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Abstract: Using density functional theory (DFT) B3PW91/TZVP, M06/TZVP, and OPBE/TZVP
chemistry models and the Gaussian09 program, a quantum-chemical calculation of geometric and
thermodynamic parameters of Ni(II), Cu(II), and Zn(II) macrotetracyclic chelates, with (NNNN)-
coordination of ligand donor centers arising during template synthesis between the indicated ions of
3d elements, thiocarbohydrazide H2N–HN–C(=S)–NH–NH2 and diacetyl Me–C(=O)–C(=O)–Me, in
gelatin-immobilized matrix implants was performed. The key bond lengths and bond angles in these
coordination compounds are provided, and it is noted that in all these complexes the MN4 chelate
sites, the grouping of N4 atoms bonded to the M atom, and the five-membered and six-membered
metal chelate rings are practically coplanar. NBO analysis of these compounds was carried out, on the
basis of which it was shown that all these complexes, in full accordance with theoretical expectations,
are low-spin complexes. The standard thermodynamic characteristics of the template reactions for
the formation of the above complexes are also presented. Good agreement between the data obtained
using the above DFT levels is noted.

Keywords: template synthesis; Ni(II); Cu(II); Zn(II); thiocarbohydrazide; diacetyl; 3,10-dithio-6,7,13,14-
tetramethyl-1,2,4,5,8,9,11,12-octaazacyclotetradecatetraene-1,5,7,12; DFT method

1. Introduction

Previously, in [1], the template synthesis in the system Cu(II)–thiocarbohydrazide
H2N–HN–C(=S)–NH–NH2–diacetyl Me–C(=O)–C(=O)–Me in copper(II)hexacyanoferrate
(II) gelatin-immobilized matrix implants and the formation of a macrotetracyclic chelate of
the indicated metal ion were described, in which the ligand contained in it, namely, the
double-deprotonated form 3,10-dithio-6,7,13,14-tetramethyl-1,2,4,5,8,9,11,12-octaazacyclo-
tetradecatetraene-1,5,7,12 (L2−), coordinated to Cu(II) via four donor nitrogen atoms
(Figure 1). The question of the specificity of the molecular structure of this complex (CuL),
however, has not yet been resolved, because neither in [1] nor any other researchers have
been able to obtain single crystals of this compound suitable for XRD analysis. The com-
plexes considered in the article [1] belong to the category of metal-macrocyclic compounds
with a closed loop, in which the complex metal ion is located in the internal cavity of
the macrocyclic organic compound. Such complexes have a number of unique properties
that are not inherent in the complexes of the same metals with acyclic ligands and, for
this reason alone, are of considerable interest to modern fundamental chemistry. On the
other hand, these complexes and the macrocyclic ligands contained in them are quite close
in their structure to metal-porphyrins and metal-porphyrazines (complexes formed by
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porphyrin and porphyrazine, respectively) and can be considered as their peculiar “precur-
sors”. The field of the practical application of metal-porphyrins and metal-porphyrazines
is very significant (optics, luminescence, catalysis, medicine, sensorics, etc.), as a result
of which this group of coordination compounds is one of the most studied at present. In
this context, it seems interesting and important to obtain objective data on the structural
and geometric parameters of this chemical compound using quantum-chemical calcula-
tions using some version of the density functional theory (DFT), which is currently the
most popular method for calculating the molecular and electronic structures of 3d-element
complexes. On the other hand, it is very likely that in a similar way, i.e., as a result of the
combination of the above ligand synthons, accompanied by intramolecular dehydration
(Figure 2), the same complexes of chemical elements adjacent to copper, nickel, and zinc
can be formed, although there is no information about this possibility either in [1] or in any
other publications devoted to template synthesis. Since it is these two 3d elements that, in
terms of the complexes they form, are closest to Cu(II) complexes compared to those for
the other d-elements, it seems appropriate, first, to confirm the possibility of the existence
of Ni(II) and Zn(II) metal chelates with the above ligand L2−, and secondly, in case of a
positive answer to this question, compare the parameters of their molecular and electronic
structures, as well as their thermodynamic characteristics, with similar parameters for
the CuL complex. The presentation of these data and their discussion will be carried out
further in the given article.
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2. Results

We immediately note two circumstances that are of particular importance for our
further narration. First, each of the three different chemistry models we used, namely,
B3PW91/TZVP, M06/TZVP, and OPBE/TZVP, unambiguously predicts the possibility of
the existence of each of the three NiL, CuL, and ZnL complexes mentioned above. Second,
for each of these coordination compounds, all these three methods give practically the same
results, both qualitatively and quantitatively.

