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Abstract: BiOX (X = Cl, Br, I) families are a kind of new type of photocatalysts, which have attracted
the attention of more and more researchers. The suitable band gaps and their convenient tunability
via the change of X elements enable BiOX to adapt to many photocatalytic reactions. In addition,
because of their characteristics of the unique layered structure and indirect bandgap semiconductor,
BiOX exhibits excellent separation efficiency of photogenerated electrons and holes. Therefore, BiOX
could usually demonstrate fine activity in many photocatalytic reactions. In this review, we will
present the various applications and modification strategies of BiOX in photocatalytic reactions.
Finally, based on a good understanding of the above issues, we will propose the future directions and
feasibilities of the reasonable design of modification strategies of BiOX to obtain better photocatalytic
activity toward various photocatalytic applications.

Keywords: photocatalytic CO2 reduction; photocatalysts; BiOX (X = Cl, Br, I); photocatalytic reactions;
layer structure

1. Introduction

With the rapid development of the economy and society, the consumption of under-
ground fossil energy, such as oil and coal, is increasing rapidly [1]. The energy crisis has
gradually become the main factor restricting economic development. On the other hand,
the consumption of fossil energy produces serious environmental problems, such as air
and water pollution, the greenhouse effect, fog, and so on [2,3]. To deal with the energy
crisis and environmental pollution, scientists worldwide are exploring a solution. Among
them, semiconductor photocatalysis is a promising solution [4–10]. These semiconductor
photocatalysts can absorb solar light to split H2O to produce H2 and O2 gas [11], reduce
carbon dioxide to organic carbon resources (such as methane, carbon monoxide, methanol,
etc.) [12–14], degrade organic pollutants [15], reduce nitrogen to ammonium ion [16], re-
duce heavy metal ions [17], kill bacteria [18], and so on. As can be seen from the above
description, photocatalysis can generate environmentally friendly clean energy only by
using sunlight and solve the serious environmental pollution problem [19,20]. Therefore, it
is regarded as a promising method to solve energy and environmental problems [21,22]. At
present, the semiconductor photocatalysis has become a research hotspot.

Up to now, many photocatalysts have been discovered and exhibited excellent pho-
tocatalytic activities, such as TiO2 [23], ZnO [24], ZrO2 [25], In2O3 [26], BiOX [27–29],
C3N4 [30], MOF [31], etc. Among them, BiOX (X = Cl, Br, I) families are a newly discovered
type of photocatalysts, which is the crystal structure of PbFCl type (space groups P4/nmm,
D4h symmetry tetragonal system) [32,33]. Therefore, the BiOX crystal structure belongs to
a layered type, which are composed of the staggered arrangement of the [Bi2O2]2+ layer
and the double X atom layer in the direction of the c-axis [34,35]. Additionally, the layers of
[X-Bi-O-Bi-X] are connected by the weak van der Waals interaction [36,37]. Enough space
can be provided between layers, which favors polarizing related atoms and orbitals to
produce an internal electric field between the [Bi2O2]2+ layer and the X atom layer. The
formed internal electric field could promote the separation of photogenerated electrons
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and hole pairs, which is very important for the photocatalytic activities of BiOX [38,39].
In addition, as the indirect band gap semiconductors, the photo-generated electrons de-
rived from the valence band of BiOX need to pass a certain k-space distance to transfer
the conduction band, which could lead to a low recombination rate of photon-generated
carriers [40,41]. Because of their characteristics of the unique layered structure and indirect
bandgap semiconductor, BiOX could usually demonstrate fine activity in many types of
photocatalytic reactions.

