (d,
J = 8.4 Hz, 1H), 7.82 (d, J = 8.1 Hz, 1H), 7.54 (t, J = 8.9 Hz, 3H), 7.50–7.44 (m, 2H), 7.43–7.38
(m, 4H), 7.28 (d, J = 8.6 Hz, 2H). 13C NMR (151 MHz, CDCl3): δ 153.1, 140.7, 139.5, 138.1,
136.0, 131.4, 130.5, 129.7, 129.6, 129.0, 128.4, 127.7, 126.1, 125.7, 124.5, 121.8.

Product 3e: 3-((4-(tert-butyl)phenyl)sulfonyl)-2-phenylbenzo[b]thiophene. The sulfonyla-
tion product was purified by flash column chromatography on silica gel (PE/AcOEt:
30/1–15/1) to afford 3e as a white solid (66 mg, 82% yield). 1H NMR (600 MHz, CDCl3):
δ 8.65 (d, J = 8.4 Hz, 1H), 7.81 (d, J = 8.1 Hz, 1H), 7.58 (d, J = 8.6 Hz, 2H), 7.55–7.52 (m,
1H), 7.47–7.43 (m, 2H), 7.43–7.38 (m, 4H), 7.33 (d, J = 8.6 Hz, 2H), 1.26 (s, 9H). 13C NMR
(151 MHz, CDCl3): δ 156.7, 152.4, 139.2, 138.1, 136.2, 131.7, 130.4, 129.4, 127.6, 126.9, 125.9,
125.7, 125.5, 124.7, 121.7, 35.1, 31.0.

Product 3f: 3-((4-methoxyphenyl)sulfonyl)-2-phenylbenzo[b]thiophene. The sulfonylation
product was purified by flash column chromatography on silica gel (PE/AcOEt: 15/1–7/1)
to afford 3f as a white solid (58 mg, 77% yield). 1H NMR (600 MHz, CDCl3): δ 8.56 (d,
J = 8.4 Hz, 1H), 7.73 (d, J = 8.1 Hz, 1H), 7.50 (d, J = 9.0 Hz, 2H), 7.47–7.43 (m, 1H), 7.41–7.38
(m, 1H), 7.37–7.33 (m, 5H), 6.74–6.69 (m, 2H), 3.71 (s, 3H).13C NMR (151 MHz, CDCl3): δ
162.1, 151.0, 137.1, 135.0, 133.0, 130.7, 129.7, 129.4, 128.3, 128.2, 126.6, 124.8, 124.5, 123.6,
120.7, 112.9, 54.5.
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Product 3g: 6-fluoro-2-phenyl-3-tosylbenzo[b]thiophene. The sulfonylation product was
purified by flash column chromatography on silica gel (PE/AcOEt: 30/1–15/1) to afford 3g
as a brown solid (60 mg, 79% yield). 1H NMR (600 MHz, CDCl3): δ 8.61 (dd, J = 9.2, 5.1 Hz,
1H), 7.50 (d, J = 8.3 Hz, 2H), 7.48–7.44 (m, 2H), 7.41–7.38 (m, 4H), 7.29–7.24 (m, 1H), 7.12 (d,
J = 8.2 Hz, 2H), 2.33 (s, 3H). 13C NMR (151 MHz, CDCl3): δ 160.8 (d, J = 247.7 Hz), 152.0 (d,
J = 3.3 Hz), 144.0, 139.2 (d, J = 4.4 Hz), 139.1, 132.6, 131.3, 130.5, 130.1, 129.6, 129.4, 127.7,
127.0, 126.1 (d, J = 8.9 Hz), 114.9 (d, J = 23.9 Hz), 107.9 (d, J = 25.4 Hz), 21.5.

Product 3h: 6-chloro-2-phenyl-3-tosylbenzo[b]thiophene. The sulfonylation product was
purified by flash column chromatography on silica gel (PE/AcOEt: 30/1–15/1) to afford
3h as a white solid (40 mg, 51% yield). 1H NMR (600 MHz, CDCl3): δ 8.57 (d, J = 8.9 Hz,
1H), 7.78 (d, J = 1.9 Hz, 1H), 7.50–7.46 (m, 4H), 7.40 (d, J = 4.4 Hz, 4H), 7.12 (d, J = 8.2 Hz,
2H), 2.33 (s, 3H). 13C NMR (151 MHz, CDCl3): δ 152.7, 144.1, 139.1, 139.1, 134.6, 131.9, 131.2,
130.5, 130.3, 129.6, 129.4, 127.7, 127.0, 126.8, 125.6, 121.3, 21.5.