The key parameters of the molecular structures calculated by the three different
DFT methods mentioned above, namely, the bond lengths and the angles between the
lines of these bonds (bond angles) for each of the three ML-type chelates (M = Ni, Cu,
Zn) considered by us with the above “template” ligand 3,10-dithio-6,7,13,14-tetramethyl-
1,2,4,5,8,9,11,12-octaazacyclotetradecatetraene-1,5,7,12, are presented in Table 1. All three
chemistry models unambiguously predict the coplanar coordination of donor nitrogen
atoms of this macrocyclic ligand with respect to the central metal ion, since in the MN4
chelate nodes for the indicated M, the sum of four bond angles (N1M1N2), (N2M1N3),
(N3M1N4), and (N4M1N1), formed by donor atoms and M atoms (BAS), is exactly 360.0◦

(which corresponds exactly to a flat quadrilateral). The same situation also takes place
for the sum of non-bonding angles (NBAS) formed by neighboring donor nitrogen atoms
(Table 1); consequently, the grouping of N4 donor atoms is also coplanar. Wherein, in none
of the ML (M = Ni, Cu, Zn) complexes that we considered, it is rectangular—in each of
them, only pairwise equality of angles (NNN) takes place, and all these angles, of course,
are not equal to 90◦. This difference, as expected, is most pronounced in the case of ZnL
and least strongly in the case of NiL (Table 1). As for the M–N bond lengths, taking into
account the fact that they are equivalent to each other only in pairs, one should expect them
to be only pairwise equal, and the calculation results for each of the three variants of the
DFT chemistry models used in the work are in full agreement with this prediction. On the
other hand, in the series Ni(II)–Cu(II)–Zn(II), there is an increase in ionic radii, as a result of
which one can theoretically expect an increase in the lengths of these bonds; this conclusion
is also in good agreement with the data presented in Table 1. Unlike the metal–nitrogen
bonds, the lengths of the carbon–carbon, carbon–nitrogen, and nitrogen–nitrogen bonds
show a much weaker dependence on the nature of the 3d-element M, but pairwise equality
was also observed. The carbon–sulfur bond lengths in each of these complexes are the
same, which also seems quite natural.

Table 1. Key parameters of the molecular structures of Ni(II), Cu(II), and Zn(II) complexes with the
double-deprotonated form of the macrocyclic ligand, 3,10-dithio-6,7,13,14-tetramethyl-1,2,4,5,8,9,11,12-
octaazacyclotetradecatetraene-1,5,7,12 (L2−) calculated by B3PW91/TZVP, M06/TZVP, and
OPBE/TZVP chemistry models.

Complex
NiL CuL ZnL

Chemistry Model Chemistry Model Chemistry Model

Structural
Parameter B3PW91/TZVP M06/TZVP OPBE/TZVP B3PW91/TZVP M06/TZVP OPBE/TZVP B3PW91/TZVP M06/TZVP OPBE/TZVP

Bond lengths in the MN4 chelate node, pm

(M1N1) 183.9 184.2 183.4 188.9 188.8 189.4 191.0 190.5 191.4

(M1N2) 183.5 184.2 182.6 190.9 191.4 190.9 197.5 198.2 197.7

(M1N3) 183.9 184.2 183.4 188.9 188.8 189.4 191.0 190.5 191.3

(M1N4) 183.5 184.2 182.6 190.9 191.4 190.9 197.5 198.2 197.6

Separate bond lengths outside the MN4 chelate node, pm

(C1S1),
(C2S2) 165.9 165.7 165.9 166.0 165.7 166.1 166.0 165.7 166.0

(C1N5),
(C2N6) 137.8 138.0 137.7 139.8 140.0 140.0 141.6 141.7 141.8

(N2N6),
(N4N5) 135.6 135.7 135.1 134.9 134.9 134.2 134.3 134.3 133.8
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Table 1. Cont.