To date, there are some review papers reported on the applications of BiOX in pho-
tocatalysis, but they are mostly focused on a particular area, such as organic degradation,
CO2 reduction, etc [42–46]. However, few of them have summarized and reported the
comprehensive applications of BiOX in the whole field of photocatalysis. To make it easier
and more convenient for most researchers to fully understand the applications of BiOX
in photocatalytic reactions in the future, it is necessary to conduct a more comprehen-
sive application review. In this review, we summarize relatively comprehensive recent
applications of BiOX in photocatalytic reactions. We will summarize and analyze these
applications in the following six fields (Table 1): BiOX split H2O to produce H2 and O2
gas, degrade organic pollutants, photocatalytic nitrogen fixation, degrade the inorganics
(hexavalent chromium ions), reduce carbon dioxide to organic carbon resources (such as
methane, carbon monoxide, methanol, etc.), and kill bacteria. This review will be completed
by presenting the mechanism of application of BiOX in each field, progress, and some
modification strategies to further enhance their activities, and some current problems or
challenges and future research directions.

Table 1. These photocatalytic applications of BiOX.

BiOX Six Applications in the Photocatalytic Field

Photocatalytic CO2 reduction
Photocatalytic degrading inorganics
Photocatalytic killing bacteria
Photocatalytic N2 fixation
Photocatalytic degrading organics
Photocatalytic splitting H2O

2. The Difference of Band Gap among BiOX Series Photocatalysts

In photocatalytic reactions, the band gap of the photocatalyst is very important. As far
as we know, the band gaps of BiOX are about 3.2 (BiOCl), 2.6 (BiOBr), and 1.7 (BiOI) eV,
respectively [47]. Especially the BiOBr and BiOI, with good visible light absorption capacity,
are very conducive to the efficient use of solar light in the photocatalytic reaction. Moreover,
Zhao et al. [48] reported that the valence band consists mainly of O 2p and X np (Cl = 3p,
Br = 4p and I = 5p, respectively), and the conduction band consists of Bi 6p states. We all
know that Cl, Br, and I belong to the seventh main group elements, they should possess
similar properties. Therefore, their band gaps might be conveniently tuned via the change
of X elements. The suitable band gaps and convenient tunability enable BiOX to adapt to
many photocatalytic reactions. Based on the previously-mentioned advantages, BiOX has
attracted the attention of more and more researchers.

3. Recent Application of BiOX in the Field of Photocatalytic Reactions
3.1. Splitting H2O to Produce H2 and O2

Photocatalytic splitting of H2O began in 1972, when Fujishima and Honda discovered
that H2O molecules could be split at a titanium dioxide electrode to produce hydrogen
and oxygen under the photocatalysis, making it possible to use solar energy to split H2O
into hydrogen [49]. After decades of exploration, many related photocatalysts have been
discovered, such as TiO2, ZnO, CdS, ZnS, GaN, and so on [50–54]. In recent years, BiOX
photocatalysts have also been applied to split H2O to produce hydrogen and oxygen gas,
and some excellent results have been achieved [36,55–60].



Molecules 2023, 28, 4400 3 of 15

The kinetic realization of the BiOX photocatalytic splitting of H2O for hydrogen and
oxygen production requires the following four processes (Figure 1) [61]: (1) absorption of
photons by the BiOX photocatalyst to produce photogenerated electron-hole pairs; (2) the
separation of photogenerated electron-hole pairs; (3) migration of photogenerated electrons
and holes; and (4) surface chemical reactions. In other words, the electrons and holes
migrating to the surface of the BiOX undergo reduction and oxidation reactions with water
to produce H2 and O2, respectively. The chemical reaction mechanism can be simply
expressed by the following reaction equation:

BiOX + hυ→ e− + h+ (Semiconductor excitation and Carriers separation.) (1)

2e− + 2H+ → H2 (Half-reaction: photocatalytic hydrogen evolution.) (2)

4h+ + 2H2O→ O2+ 4H+ (Half-reaction: photocatalytic hydrogen evolution.) (3)

H2O→ H2 + 1/2O2 (Total reaction: photocatalytic splitting of H2O.) (4)
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Figure 1. Schematic diagram of mechanism of the BiOCl photocatalytic splitting of H2O.