Product 3i: 6-bromo-2-phenyl-3-tosylbenzo[b]thiophene. The sulfonylation product was
purified by flash column chromatography on silica gel (PE/AcOEt: 30/1–15/1) to afford
3i as a yellow solid (60 mg, 68% yield). 1H NMR (600 MHz, CDCl3): δ 8.51 (d, J = 8.9 Hz,
1H), 7.94 (d, J = 1.8 Hz, 1H), 7.62 (dd, J = 8.9, 1.8 Hz, 1H), 7.48 (t, J = 7.0 Hz, 3H), 7.40 (d,
J = 4.4 Hz, 4H), 7.12 (d, J = 8.2 Hz, 2H), 2.33 (s, 3H). 13C NMR (151 MHz, CDCl3): δ 152.7,
144.1, 139.4, 139.1, 135.0, 131.1, 130.5, 130.3, 129.7, 129.4, 129.4, 127.7, 127.0, 125.8, 124.2,
119.7, 21.5.

Product 3j: 2-(p-tolyl)-3-tosylbenzo[b]thiophene. The sulfonylation product was purified
by flash column chromatography on silica gel (PE/AcOEt: 30/1–15/1) to afford 3j as a
white solid (63 mg, 84% yield). 1H NMR (600 MHz, CDCl3): δ 8.59 (d, J = 8.4 Hz, 1H), 7.76
(d, J = 8.0 Hz, 1H), 7.56 (d, J = 8.3 Hz, 2H), 7.51–7.47 (m, 1H), 7.42–7.37 (m, 1H), 7.33 (d,
J = 8.0 Hz, 2H), 7.21 (d, J = 7.9 Hz, 2H), 7.12 (d, J = 8.2 Hz, 2H), 2.43 (s, 3H), 2.31 (s, 3H). 13C
NMR (151 MHz, CDCl3): δ 153.0, 143.8, 139.6, 139.5, 138.1, 136.2, 130.4, 129.9, 129.4, 128.7,
128.4, 127.0, 125.8, 125.5, 124.5, 121.7, 21.5, 21.5.

Product 3k: 2-(4-ethylphenyl)-3-tosylbenzo[b]thiophene. The sulfonylation product was
purified by flash column chromatography on silica gel (PE/AcOEt: 30/1–15/1) to afford 3k
as a white solid (69 mg, 89% yield). 1H NMR (600 MHz, CDCl3): δ 8.61 (d, J = 8.4 Hz, 1H),
7.74 (d, J = 8.1 Hz, 1H), 7.54 (d, J = 8.3 Hz, 2H), 7.50–7.46 (m, 1H), 7.40–7.36 (m, 1H), 7.34
(d, J = 8.1 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 7.09 (d, J = 8.2 Hz, 2H), 2.71 (q, J = 7.6 Hz, 2H),
2.29 (s, 3H), 1.29 (t, J = 7.6 Hz, 3H). 13C NMR (151 MHz, CDCl3): δ 152.9, 145.8, 143.8, 139.5,
138.1, 136.2, 130.5, 130.0, 129.4, 128.9, 127.2, 127.0, 125.8, 125.5, 124.6, 121.7, 28.8, 21.5, 15.4.

Product 3l: 2-(4-(tert-butyl)phenyl)-3-tosylbenzo[b]thiophene. The sulfonylation product
was purified by flash column chromatography on silica gel (PE/AcOEt: 30/1–15/1) to
afford 3l as a white solid (65 mg, 78% yield). 1H NMR (600 MHz, CDCl3): δ 8.63 (d,
J = 8.3 Hz, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.52–7.48 (m, 3H), 7.43–7.37 (m, 3H), 7.36–7.32 (m,
2H), 7.08 (d, J = 8.1 Hz, 2H), 2.31 (s, 3H), 1.38 (s, 9H). 13C NMR (151 MHz, CDCl3): δ 152.7,
152.6, 143.6, 139.4, 138.1, 136.3, 130.2, 130.0, 129.2, 128.6, 127.1, 125.8, 125.4, 124.6, 124.6,
121.7, 34.8, 31.3, 21.5.