Complex
NiL CuL ZnL

Chemistry Model Chemistry Model Chemistry Model

Structural
Parameter B3PW91/TZVP M06/TZVP OPBE/TZVP B3PW91/TZVP M06/TZVP OPBE/TZVP B3PW91/TZVP M06/TZVP OPBE/TZVP

(C4C5),
(C3C6) 145.7 146.0 145.1 147.5 147.7 146.9 148.8 148.8 148.2

(C5N7),
(C6N8) 130.1 129.5 131.2 130.4 129.8 131.6 130.7 130.0 132.0

(C6C8),
(C5C9) 150.6 150.1 150.6 150.8 150.3 150.9 151.0 150.4 151.1

(C4C10),
(C7C8) 149.9 149.4 149.9 150.0 149.5 150.1 150.1 150.0 150.2

Bond angles in the MN4 chelate node, deg

(N1M1N2) 94.1 94.1 94.1 94.7 94.7 94.7 95.1 95.2 95.0

(N2M1N3) 85.9 85.9 85.9 85.3 85.3 85.3 84.9 84.8 85.0

(N3M1N4) 94.1 94.1 94.1 94.7 94.7 94.7 95.1 95.2 95.0

(N4M1N1) 85.9 85.9 85.9 85.3 85.3 85.3 84.9 84.8 85.0

Bond angles
sum (BAS) 360.0 360.0 360.0 360.0 360.0 360.0 360.0 360.0 360.0

Non-bond angles in the N4 grouping, deg

(N1N2N3) 90.1 90.0 90.2 89.4 89.2 89.5 88.1 87.7 88.2

(N2N3N4) 89.9 90.0 89.8 90.6 90.8 90.5 91.9 92.3 91.8

(N3N4N1) 90.1 90.0 90.2 89.4 89.2 89.5 88.1 87.7 88.2

(N4N1N2) 89.9 90.0 89.8 90.6 90.8 90.5 91.9 92.3 91.8

Non-bond
angles sum

(NBAS)
360.0 360.0 360.0 360.0 360.0 360.0 360.0 360.0 360.0

Bond angles in the 5-numbered (M1N4N5C1N1) chelate ring, deg

(M1N4N5) 110.5 110.3 110.9 109.0 108.9 109.1 107.9 107.6 107.8

(N4N5C1) 119.1 119.2 119.3 120.5 120.5 120.9 121.1 121.0 121.6

(N5C1N1) 109.7 109.8 109.1 111.1 111.1 110.7 111.9 112.0 111.6

(C1N1M1) 114.8 114.8 114.8 114.1 114.2 114.0 114.2 114.5 114.0

(N1M1N4) 85.9 85.9 85.9 85.3 85.3 85.3 84.9 84.8 85.0

Bond angles
sum

(VAS51)
540.0 540.0 540.0 540.0 540.0 540.0 540.0 540.0 540.0

Bond angles in the 5-numbered (M1N2N6C2N3) chelate ring, deg

(M1N2N6) 110.5 110.3 110.9 109.0 108.9 109.1 107.9 107.6 107.8

(N2N6C2) 119.1 119.2 119.3 120.5 120.5 120.9 121.1 121.0 121.6

(N6C2N3) 109.7 109.8 109.1 111.1 111.1 110.7 111.9 112.0 111.6

(C2N3M1) 114.8 114.8 114.8 114.1 114.2 114.0 114.2 114.5 114.0

(N3M1N2) 85.9 85.9 85.9 85.3 85.3 85.3 84.9 84.8 85.0

Bond angles
sum

(VAS52)
540.0 540.0 540.0 540.0 540.0 540.0 540.0 540.0 540.0

Bond angles in the 6-numbered (M1N1N7C5C4N2) chelate ring, deg

(M1N1N7) 128.5 128.3 128.8 127.0 126.8 127.1 126.1 125.9 126.6

(N1N7C5) 122.2 122.4 122.3 122.3 122.5 122.4 122.2 122.3 121.7

(N7C5C4) 127.0 127.2 126.8 129.5 129.5 129.6 131.6 131.6 132.1

(C5C4N2) 120.3 120.4 119.9 120.4 120.5 120.0 120.0 120.1 119.4

(C4N2M1) 127.9 127.6 128.1 126.1 126.0 126.2 125.0 124.4 125.2

(N2M1N1) 94.1 94.1 94.1 94.7 94.7 94.7 95.1 95.2 95.0

Bond angles
sum

(VAS61)
720.0 720.0 720.0 720.0 720.0 720.0 720.0 719.5 720.0
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Table 1. Cont.

Complex
NiL CuL ZnL

Chemistry Model Chemistry Model Chemistry Model

Structural
Parameter B3PW91/TZVP M06/TZVP OPBE/TZVP B3PW91/TZVP M06/TZVP OPBE/TZVP B3PW91/TZVP M06/TZVP OPBE/TZVP

Bond angles in the 6-numbered (M1N3N8C6C3N4) chelate ring, deg

(M1N3N8) 128.5 128.3 128.8 127.0 126.8 127.1 126.1 125.9 126.6

(N3N8C6) 122.2 122.4 122.3 122.3 122.5 122.4 122.2 122.3 121.7

(N8C6C3) 127.0 127.2 126.8 129.5 129.5 129.6 131.6 131.6 132.1

(C6C3N4) 120.3 120.4 119.9 120.4 120.5 120.0 120.0 120.1 119.4

(C3N4M1) 127.9 127.6 128.1 126.1 126.0 126.2 125.0 124.4 125.2

(N4M1N3) 94.1 94.1 94.1 94.7 94.7 94.7 95.1 95.2 95.0

Bond angles
sum

(VAS62)
720.0 720.0 720.0 720.0 720.0 720.0 720.0 719.5 720.0