In addition, it is important to note that for BiOX to achieve photocatalytic splitting of
whole H2O, their conduction band and valence band positions also need to meet certain
requirements except having a suitable band gap. Their bottom level of the conduction
band (CB) should be more negative compared to that of the redox potential of H+/H2
(H+/H2 = 0.00 V vs. SHE) [57]. On the other hand, the top level of the valence band (VB)
need be more positive compared with the redox potential of O2/H2O (O2/H2O= +1.23 V,
vs. SHE). However, the CB of BiOX is normally slightly more positive compared to that of
H+/H2 potential level [61,62]. In this case, BiOX could not achieve photocatalytic splitting
of H2O for hydrogen evolution.

Because BiOX have so many advantages, researchers are looking forward to applying
it to the field of photocatalytic overall water splitting. Therefore, various modification
strategies for BiOX are emerging in order to realize this idea. For example, Zhang et al.
prepared BiOCl nanosheets as thick as quantum sizes (obtained sample was named BOC-
S) [61], which can solve the conduction band (CB) position problem of this block BiOCl.
As shown in Figure 2a, the position of CB of ultrathin BOC-S upshifted by −0.3 eV than
that of BOC-L (BiOCl, ~200 nm thickness)/BOC-M (BiOCl, ~30 nm thickness). There are
many bismuth vacancies and oxygen vacancies exist on the surface of ultrathin BiOCl
nanosheets. In the process of photocatalytic overall water splitting, H2O adsorbed on the
surfaces of BiOCl was transferred into an H atom and an OH group, subsequently, the
OH group was trapped by the oxygen vacancy; On the other hand, the H atom bonds to
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a surface oxygen atom. The two H atoms on the surface of BiOCl could be dissociated
to produce an H2 molecule because of the role of entropy. Finally, the ultrathin BiOCl
nanosheet realized the photocatalytic overall water splitting without any sacrificial agents
or co-catalysts (Figure 2b). In addition, it could be observed that both BOC-L and BOC-M
did not have the photocatalytic performance of splitting H2O. These surface defects were
proved to play an important role in the whole process via the first-principles calculations.
In addition, Yang et al. prepared a kermesinus BiOI (K-BiOI) with many surface oxygen
vacancies [63]. They found that the position of the CB edge of K-BiOI has extended to
−0.41 V vs. SHE relative to that of common BiOI (0.26 V). The CB edge is more negative
than the reduction potential of H+/H2, thereby realizing photocatalytic H2 production
performance. To sum up, oxygen vacancy has a crucial impact on the BiOX photocatalyst
to achieve photocatalytic overall water splitting.
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3.2. Degrading Organic Pollutants

In 1976, Carey et al. carried out pioneering work in photocatalytic degradation of or-
ganic pollutants in water [64], opening the application field of photocatalytic technology in
environmental protection, and then setting off a worldwide research boom in the emerging
field of semiconductor photocatalytic degradation of organics. After nearly 50 years of
efforts by scientists, there have been many successful applications of semiconductor photo-
catalytic oxidation technology. Many experimental facts have proved that semiconductor
photocatalysis can remove various organic pollutants in the environment [65–68], such as
alkanes, alkenes, phenols, a variety of simple aromatic compounds, and the corresponding
halides, dyes, surfactants, herbicides, pesticides, humic acids, etc.

In recent years, BiOX catalysts have attracted extensive attention for their application
in photocatalytic degradation of organics due to their unique electronic structure, highly
anisotropic layered structure, good photocatalytic stability, cheap, and environmentally
friendly [69–71]. When BiOX degrades organic pollutants, they are first photoexcited to
produce photogenerated electrons and holes. Photogenerated electrons can react with
O2 adsorbed on their surface to generate a series of free radicals with strong oxidation
properties, such as O2·−, as shown in reaction Equations (5)–(10). Moreover, many pho-
togenerated holes can directly react with H2O molecules or OH- ions adsorbent on BiOX
surface to generate ·OH radical due to their strong oxidation ability. The reaction equation
is shown in (11) and (12). Subsequently, these active free radicals with strong oxidation
ability directly oxidize most organics into small inorganic molecules such as CO2 and H2O.

