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Abstract: Developing cost-effective and high-efficiency catalysts for electrocatalytic oxygen evolution
reaction (OER) is crucial for energy conversions. Herein, a series of bimetallic NiFe metal-organic
frameworks (NiFe-BDC) were prepared by a simple solvothermal method for alkaline OER. The
synergistic effect between Ni and Fe as well as the large specific surface area lead to a high exposure
of Ni active sites during the OER. The optimized NiFe-BDC-0.5 exhibits superior OER performances
with a small overpotential of 256 mV at a current density of 10 mA cm~2 and a low Tafel slope of
45.4 mV dec™!, which outperforms commercial RuO, and most of the reported MOF-based catalysts
reported in the literature. This work provides a new insight into the design of bimetallic MOFs in the
applications of electrolysis.
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1. Introduction

The development of green, clean, and sustainable energy sources has become in-
creasingly important in view of alleviating environmental pollution caused by fossil fuel
combustion [1-4]. The electrocatalytic oxygen evolution reaction (OER) is a crucial reaction
in water splitting and in many renewable-energy-related devices. However, as a typical
four-electron transfer process, OER is severely hindered by its intrinsically sluggish kinetics,
which requires a large potential to overcome the reaction energy barrier [5,6]. Presently,
IrO, and RuO; are the benchmark catalysts for OER. Nevertheless, scarcity, high price,
and poor stability have greatly restricted their applications [7—11]. Therefore, to address
these drawbacks, tremendous efforts have been devoted to developing Ir/Ru-free catalysts
for OER.

In the past few years, earth-abundant and cost-effective transition-metal-based electro-
catalysts have been widely investigated as alternatives for noble metals. Among them, Ni-
based materials, such as oxides [12,13], hydroxides [6,14], phosphides [15,16], sulfides [17],
nitrides [18-20], and metal-organic frameworks (MOFs) [21,22] have been extensively
studied as alternative catalysts for OER due to their large accessible active sites and good
electrical conductivity. As is known, electrocatalysis usually occurs on the surface of the
catalysts. Therefore, the OER performance is strongly related to the surface structure of a
catalyst. For instance, tailoring the size of a catalyst can significantly increase the surface-
to-volume ratio, leading to several attractive features, such as a unique morphology and
distinctive electronic structure, and thereby facilitating the catalytic activity [23-26]. There-
fore, the rational design of electrocatalysts with a large surface area and a high exposure
of active sites is vital to achieve a high activity. Benefiting from the rich combinations of
metal centers and functional ligands as well as a large surface area and porosity, MOFs
have drawn particular attention in many fields. Considering that MOFs usually possess
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low electrical conductivities and electrocatalytic activities, directly using MOFs as electro-
catalysts remains a great challenge. Recently, pyrolysis of MOFs has been demonstrated as
an effective way to synthesize MOF-derived electrocatalysts, including metal oxides [27],
phosphides [28], nitrides [29] etc. However, high-temperature pyrolysis treatment results
in a severe aggregation and a sacrifice of organic ligands, which not only collapses the struc-
ture, but also reduces the number of active sites. In addition, compared with monometallic
MOFs, bimetallic MOFs can provide higher oxidation states of transition metal species and
synergistic interactions between different metal ions, which make them more favorable for
OER [30,31]. In addition, two-dimensional (2D) MOFs with a high exposure of unsaturated
coordinative metal active sites and increased surface areas facilitate mass transport and
electron transfer during electrocatalysis [32]. Thus, directly designing bimetallic 2D MOFs
as OER catalysts is a promising way to achieve high OER activity. For instance, Jia et al.
reported the use of 2D ultrathin NiFe-UMNSs for OER [33]. The abundant coordinatively
unsaturated Ni active sites, enhanced eg-orbital filling and higher valence of Ni ions make
the NiFe-UMNSs exhibit excellent electrocatalytic performances in basic media. Zhuang and
co-workers verified that the synergistic interaction between Co and Fe ions endows the
FeCo-MOFs nanosheets with outstanding OER performances [34]. Although significant
progresses have been made, in-depth investigations on functional MOF materials that can
be directly employed as OER catalysts are highly required.