Bond angles outside chelate rings, deg

(N1C1S1),
(N3C2S2) 130.6 130.6 130.9 130.7 130.6 131.1 130.8 130.7 131.4

(N5N4C3),
(N6N2C4) 121.6 122.1 121.0 124.8 125.2 124.6 127.2 127.6 127.1

(N4C3C7),
(N2C4C10) 118.8 118.7 119.1 118.6 118.5 118.9 118.8 119.3 119.0

(C3C6C8),
(C4C5C9) 118.8 118.4 119.6 117.3 117.0 117.9 116.1 115.6 116.6

(C8C6N8),
(C9C5N7) 114.1 114.4 113.6 113.2 113.5 112.4 112.2 112.8 111.3

(C6C3C7),
(C5C4C10) 120.9 120.8 121.0 121.0 121.0 121.1 121.3 120.6 121.5

With respect to five-membered [(M1N4N5C1N1), (M1N2N6C2N3)] and six-membered
[(M1N1N7C5C4N2), (M1N3N8C6C3N4)] metal chelate rings, it should be noted that all of
them, as well as the MN4 chelate nodes, are also coplanar, since the sums of internal bond
angles in any of them are either equal to 540◦ and 720◦, which coincides with the sum of the
internal angles in a flat pentagon and hexagon, respectively, or very slightly differs from
these values (as is the case for the ZnL complex calculated by the DFT M06/TZVP method).
Characteristically, these metal chelate rings are pairwise identical to each other, not only
in terms of the sum of bond angles but also in their sets, which depend relatively little on
the nature of M (Table 1). In view of the foregoing, the ML complexes under consideration
can be considered practically planar (although, given that they also include, among other
things, four methyl groups that are not a priori planar, it should be recognized that none
of them). This fact is very interesting; considering that, according to quite numerous data
presented in [2–10], macrotetracyclic chelate complexes of 3d elements with cyclic ligands
containing two five-membered and two six-membered metal chelate rings, contrary to
theoretical expectations, are non-coplanar, and in them, as a rule, all these four cycles
are non-coplanar. Each of the NiL, CuL, and ZnL complexes under consideration has
one second-order axis, a horizontal plane of symmetry, and a center of symmetry, and,
consequently, they all have the C2h symmetry group. In this circumstance, it is quite
understandable that according to the data of our calculation by the DFT B3PW91/TZVP as
well as and by the DFT M06/TZVP and DFT OPBE/TZVP, the dipole electric moment (µ)
of each of them practically does not differ from zero. Images of the molecular structures of
these metal chelates are presented in Figure 3.
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The key data of the NBO analysis of these compounds, namely, the effective charges
on the metal atoms M1 and donor nitrogen atoms N1, N2, N3, and N4 obtained by DFT
B3PW91/TZVP, DFT M06/TZVP, and DFT OPBE/TZVP chemistry models, are presented
in Table 2; the full NBO analysis can be found in the Supplementary Materials. As expected,
they differ quite significantly from those that would take place if all bonds between atoms
were ionic. This circumstance indicates a very pronounced delocalization of the electron
density within the entire molecular structure of each of the complexes under consideration.
Images of higher occupied (HOMO) and lower vacant (LUMO) molecular orbitals for the
considered complexes are shown in Figure 4. It should be noted that the NBO analysis
data for all three NiL, CuL, and ZnL complexes obtained using the above DFT variants also
agree quite well with each other (Table 2).