O2 + e− → O2·− (5)

H2O + O2·− → HO2· + OH− (6)
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2HO2· → H2O2 + O2 (7)

H2O2 + e− → ·OH + OH− (8)

·OH + ·OH→ H2O2 (9)

H2O2 + O2·− → ·OH + OH− + O2 (10)

H2O + h+ → ·OH + H+ (11)

OH− + h+ → ·OH (12)

For example, Yu et al. synthesized Bi/BiOCl nanosheets via one-step solution combus-
tion synthesis [72]. They found that Bi/BiOCl-1 showed a 98% degradation efficiency of
Rhodamine B (RhB) after visible light irradiation for 120 min. Through a series of studies,
they proved that not only holes can directly react with RhB on the surface of BiOCl, but
also O2·− active species could also degrade the RhB to produce CO2 and H2O in the pho-
tocatalytic degradation process. In addition, in the current process of BiOX degradation
of organics, the catalysts are still mainly concentrated in the powder state. Therefore, the
recovery and reuse of BiOX powder catalysts after use is a great challenge in practical
industrial applications. Therefore, our research group designed and loaded BiOCl and
BiOBr onto the surface of activated carbon fiber via a facile solvothermal method and
obtained BiOCl/ACF and BiOBr/ACF samples (Figure 3) [73]. Subsequently, the photocat-
alytic activity on decomposing RhB and 2,4-DCP aqueous solution has been tested using
BiOCl/ACF and BiOBr/ACF samples. The experimental results exhibited that they had
excellent cyclic properties and stable performance. This design successfully solved the
difficult problem of their recovery and reuse.
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Moreover, to further improve BiOX’s photocatalytic degradation activity of organics,
many modification strategies have been proposed, such as heterojunction, element dop-
ing, crystal plane control, etc. [74–76]. Through the continuous exploration of scientific
researchers, BiOX should have relatively good activities at degrading organics. How-
ever, the corresponding industrial application technology or recycling method still needs
further exploration.
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3.3. Photocatalytic Nitrogen Fixation

Currently, photocatalytic nitrogen fixation is considered one of the most ideal alter-
natives to the traditional Haber–Bosch nitrogen fixation method. Because photocatalytic
nitrogen fixation reaction is carried out at room temperature and atmospheric pressure.
Moreover, nitrogen is reduced by photogenerated electrons of the photocatalyst without
consuming any fossil energy. This method directly uses solar energy as energy and air and
water (H2O) as raw materials to produce ammonia gas, avoiding the disadvantages of natu-
ral gas as a feedstock for hydrogen, where hydrogen molecules can be obtained from water
molecules. In addition, there is no carbon dioxide emissions in the photocatalytic nitrogen
fixation, which is an ideal environmental protection nitrogen fixation technology [77–79].