Product 3m: 2-(4-methoxyphenyl)-3-tosylbenzo[b]thiophene. The sulfonylation product
was purified by flash column chromatography on silica gel (PE/AcOEt: 15/1–7/1) to afford
3m as a white solid (59 mg, 76% yield). 1H NMR (600 MHz, CDCl3): δ 8.60 (d, J = 8.4 Hz,
1H), 7.77 (d, J = 8.0 Hz, 1H), 7.54 (d, J = 8.3 Hz, 2H), 7.52–7.47 (m, 1H), 7.42–7.36 (m, 3H),
7.12 (d, J = 8.2 Hz, 2H), 6.93 (d, J = 8.7 Hz, 2H), 3.88 (s, 3H), 2.32 (s, 3H). 13C NMR (151 MHz,
CDCl3): δ 160.6, 152.8, 143.8, 139.5, 138.0, 136.3, 131.9, 129.8, 129.4, 126.9, 125.8, 125.4, 124.5,
123.7, 121.7, 113.1, 55.4, 21.5.

Product 3n: 2-(4-ethoxyphenyl)-3-tosylbenzo[b]thiophene. The sulfonylation product was
purified by flash column chromatography on silica gel (PE/AcOEt: 15/1–7/1) to afford
3n as a white solid (50 mg, 62% yield). 1H NMR (600 MHz, CDCl3): δ 8.61 (d, J = 8.3 Hz,
1H), 7.77 (d, J = 8.0 Hz, 1H), 7.54 (d, J = 8.3 Hz, 2H), 7.52–7.47 (m, 1H), 7.42–7.38 (m, 1H),
7.38–7.34 (m, 2H), 7.12 (d, J = 8.1 Hz, 2H), 6.94–6.89 (m, 2H), 4.10 (q, J = 7.0 Hz, 2H), 2.32 (s,
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3H), 1.46 (t, J = 7.0 Hz, 3H). 13C NMR (151 MHz, CDCl3): δ 160.0, 153.0, 143.7, 139.6, 138.0,
136.3, 131.9, 129.7, 129.3, 126.9, 125.8, 125.4, 124.5, 123.5, 121.6, 113.6, 63.6, 21.5, 14.8.

Product 3o: 2-(m-tolyl)-3-tosylbenzo[b]thiophene. The sulfonylation product was purified
by flash column chromatography on silica gel (PE/AcOEt: 30/1–15/1) to afford 3o as a
white solid (51 mg, 68% yield). 1H NMR (600 MHz, CDCl3): δ 8.63 (d, J = 8.4 Hz, 1H), 7.79
(d, J = 8.1 Hz, 1H), 7.55 (d, J = 8.3 Hz, 2H), 7.54–7.50 (m, 1H), 7.45–7.40 (m, 1H), 7.29 (dd,
J = 14.9, 7.5 Hz, 2H), 7.23 (d, J = 7.3 Hz, 1H), 7.17–7.11 (m, 3H), 2.38 (s, 3H), 2.34 (s, 3H). 13C
NMR (151 MHz, CDCl3): δ 152.7, 143.8, 139.5, 138.1, 137.2, 136.2, 131.5, 131.0, 130.2, 130.1,
129.3, 127.5, 127.1, 125.8, 125.5, 124.6, 121.7, 21.5, 21.3.

Product 3p: 2-(o-tolyl)-3-tosylbenzo[b]thiophene. The sulfonylation product was purified
by flash column chromatography on silica gel (PE/AcOEt: 30/1–15/1) to afford 3p as a
white solid (58 mg, 78% yield). 1H NMR (600 MHz, CDCl3): δ 8.66 (d, J = 8.3 Hz, 1H),
7.81 (d, J = 8.1 Hz, 1H), 7.54 (t, J = 8.4 Hz, 3H), 7.47–7.42 (m, 1H), 7.37 (td, J = 7.6, 1.1 Hz,
1H), 7.22 (dd, J = 14.7, 7.2 Hz, 2H), 7.17–7.12 (m, 3H), 2.35 (s, 3H), 2.08 (s, 3H). 13C NMR
(151 MHz, CDCl3): δ 151.6, 144.0, 139.2, 138.5, 138.1, 135.8, 131.2, 131.0, 130.2, 129.8, 129.6,
129.4, 127.3, 125.8, 125.5, 124.9, 124.5, 121.8, 21.5, 20.2.