Herein, 1,4-bezenedicarboxylate (1,4-BDC) was used as an organic ligand to prepare
NiFe bimetallic MOF (NiFe-BDC-0.5) nanosheets via a facile solvothermal treatment. Com-
pared with the monometallic Ni-BDC, the appropriate introduction of Fe into the Ni-BDC
leads to partial charge transfer from Ni ions to Fe ions, increasing the oxidation state of Ni
ions, thereby boosting the activity of OER. Furthermore, an electrochemical reconstruction
occurs during OER, which leads to the generation of NiFe (oxy)hydroxide and more Ni
sites serving as the electrochemical active sites, endowing the NiFe-BDC-0.5 with improved
OER performances. Specifically, the NiFe-BDC-0.5 exhibits a low overpotential of 256 mV
to achieve a current density of 10 mA cm~2 and a long-term stability over 50 h in 1 M KOH,
which is superior to that of RuO, and most of the reported transition-metal-based catalysts
reported in the literature.

2. Results and Discussion

A series of bimetallic metal-organic frameworks NiFe-BDC-x (x = 0.1, 0.3, 0.5, 0.7)
were synthesized by a simple solvothermal method. Among the as-prepared samples, the
NiFe-BDC-0.5 exhibits the highest activity toward OER; therefore, the NiFe-BDC-0.5 is
primarily discussed in this work. The preparation route of the bimetallic metal-organic
frameworks (NiFe-BDC-0.5 MOF) is illustrated in Figure 1. First, an Fe-based metal-organic
compound (Fe-precursor) was prepared via a solvothermal reaction. The power X-ray
diffraction (XRD) pattern of the Fe-precursor (Figure S1) is consistent with that reported in
the literature [35], indicating the successful synthesis of the Fe-precursor. Subsequently, the
NiFe-BDC-0.5 nanosheets are obtained by adding NiCl,-6H,O to react with the Fe precursor
through a simple solvothermal treatment. By analyzing the phase of the NiFe-BDC-0.5, it
can be observed that the main diffraction peaks centered at 8.8°,14.2°,15.7°, and 17.7° in
the XRD pattern (Figure 2a) can be attributed to the (200), (001), (201), and (400) crystal
planes of MIL-53(NiFe) (CCDC No. 985792), suggesting that the Ni-MOF was successfully
prepared [36,37]. The XRD patterns of the as-prepared NiFe-BDC-x with different added
amounts of Ni are displayed in Figure S2. It is obvious that the intensities of the diffraction
peaks increase and become sharper with an increase in the addition of Ni in NiFe-BDC.
Meanwhile, the diffraction peaks of the NiFe-BDC-x (x = 0.1, 0.3, 0.5, 0.7) shift slightly
toward lower angles compared with those of the simulated MIL-53(NiFe). In addition, the
XRD pattern of the Ni-BDC, which was prepared without the addition of Fe-precursor, is
also similar to that of NiFe-BDC-0.5 (Figure S3). All these points indicate the successful
preparation of NiFe bimetallic MOFs.
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Figure 1. Schematic illustration of the preparation of the NiFe-BDC-0.5.
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Figure 2. Structure and morphology of NiFe-BDC-0.5. (a) XRD patterns, (b) SEM image, (c) N—
adsorption/desorption isotherms and pore size distribution, (d) TEM image, (e) enlarged TEM image,
(f) HRTEM image, () HAADF-STEM and corresponding elemental mappings.

The morphologies and structures of the Ni-BDC and NiFe-BDC-x were observed
using a scanning electron spectroscope (SEM) and transmission electron microscope (TEM).
As illustrated in Figure S4a, the Ni-BDC displays a sheet-like morphology. When Fe-
precursor is added during the preparation process, the morphologies of the as-synthesized
samples are closely related to the added amount of NiCl,-6H,O. When adding 0.1 mmol
of NiCl,-6H;0, the as-obtained NiFe-BDC-0.1 consists of nanoparticles with a size of
~50 nm (Figure S4b). As the added amount of NiCl,-6H,O increases to 0.3 mmol, some
nanosheets appear in the NiFe-BDC-0.3 (Figure S4c). Upon further increasing the amount
of NiCl,-6H,O to 0.5 mmol, the morphology of the NiFe-BDC-0.5 is basically identical
to that of the Ni-BDC (Figure 2b). When the molar ratio of Ni2* to BDC is lower than
1:1, the coordination between Ni%* ions and BDC ligands is insufficient, and the BDC
ligands cannot be connected to form the sheet-like structure. When the ratio is higher
than 1:1, the nanosheets pack together, resulting in an aggregated morphology and a
low exposure of active sites (Figure S4d). By carefully comparing the SEM images of
Ni-BDC and NiFe-BDC-0.5, it can be seen that the thickness of the NiFe-BDC-0.5 nanosheet
is thinner than that of the Ni-BDC, implying that the introduction of Fe-precursor can
reduce the thickness of the nanosheets and increase the specific surface area. The N