In 1997, Schrauzer and Guth conducted the first photocatalytic nitrogen fixation study
by using titanium dioxide photocatalysts under UV light irradiation [80]. Since then, es-
pecially in the 21st century, a lot of research work has been carried out to explore various
applicable catalysts and improve the performance of photocatalysts for nitrogen reduc-
tion [81]. In the exploration process, researchers found that BiOX is a potential and promis-
ing photocatalytic nitrogen fixation catalysts. The reaction of photocatalytic reduction of
nitrogen over BiOX photocatalysts can be divided into the following steps (Figure 4) [82]:
(1) nitrogen adsorption, the surface-active site of BiOX to fix nitrogen; (2) BiOX uses the
captured light energy to produce photogenerated electrons. The photogenerated electrons
migrate to the conduction band, leaving holes in the valence band; (3) Some electrons
combine with holes, and some electrons and holes migrate to the surface of the BiOX to
participate in the REDOX reaction; (4) H2O can be oxidized to produce oxygen gas via
the holes, while nitrogen is reduced to ammonia after a series of multi-step injection of
photogenerated electrons and water-derived protons.
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In fact, pure BiOX exhibited low performance of photocatalytic nitrogen fixation.
Therefore, many researchers have proposed various modification strategies to improve
its catalytic activity. For example, Li et al. prepared the surface oxygen vacancies on
BiOBr nanosheets, which could effectively increase the N2 adsorption and activate the
inert nitrogen molecules, while facilitating the efficient separation of photoelectrons and
holes [83]. Therefore, the photocatalytic activity of nitrogen fixation was greatly improved.
Xue et al. reported that the photocatalytic nitrogen fixation performance of BiOBr was
improved about 10 times by the synergistic effect of oxygen vacancy and ultra-thin layer
structure [84]. Gao et al. loaded the flower-like BiOBr onto the inner and outer sides of
the C3N4 nanotubes simultaneously, effectively realizing the separation of photogenerated
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electrons and hole pairs, and thus increasing the photocatalytic nitrogen fixation activity
of BiOBr by 13.9 times [85]. Now, photocatalytic nitrogen fixation capacities of BiOX are
still unlikely to replace the Haber–Bosch process, but their potentials are huge and need
further exploration.

3.4. Degrading of Inorganics (Hexavalent Chromium Ions)

Hexavalent chromium ion (Cr(VI)) is highly toxic, easy to cause cancer, and even causes
gene mutations. It cannot be biodegraded into harmless substances, resulting in enrichment
in the H2O, ultimately endangering human health [86,87]. However, trivalent chromium
ions (Cr(III)) do not easily enter cells, so they are generally considered almost non-toxic.
Therefore, reducing hexavalent chromium is particularly important, even imminent [88,89].

Recently, BiOX is useful for the photocatalytic reduction of hexavalent chromium
ions [90,91]. In BiOX photocatalytic system, Cr(VI) has a strong oxidizing ability and could
be considered an electron trapping agent, thereby being reduced by the photogenerated
electrons. For example, Fan et al. prepared the BiOBr nanoflowers of high exposure
(110) facets, which showed an excellent photocatalytic removal capacity for Cr(VI). The
result exhibited that the whole reaction for Cr(VI) reduction was only 50 min [92]. To
investigate the effect of different crystal facets of BiOCl on the photocatalytic reduction
for Cr(VI) in detail, Peng et al. synthesized BiOCl with exposed (110) and BiOCl with
exposed (001) facets samples (Figure 5), respectively. They found that BiOCl-110 has more
excellent photoreduction activity compared to that of BiOCl-001, and 40 mL of Cr(VI)
(30 mg/L) could be completely reduced within 10 min under neutral conditions [93].
To overcome the problems of insufficient light absorption capacity and low separation
efficiency of photogenerated carriers, Hussain et al. prepared BiOCl0.8Br0.2 solid solution,
which exhibited visible light absorption ability, a significant increase in light absorption
relative to pure BiOCl [94]. At the same time, the solid solution structure is very favorable
for the efficient separation of photogenic carriers. Therefore, BiOCl0.8Br0.2 exhibited a better
photocatalytic reduction activity of Cr(VI) than pure BiOCl.
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In addition, to further improve the activity of BiOX photocatalytic reduction of Cr(VI),
researchers have conducted a lot of exploration and research, mainly focusing on the con-
struction of heterojunction, the construction of oxygen vacancy, doping design, etc. [95–97].
Through the review and analysis of recent studies, the BiOX series of catalysts can be con-
sidered a class of photocatalysts with good application prospects for hexavalent chromium
ion treatment.
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3.5. Reducing Carbon Dioxide to Organic Carbon Resources

Human activities have caused a large amount of carbon dioxide emissions, global
warming is a serious problem, is also one of the most pressing challenges facing the
world [98]. Over the past few decades, people worldwide have been increasingly exposed to
extreme weather hazards caused by global warming, such as storms, floods, and droughts.
Therefore, reducing carbon dioxide emissions, using CO2 reuse, and achieving sustainable
development have become a consensus. Harnessing solar energy to convert CO2 into
valuable chemicals and fuels is considered one of the effective solutions to global warming
and energy needs [99,100].