Product 3q: 2-(4-fluorophenyl)-3-tosylbenzo[b]thiophene. The sulfonylation product was
purified by flash column chromatography on silica gel (PE/AcOEt: 30/1–15/1) to afford
3q as a yellow solid (54 mg, 71% yield). 1H NMR (600 MHz, CDCl3): δ 8.61 (d, J = 8.4 Hz,
1H), 7.80 (d, J = 8.1 Hz, 1H), 7.53 (t, J = 8.0 Hz, 3H), 7.43 (m, J = 8.6, 6.7, 1.4 Hz, 3H), 7.15 (d,
J = 8.2 Hz, 2H), 7.10 (t, J = 8.6 Hz, 2H), 2.34 (s, 3H). 13C NMR (151 MHz, CDCl3): δ 162.7,
151.2, 144.0, 139.3, 138.0, 136.0, 132.4 (d, J = 8.4 Hz), 130.6, 129.4, 127.6, 126.9, 126.0, 125.7,
124.6, 121.7, 114.8 (d, J = 21.9 Hz), 21.5.

Product 3r: 2-(4-chlorophenyl)-3-tosylbenzo[b]thiophene. The sulfonylation product was
purified by flash column chromatography on silica gel (PE/AcOEt: 30/1–15/1) to afford
3r as a yellow solid (55 mg, 70% yield). 1H NMR (600 MHz, CDCl3): δ 8.60 (d, J = 8.4 Hz,
1H), 7.80 (d, J = 8.0 Hz, 1H), 7.55 (t, J = 5.8 Hz, 2H), 7.54–7.51 (m, 1H), 7.46–7.42 (m, 1H),
7.40–7.36 (m, 4H), 7.16 (d, J = 8.2 Hz, 2H), 2.35 (s, 3H). 13C NMR (151 MHz, CDCl3): δ 150.8,
144.1, 139.3, 138.1, 136.0, 135.8, 131.8, 130.7, 130.1, 129.5, 127.9, 127.0, 126.0, 125.8, 124.6,
121.7, 21.5.

Product 3s: 2-(naphthalen-1-yl)-3-tosylbenzo[b]thiophene. The sulfonylation product was
purified by flash column chromatography on silica gel (PE/AcOEt: 15/1–7/1) to afford
3s as a yellow solid (43 mg, 53% yield). 1H NMR (600 MHz, CDCl3): δ 8.60 (d, J = 8.4 Hz,
1H), 7.75 (d, J = 8.0 Hz, 1H), 7.54 (d, J = 8.3 Hz, 2H), 7.51–7.46 (m, 1H), 7.38 (m, J = 8.7, 7.4,
1.6 Hz, 3H), 7.11 (d, J = 8.2 Hz, 2H), 6.94–6.90 (m, 2H), 3.86 (s, 3H), 2.30 (s, 3H). 13C NMR
(151 MHz, CDCl3): δ 160.6, 152.9, 143.8, 139.6, 138.0, 136.3, 131.9, 131.4, 130.4, 129.8, 129.4,
126.9, 125.8, 125.4, 124.5, 123.7, 121.7, 113.2, 55.4, 53.5, 31.4, 30.2, 21.5.

Product 3t: 2-(thiophen-2-yl)-3-tosylbenzo[b]thiophene. The sulfonylation product was
purified by flash column chromatography on silica gel (PE/AcOEt: 15/1–5/1) to afford
3t as a yellow solid (56 mg, 77% yield). 1H NMR (600 MHz, CDCl3): δ 8.67 (d, J = 8.4 Hz,
1H), 7.77 (d, J = 8.1 Hz, 1H), 7.59 (d, J = 8.3 Hz, 2H), 7.53–7.49 (m, 3H), 7.44–7.40 (m, 1H),
7.17–7.11 (m, 3H), 2.33 (s, 3H). 13C NMR (151 MHz, CDCl3): δ 144.6, 143.9, 139.1, 138.2,
136.5, 132.2, 131.0, 130.7, 129.4, 129.3, 127.4, 126.9, 126.0, 125.8, 124.8, 121.5, 21.5.

Product 3u: 2-(3-tosylbenzo[b]thiophen-2-yl)pyridine. The sulfonylation product was pu-
rified by flash column chromatography on silica gel (PE/AcOEt: 15/1–5/1) to afford 3u as
a white solid (59 mg, 82% yield). 1H NMR (600 MHz, CDCl3): δ 8.71–8.68 (m, 1H), 8.45 (d,
J = 8.3 Hz, 1H), 7.85–7.79 (m, 5H), 7.51–7.46 (m, 1H), 7.43–7.40 (m, 1H), 7.40–7.37 (m, 1H),
7.20 (d, J = 8.2 Hz, 2H), 2.32 (s, 3H). 13C NMR (151 MHz, CDCl3): δ 151.1, 150.8, 149.0, 144.0,
138.9, 138.6, 135.8, 135.6, 130.3, 129.6, 127.3, 126.9, 125.9, 125.9, 124.5, 123.9, 122.0, 21.5.