Molecules 2023, 28, 4366

40f13

adsorption—desorption isotherm of NiFe-BDC-0.5 is displayed in Figure 2c. It is clear that
the NiFe-BDC-0.5 exhibits a type IVa adsorption isotherm with H3-type hysteresis loops,
which is commonly found in layered structures. The specific surface area of the NiFe-BDC-
0.5, based on the Brunauer-Emmett-Teller (BET) method, is 344.8 m? g~1, and the pore size
is mainly distributed in a range of 3040 nm, which indicates its mesoporous structure. The
unique nanosheets and mesoporous feature are favorable for an increase in the number
of active sites and promote mass transfer, and thus improve the OER performance. The
transmission electron microscopy (TEM) image of the NiFe-BDC-0.5 further displays that
the ultrathin nanosheets are hundreds of nanometers in size, and curling can be observed
at the edges (Figure 2d,e), further demonstrating its ultrathin nature. The high-resolution
TEM (HRTEM) image (Figure 2f) reveals that these nanosheets are composed by amorphous
and polycrystalline regions. The lattice distance of 0.981 nm in the crystalline region is
close to the theoretical values of the (200) plane [38]. The elemental mapping images shown
in Figure 2g demonstrate a uniform distribution of Ni, Fe, C, and O elements over the
entire NiFe-BDC-0.5. To further reveal the composition of the as-obtained samples, energy-
dispersive X-ray spectroscopy (EDX) was then carried out (Figure S5), which confirmed the
existence of Ni, Fe, C, and O elements in the four samples. The atomic ratios of Ni to Fe in
the NiFe-BDC-x were determined to be 0.5, 1.5, 2.5, and 3.6, respectively, which increased
with the added amount of NiCl,-6H,0.

The chemical valences of the Ni-BDC and NiFe-BDC-0.5 were then investigated by
X-ray photoelectron spectroscopy (XPS). The XPS survey scan shows the presence of Ni,
Fe, C, and O elements in the NiFe-BDC-0.5 (Figure S6). The deconvoluted results of Ni 2p
spectra are presented in Figure 3a. For the NiFe-BDC-0.5, peaks at 856.2 eV and 873.7 eV
can be assigned to the Ni** 2ps , and Ni?* 2p; /, respectively. The corresponding satellite
peaks are centered at 861.4 eV and 879.2 eV. The existence of Ni?* originated from the link
between Ni?* and BDC ligands [39,40]. In addition, peaks located at 857.4 eV (Ni%* 2p; ,)
and 875.3 eV (Ni%* 2p1/2) along with two satellite peaks at 864.4 eV and 881.8 eV indicate
the existence of Ni-OH [41,42]. The relative peak areas for Ni** 2p and Ni?* 2p show that
the Ni species exist as 45% of Ni** and 55% of Ni>*. In the Fe 2p spectrum displayed in
Figure 3b, the binding energies located at 709.8 eV (Fe* 2p3/2), 723.2 (Fe?* 2p1/2), 7119 eV
(Fe** 2p3»), and 725.7 eV (Fe>* 2py /») demonstrate that Fe mainly exists as Fe** and Fe?*
species [43,44]. Additionally, compared with the Ni-BDC, the peaks of Ni 2p in NiFe-BDC
shift toward higher binding energies, suggesting the increase in the Ni valence after Fe
introduction due to a synergistic interaction between Ni and Fe ions. Theoretically, the
valence electronic configuration of Ni?* is 3d® and the corresponding orbital occupancy is
tzgéeg2 [45], while the valence electronic configuration of Fe3* is 3d° and the eg orbital of
Fe3* (3d°, t2g5eg0) is unoccupied [34]. As previously reported [38,46], when Ni?* is coupled
with Fe3*, the charge can be partially transferred from Ni?* to Fe3* and can generate more
high-valence Ni ions. The higher oxidation state of Ni ions is favorable for increasing the
adsorption of OH™, which can significantly boost the charge transfer between NiFe-BDC
and OH™, thereby optimizing the OER performance [30,47]. Figure 3c depicts the C 1s
spectra of Ni-BDC and NiFe-BDC, which can be fitted into three characteristic peaks at
284.8 eV, 286.1 eV, and 288.5 eV, belonging to the C=C/C-C bonds, C-O bond, and the
carboxyl (O-C=0) groups in BDC ligands, respectively [38]. The XPS spectra of O 1s can
be deconvoluted into three peaks at 529.8 eV, 531.8 eV, and 533.8 eV, which originate from
oxygen atoms on the Ni (Fe)-O, O-C=0, and absorbed water [48]. The above XPS analyses
further demonstrate the coordination between Ni?* /Fe3* ions and BDC ligands, which is
consistent with the XRD results.
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Figure 3. XPS spectra of (a) Ni 2p for the NiFe-BDC-0.5 and Ni-BDC, (b) Fe 2p of the NiFe-BDC-0.5,
(c) C 1s, and (d) O 1s for the NiFe-BDC-0.5 and Ni-BDC.