Table 2. Key data of NBO analysis for the NiL, CuL, and ZnL complexes in the ground state according
to DFT B3PW91/TZVP, DFT M06/TZVP, and DFT OPBE/TZVP chemistry models.

Complex Chemistry Model
The Charges on the Atoms, in Electron Charge Units (ē)

<S**2>
M1 N1 N2 N3 N4

NiL B3PW91/TZVP +0.379 −0.316 −0.187 −0.316 −0.187 0.0000

M06/TZVP +0.382 −0.335 −0.198 −0.335 −0.198 0.0000

OPBE/TZVP +0.314 −0.265 −0.173 −0.265 −0.173 0.0000

CuL B3PW91/TZVP +0.729 −0.411 −0.257 −0.411 −0.257 0.7500

M06/TZVP +0.711 −0.425 −0.262 −0.425 −0.262 0.7500

OPBE/TZVP +0.672 −0.364 −0.245 −0.364 −0.245 0.7500

ZnL B3PW91/TZVP +1.088 −0.508 −0.321 −0.509 −0.321 0.0000

M06/TZVP +1.071 −0.524 −0.326 −0.524 −0.326 0.0000

OPBE/TZVP +1.085 −0.475 −0.318 −0.475 −0.318 0.0000
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The values of the key thermodynamic parameters of the metal chelates considered
here, namely, the standard enthalpies, entropies, and Gibbs energies of their formation
∆fH0

298, Sf
0

298, ∆fG0
298, are presented in Table 3. As can be seen from it, the values of Sf

0
298

obtained by different versions of the DFT are quite close to each other, while the values of
∆fH0

298 and ∆fG0
298 differ quite significantly from each other. Currently, it is not possible

to give preference to any of these methods in relation to these parameters. However, they
are all positive, and their modules are very significant. Characteristically, for each of the
complexes considered here, the smallest values of ∆fH0

298 and ∆fG0
298 are observed in the

case of using the DFT OPBE/TZVP and the largest in the case of using the DFT M06/TZVP.

Table 3. Standard thermodynamic parameters of formation for NiL, CuL, and ZnL complexes
calculated by B3PW91/TZVP, M06/TZVP, and OPBE/TZVP chemistry models.

Complex Chemistry Model ∆fH0
298, kJ/mol Sf

0
298, J/mol K ∆fG0

298, kJ/mol

NiL B3PW91/TZVP 769.1 745.5 966.6

M06/TZVP 891.0 742.7 1089.4

OPBE/TZVP 550.1 753.4 745.3

CuL B3PW91/TZVP 916.4 748.5 1114.1

M06/TZVP 1052.2 753.7 1248.3

OPBE/TZVP 753.3 760.5 947.4

ZnL B3PW91/TZVP 834.8 772.5 1027.9

M06/TZVP 983.9 766.1 1178.9

OPBE/TZVP 669.8 771.5 863.2
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The DFT B3PW91/TZVP and DFT M06/TZVP calculated standard thermodynamic
parameters of the template synthesis reactions leading to the formation of these complexes
(the general scheme of which is shown in Figure 2) as given in Table 4. As can be seen
from it, the values of each of these parameters calculated by these two versions of the DFT
are quite close to each other. That is, characteristically, for all these reactions, the relations
∆rH0