Product 3v: 3-((4-bromophenyl)sulfonyl)-2-phenylbenzo[b]thiophene. The sulfonylation
product was purified by flash column chromatography on silica gel (PE/AcOEt: 15/1–5/1)
to afford 3v as a white solid (65 mg, 76% yield). 1H NMR (600 MHz, CDCl3): δ 8.62 (d,
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J = 6 Hz, 1H), 7.81 (d, J = 6 Hz, 1H), 7.55–7.53 (m, 1H), 7.48–7.43 (m, 6H), 7.42–7.39 (m, 4H).
13C NMR (151 MHz, CDCl3): δ 153.1, 141.2, 138.1, 136.0, 132.7, 132.0, 131.4, 130.5, 129.7,
128.5, 128.1, 127.7, 126.1, 125.7, 124.5, 121.8.

Product 5a: 2-phenyl-3-tosyl-4H-thiochromen-4-one. The sulfonylation product was puri-
fied by flash column chromatography on silica gel (PE/AcOEt: 15/1–5/1) to afford 5a as
a white solid (58 mg, 75% yield). 1H NMR (600 MHz, CDCl3): δ 8.20 (d, J = 7.9 Hz, 1H),
7.84–7.73 (m, 2H), 7.61–7.54 (m, 1H), 7.52–7.34 (m, 7H), 7.19 (d, J = 7.7 Hz, 2H), 2.30 (s, 3H).
13C NMR (151 MHz, CDCl3): δ 175.9, 162.4, 144.0, 138.9, 135.7, 134.9, 132.8, 132.5, 131.6,
130.1, 128.9, 128.7, 128.5, 128.0, 127.9, 125.3, 21.3.

Product 5b: 3-((4-chlorophenyl)sulfonyl)-2-phenyl-4H-thiochromen-4-one. The sulfony-
lation product was purified by flash column chromatography on silica gel (PE/AcOEt:
15/1–5/1) to afford 5b as a yellow solid (66 mg, 80% yield). 1H NMR (600 MHz, CDCl3): δ
8.28 (dd, J = 8.1, 1.0 Hz, 1H), 7.91–7.86 (m, 2H), 7.58 (td, J = 8.0, 1.4 Hz, 1H), 7.50–7.42 (m,
7H), 7.38–7.34 (m, 2H). 13C NMR (151 MHz, CDCl3): δ 176.0, 163.2, 140.2, 139.6, 135.7, 134.5,
132.7, 132.6, 131.6, 130.5, 130.3, 129.2, 128.9, 128.7, 128.2, 128.1, 125.3.

Product 6: 1,3-dimethyl-3-(tosylmethyl)indolin-2-one. The sulfonylation product was pu-
rified by flash column chromatography on silica gel (PE/AcOEt: 15/1–5/1) to afford 6 as a
white solid (50 mg, 76% yield). 1H NMR (600 MHz, CDCl3): δ: 7.38–7.37 (m, 2H), 7.30–7.27
(m, 1H), 7.16 (d, J = 6 Hz, 2H), 7.07 (d, J = 6 Hz, 1H), 6.93–6.90 (m, 1H), 6.84 (d, J = 6 Hz,
1H), 3.85 (d, J = 12 Hz, 1H), 3.67 (d, J = 18 Hz, 1H), 3.16 (s, 3H), 2.39 (s, 3H), 1.38 (s, 3H); 13C
NMR (151 MHz, CDCl3): δ 177.6, 144.3, 143.2, 137.0, 129.6, 129.5, 128.5, 127.8, 124.1, 122.4,
108.3, 61.9, 45.6, 26.5, 25.5, 21.5.

4. Conclusions

In summary, we have reported a straightforward strategy for the synthesis of sul-
fonated benzothiophenes and thioflavones from 2-alkynylthioanisoles and sodium sulfi-
nates via visible-light-induced cascade cyclization reaction under metal- and photocatalyst-
free conditions. This approach features good functional group tolerance, simple operation,
and mild conditions. The further synthetic application of this strategy is underway in our
laboratory.
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