One of the key factors affecting the activity and selectivity of photocatalysts is the
separation efficiency of its photogenerated carriers in the photocatalytic CO2 reduction
process. However, conventional photocatalysts face the problem of easy recombination of
photogenerated carriers, resulting in low electron transfer efficiency, so the performance
of CO2 photoreduction is not ideal. Recently, it has been shown that two-dimensional
nanomaterials show good photocatalytic carrier separation efficiency when used for the
photoreduction of CO2. BiOX series photocatalysts have unique two-dimensional layered
structures, which are considered promising materials for the photocatalytic reduction of
CO2. Their unique layered structures could improve the separation of photogenerated
carriers and facilitates electron migration to the surface-active site, thereby accelerating the
photocatalytic CO2 reduction reaction. Therefore, carbon dioxide reduction of BiOX series
photocatalysts has become a hot topic [101–103].

For example, Wu et al. prepared BiOBr atomic layers with many oxygen vacancies,
which exhibited a CO generating rate of 87.4 umol g−1 h−1 in the process of visible-
light-driven CO2 reduction [104]. Via in situ FTIR and DFT calculations, they proposed
a possible reaction path (Figure 6), which is as follows: (1) firstly, CO2 and H2O are
adsorbed on the BiOBr surfaces. Subsequently, H2O adsorbed on the BiOBr surface will
be dissociated into hydrogen and hydroxy ions. CO2 will be transferred into CO2* active
species. (2) Additionally, then, the CO2* adsorbed BiOBr surfaces react with the surface
protons, leading to the formation of a COOH* intermediate. (3) A COOH* intermediate
protonation process is carried out to produce the CO* molecules. (4) The CO* active species
will desorb from the BiOBr surface to form the final CO molecule. To further restrain the
photogenerated electron-hole pair recombination rate and improve the product yield of
BiOX photocatalysts, Sun et al. proposed to construct an effective heterojunction [105].
Therefore, they prepared an In2O3/BiOI composite, which showed 5.3 times higher yields
of CO than those of pure BiOI. This can be attributed to forming a type II heterojunction,
which promotes efficient charge separation and transfer at the heterojunction interface.

In the past few decades, researchers have made much important progress in the CO2
reduction of BiOX photocatalytic nanomaterials. The unique layered structure of BiOX
provides a good possibility for displaying excellent photocatalytic CO2 reduction activity,
but fewer active centers and low photogenerated electron transport efficiency are still
not ideal. In recent years, to further improve the transport efficiency of photogenerated
electrons and holes, many researchers have made BiOX into ultra-thin nanosheets and
nanotubes, doped elements, and constructed surface Lewis’s acid-base pairs on the surface
of BiOX, and so on [106–108]. These strategies have greatly improved the photocatalytic
CO2 reduction performance of BiOX. However, there is still a huge gap between the
efficiency of photocatalytic CO2 reduction of BiOX and the actual production level, which
requires further exploration and research.
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3.6. Killing Bacteria

In our living environment, bacteria are everywhere, among which, the breeding of
harmful bacteria will induce human diseases and harm human health. Therefore, how to
solve harmful bacteria more effectively is a hot topic in international research. Currently,
photocatalysis technology is considered a low-cost and environmentally friendly way to
efficiently inactivate various bacteria [109–113]. Additionally, BiOX is a series of new types
of photocatalytic materials, which is considered one of the most promising antibacterial
materials due to its unique layered crystal structure, suitable band gap, high chemical
stability, long-lasting antibacterial effect, low price, safety, and other advantages [114–116].