298 < 0, ∆rS0
298 > 0, and ∆rG0

298 < 0 take place. From this, in turn, it follows that for
any of the M = Ni, Cu, Zn considered by us, such reactions are thermodynamically allowed
not only under standard conditions with T = 298.16 K but also at any other temperature T,
since according to the Gibbs–Helmholtz equation for an isobaric process ∆rG(T) = ∆rH0

− T∆rS0 the values of ∆rG(T) for these reactions will always be negative. It should be
noted, however, that the data presented in Table 4 refer to the gas phase, and therefore,
our conclusion regarding the possibility of their implementation also applies to reactions
occurring precisely under such conditions.

Table 4. Standard thermodynamic parameters of template synthesis reactions of NiL, CuL, and ZnL
complexes in gaseous phase calculated by B3PW91/TZVP and M06/TZVP chemistry models.

Complex Chemistry Model ∆rH0
298, kJ ∆rSr

0
298, J/K ∆rG0

298, kJ

NiL B3PW91/TZVP −411.6 46.6 −425.5

M06/TZVP −393.1 65.6 −412.7

CuL B3PW91/TZVP −204.7 64.1 −223.8

M06/TZVP −191.2 91.2 −218.4

ZnL B3PW91/TZVP −77.0 80.5 −101.0

M06/TZVP −66.7 96.0 −95.3

According to our data, the ground state of the NiL and ZnL chelates in each of the
DFT variants used by us is a spin singlet and that of the CuL chelate is a spin doublet, so
that all of them belong to the category of low-spin complexes. This is confirmed by the
calculation data of the <S**2> parameter, which is equal to 0.0000 in the case of the NiL and
ZnL complexes and 0.7500 in the case of CuL, which correspond to the spin multiplicities
MS = 1 and MS = 2, respectively. Wherein, the difference in the energies of structures
with a spin multiplicity different from that of the ground state (triplet in the case of NiL
and ZnL, quartet in the case of CuL) is 132.3, 146.7, and 144.7 kJ/mol (according to DFT
B3PW91/TZVP), 148.7, 157.3, and 200.1 kJ/mol (according to DFT B3PW91/TZVP), and
101.6, 120.7, and 124.3 kJ/mol (according to DFT OPBE/TZVP), respectively. As can be
seen from these data, the nearest excited state in each of the complexes under study is much
higher than the ground state, so that spin cross-over (spin isomerism) is impossible here in
principle. That is, interestingly, the largest differences between the energies of the ground
and nearest excited states with a different spin multiplicity, as well as for the parameters
∆fH0

298 and ∆fG0
298, take place in the case of using the DFT M06/TZVP and the smallest

in the case of using the DFT OPBE/TZVP.