The electrocatalytic OER performances of the NiFe-BDC-0.5 was studied in 1 M KOH.
The linear sweep voltammetry (LSV) curve of the NiFe-BDC-0.5 was compared with those
of Ni-BDC and RuO;. As depicted in Figure 4a, the Ni-BDC exhibits unsatisfactory OER
activity with an overpotential of 371 mV at a current density of 10 mA cm~2. With the
introduction of Fe into the Ni-BDC, the OER activity of the NiFe-BDC-0.5 increases remark-
ably, which only needs an overpotential of 256 mV to achieve 10 mA cm~2. Impressively,
the activity of the NiFe-BDC-0.5 surpasses commercial RuO, when the current density
exceeds 13 mA cm 2. Furthermore, pronounced oxidation peaks centered at ~1.38 V were
observed in the LSV curves of the Ni-BDC and NiFe-BDC-0.5, which can be ascribed to the
transformation of Ni?* to NiOOH [49,50]. Earlier studies have verified that the NiOOH is
more active than Ni2* species toward OER in Ni-based electrocatalysts [51-53]. Meanwhile,
the oxidation peak of Ni** to NiOOH shifts to a higher potential (~1.42 V) and the integral
area of the peak is enhanced by 66% with the addition of Fe, suggesting the generation of
a more active NiOOH phase by introducing Fe into the Ni-BDC. The OER kinetics were
then analyzed by the corresponding Tafel slopes (Figure 4b). It is obvious that the Tafel
slope of the NiFe-BDC-0.5 is 45.4 mV dec ™!, which is significantly lower than that of the
Ni-BDC (87.1 mV dec~!) and RuO; (58.1 mV dec '), implying that NiFe-BDC-0.5 possesses
fast OER kinetics and a high affinity toward adsorbed OH™ intermediates. Thus, the equi-
librium of adsorbed OH™ and derived-O-containing intermediates in the following steps
can be developed quickly, and therefore the rate-determining step of the OER occurring
on the NiFe-BDC-0.5 is the electron-transfer reaction [54,55]. In addition, LSV curves of
different NiFe-BDC-x catalysts were compared to investigate the effect of the Ni amount
on the OER performance. As shown in Figure S7, all the bimetallic NiFe-BDC-x catalysts
exhibit improved OER activities compared with the monometallic Ni-BDC. Among all
the as-prepared catalysts, the NiFe-BDC-0.5 exhibits the highest activity and the fastest
OER kinetics.
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Figure 4. Electrocatalytic OER performance of the NiFe-BDC-0.5 and other comparable samples
tested in 1 M KOH solution. (a) LSV curves, (b) Tafel plots, (c) Cq;, (d) ECSA, and (e) EIS of the
Ni-BDC, NiFe-BDC-0.5, and RuO,. (f) Polarization curves of the NiFe-BDC-0.5 before and after
5000 CV cycles. (g) Time-dependent current density curves of the NiFe-BDC-0.5 and RuO; under a
constant overpotential of 119 for 50 h. (h) Comparisons of OER activity of the NiFe-BDC-0.5 with
recently reported MOF-based electrocatalysts.