For example, Attri et al. prepared Ni-doped BiOCl nanosheets, which was observed
Ni-BiOCl exhibited excellent photocatalytic antibacterial activity against S. aureus bacteria
under visible light [117]. In the case of light conditions, the killing rate of S. aureus was 99.5%.
They found that various active species (such as H+, ·O2, and OH˙ generated by the Ni-BiOCl
photocatalyst) encounter the surface of bacteria, and oxidize the cell wall, disturbing the cell
permeability. The above-mentioned process results in the loss of intracellular components,
and biomolecules, and is responsible for cell death. Our group has prepared ultrathin
nanosheets of BiOI (h-BiOI) with a thickness of about 2 nm [118]. Due to the quantum size
effect, the valence band of h-BiOI is a positive shift relative to the block BiOI structure, and
the oxidation capacity is significantly improved. Therefore, the bactericidal capacity of
h-BiOI on Escherichia coli is significantly improved compared to block BiOIs.

The bactericidal principle of BiOX series photocatalysts is as follows: a series of active
species (such as h+, ·O2

−, H2O2, ·OH) are generated after performing REDOX reaction
between BiOX and oxygen or water after light exposure. These active species can interact
with biological macromolecules (for example, lipid, protein, enzymes, and nucleic acid
macromolecules), directly or through a series of oxidative chain reactions to biological cells
to cause damage, to achieve the purpose of sterilization.

4. Future Perspectives and Summary

With the rapid consumption of underground fossil energy, the energy crisis and
environmental pollution are becoming more serious. Semiconductor photocatalysis is
considered a very good and promising solution to solve the environmental challenge. The
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key core of photocatalysis is a suitable photocatalyst. Among the many photocatalysts, the
BiOX series of catalysts are considered a range of potential material due to their various
advantages and was widely studied. After decades of scientific research, much research has
been done to further extend the photocatalytic application field of BiOX and improve the
photocatalytic efficiency of BiOX for meeting future practical processes. In this review, we
summarized a relatively comprehensive six recent applications of BiOX in photocatalytic
reactions. Additionally, these application mechanisms and the progress of these applica-
tions have been described briefly. Although there are decades of exploration of BiOX’s
various applications and these signs of progress are good, some problems or challenges
need further study or optimization, thereby promoting their future practical application.

(1) In the field of photocatalytic splitting of H2O, the conduction positions of the BiOX
series of catalysts are not dominant, and it is necessary to further explore some effective
ways to improve their conduction position or reduce the reduction potential through
activating H2O molecules using some modification to BiOX.

(2) Through the continuous exploration of scientific researchers, BiOX should have
relatively good activities at degrading organics and hexavalent chromium ions. However,
the corresponding industrial application technology or recycling method still needs further
exploration. In particular, we should try to cooperate with some relatively mature methods
in the industry, such as chemical treatment of pollutants, biodegradation of pollutants, etc.

(3) Now, the capacities of photocatalytic nitrogen fixation and CO2 reduction of BiOX
are still low and do not meet the actual industrial production. Therefore, further in-depth
exploration and research are very necessary. Additionally, a reasonable modification
strategy is very key. Reasonable modification strategies need to be designed based on
reliable reaction mechanisms. Therefore, in the future, we first need to conduct a detailed
exploration of the complex mechanism of photocatalytic nitrogen fixation and carbon
dioxide reduction. In addition, I think it is also important to design some synergistic
strategies in the process of photocatalytic CO2 reduction, such as photothermal synergistic
catalysis and the synergy of emerging surface frustrated Lewis’s acid-base theory with
existing modification strategies.

(4) The photocatalytic antibacterial research of BiOX series catalysts is of great sig-
nificance. Photocatalytic technology can effectively avoid antibiotic resistance caused by
using antibiotics. The BiOX series catalysts’ recovery and lack of diffusion capacities during
antibacterial use are crucial limiting factors. In future studies, we need to combine BiOX
series catalysts with some suitable carriers to overcome the above problems.
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