3. Calculation Method

When performing calculations, we used a variant of the density functional theory
(DFT), which combines the standard extended valence-split basis set TZVP and the most
modern hybrid functional M06, described in detail in [11], which, according to its authors, is
best suited for calculations of 3d-element compounds. For comparison, we also used another
version of the DFT, namely, with B3PW91 functional, which is described in detail in [12–14]
and used by us, in particular, in recently published papers [15–17]. The use of this variant
of the DFT, in this case, is due to the fact that, according to [12–14] and our experience,
it allows, as a rule, to obtain the most accurate (i.e., close to experimental) values of the
geometric parameters of molecular structures, as well as significantly more accurate values
of thermodynamic and other physicochemical parameters compared to other variants
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of DFT chemistry models. In addition to them, we also carried out calculations of the
molecular and electronic structures of the macrocyclic metal chelates by the OPBE/TZVP
method, which combines the above TZVP basis and the non-hybrid OPBE functional [18,19],
which, according to the data of works [19–23], in the case of 3d elements gives a fairly
accurate ratio of the energy of the high-spin state with respect to the energy of the low-spin
state and, at the same time, reliably characterizes the geometric parameters of the molecular
structures of the metal complexes observed by us. The calculations were carried out using
the Gaussian09 software package [24]. As in our previous articles, in which the above
calculation methods [15–17] were used, the correspondence of the found stationary points
to the energy minima in all cases was proved by calculating the second derivatives of the
energy with respect to the atomic coordinates; in this case, all the equilibrium structures
corresponding to the minimum points on the potential energy surfaces had only real (and,
moreover, always positive) frequency values. From the optimized structures, the structure
with the lowest total energy was chosen for further consideration. In accordance with the
theory of the structure of the atoms, Ni(II), Cu(II), and Zn(II) which are the complexes
under examination, should correspond to 3d8, 3d9, and 3d10 electronic configurations,
respectively. In this context, spin multiplicities 1 and 3 in the case of Ni(II) and Zn(II) and
spin multiplicities 2 and 4 in the case of Cu(II) are considered for the given central metal
ions during the calculation. Among the structures optimized at these multiplicities, the
lowest-lying structure was selected. To calculate the parameters of molecular structures
with multiplicity greater than 1, we used the unrestricted method (UM06, UB3PW91, and
UOPBE). The energetically most favorable structure has always been checked according
to the STABLE = OPT procedure; in all cases, the wave functions corresponding to these
structures were stable. Natural Bond Orbital (NBO) analysis was carried out, using the NBO
3.1 version in the framework of the Gaussian09 program [24] according to the methodology
described in [25]. The standard thermodynamic parameters of a formation (∆fH0

298, Sf
0

298,
and ∆fG0

298) for the Ni(II), Cu(II), and Zn(II) macrocyclic compounds under study were
calculated employing the method [26].

4. Conclusions

Interest in metal macrocyclic compounds and prediction of their physicochemical
characteristics (including the calculation of molecular and electronic structures using
quantum-chemical calculations of various levels) continues to be consistently high on
the part of researchers, as evidenced by a number of recent works, in particular, [27–40],
and this article is just one of many devoted to the above topics. In summary, we would
like to emphasize that the above-mentioned data of quantum-chemical calculations per-
formed using three different variants of density functional theory, namely, B3PW91/TZVP,
M06/TZVP, and OPBE/TZVP chemistry models, unambiguously predict the possibility
of the existence of macrocyclic metal complexes Ni(II), Cu(II), and Zn(II) with macro-
cyclic tetradentate ligand, double-deprotonated form 3,10-dithio-6,7,13,14-tetramethyl-
1,2,4,5,8,9,11,12-octaazacyclotetradecatetraene-1,5,7,12 (L2−) with the ratio M(II): L2− = 1:1,
resulting from template synthesis in the ternary systems M(II)–thiocarbohydrazide–diacetyl
(M = Ni, Cu, Zn). Wherein, the reactions of template synthesis in each of these three ternary
systems are accompanied by a decrease in enthalpy and an increase in the entropy of the
reaction system; the latter circumstance is unusual for template processes, which, as a rule,
are accompanied by a decrease in this thermodynamic parameter. Based on the values
of ∆fH0

298, Sf
0

298, and ∆fG0
298, it can be expected that the NiL complex will be the most

stable among them, the CuL complex will be the least stable, and the ZnL complex will
occupy an intermediate position. Remarkably, only the least stable of these complexes is
currently known [1]. In this regard, there is every reason to hope that the other two will
also be obtained, and at present it is important to confirm the theoretical prediction made
in the experiment.

The key structural fragments of these complexes, namely, chelate nodes, two 5-membered
and two 6-membered metal chelate rings, are practically coplanar (which is also uncon-
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ventional for metal chelates containing the listed atomic groups). The values of the key
parameters of molecular structures (bond lengths and bond angles) in the compounds
under consideration depend little on the nature of M(II) in their composition. Thus, the
decisive role in the formation of these structures belongs, as expected, to the macrocyclic
ligand itself.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28114383/s1, NBO Analysis Data of ML complexes.
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