The double-layer capacitance (Cg;) was determined by cyclic voltammetry (CV) in
a 0.1 V potential range without faradaic currents to obtain the electrochemical active
area (ECSA) of the catalysts (Figures 4c,d and S8). The value of C4; for NiFe-BDC-0.5
was 15.41 mF cm 2, outperforming those of the Ni-BDC (3.16 mF cm~2), NiFe-BDC-0.1
(2.83 mF cm~2), NiFe-BDC-0.3 (4.09 mF cm~2), NiFe-BDC-0.7 (5.02 mF cm~2), and RuO,
(9.91 mF cm~2). This indicates that the unique nanosheet can afford the NiFe-BDC-0.5 the
largest electrochemically active surface area (ECSA). In order to obtain an insight into the
OER kinetics of the catalysts, electrochemical impedance spectroscopy (EIS) was performed.
The Nyquist plots of Ni-BDC, NiFe-BDC-0.5 and RuO; are shown in Figure 4e and the
insert is an equivalent circuit. It is clear that the NiFe-BDC-0.5 possesses the smallest
charge transfer resistance (R¢t) of 1.5 ), indicating a high charge transfer ability and the
fastest OER kinetics [56]. In addition, the NiFe-BDC-x catalysts with different incorporated
amounts of Ni were also tested. As expected, the value of R follows the same trend as that
of the Cq;, namely NiFe-BDC-0.1 (5.1 (2) > NiFe-BDC-0.3 (10.9 3) > NiFe-BDC-0.7 (3.8 (2)
> NiFe-BDC-0.5 (1.5 Q) (Figure S9). Apart from activity, long-term operational stability
is another essential parameter to evaluate the practicality for electrocatalysts. As shown
in Figure 4f, the polarization curve of the NiFe-BDC-0.5 shows a negligible change after
uninterrupted 5000 CV scanning compared with the initial one. Figure 4g displays the
chronoamperometric curves for the NiFe-BDC-0.5 and RuO; at a fixed overpotential of 11¢.
Apparently, the current on the RuO; electrode decreased gradually by 56.7% after 50 h of
testing. In contrast, the NiFe-BDC-0.5 only showed 28.0% activity loss, implying a higher
stability of the NiFe-BDC-0.5. The superior OER performances of the NiFe-BDC-0.5 may be
due to the large electrochemical active area and more active Ni sites, as well as a fast charge
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transfer. Importantly, the activity of the NiFe-BDC-0.5 outperforms most of the recently
reported transition-metal-based MOFs toward the OER (Figure 4h and Table S1).

In order to gain a deep insight into the structural evolution of the NiFe-BDC-0.5 during
the OER, the phase of the NiFe-BDC-0.5 after the OER was first studied. Figure 5a depicts
the XRD pattern of the NiFe-BDC-0.5 after 50 h of testing; it can be seen that the NiFe-BDC-
0.5 has completely evolved into NiFe hydroxide carbonate hydrate (JCPDS no. 51-0463).
This phenomenon is caused by the organic ligands being replaced by the hydroxide ions
and the oxidation of ligands, which usually occurs when MOFs directly electrocatalyze
OER in alkaline media [56,57]. The SEM image displayed in Figure 5b reveals that the
sheet-like NiFe-BDC-0.5 changes into bulks after the OER. The EDX spectrum illustrates
that the contents of Ni and Fe increase from 2.98 at.% and 1.20 at.% to 10.98 at.% and
4.20 at.%, respectively, while C decreases by 17.75 at.% after the OER (Figure S10 and
Table S2), indicating that more active Ni species were generated. XPS was then carried
out to investigate the change in electronic valence of the NiFe-BDC-0.5 after the OER
(Figure S11). The signal F comes from Nafion which was used during the preparation of the
electrode. The XPS peaks representing Ni 2p and Fe 2p shift toward higher binding energies
and the ratio of Ni®* to Ni?* increases (Figure 5c and Figure S12), verifying that the contents
of Nid* species increase after OER. In addition, the O 1s spectrum of the NiFe-BDC-0.5
after the OER shows the presence of M-O (529.8 eV) and M-OH (531.2 eV), confirming the
generation of NiFe hydroxyl oxides, which is consistent with earlier reports [58,59]. The
formation of metal-hydroxyl groups (M-OH) significantly improves the hydrophilicity of
the catalysts and facilitates the adsorption of HyO and -OH groups, and thereby promote
oxygen production in the NiFe-BDC-0.5. Based on the above analyses, it can be concluded
that the outstanding OER performances of the NiFe-BDC-0.5 originated from its large
specific surface area, which exposes more active sites and facilitates the formation of NiFe
hydroxyl oxides via structural reconstruction, which facilitates the OER process.

—
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Figure 5. Structural and compositional analysis of the NiFe-BDC-0.5 after OER: (a) XRD patterns,
(b) SEM image, XPS spectra of (c¢) Ni 2p and (d) O 1s.
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3. Materials and Methods
3.1. Materials

Nickel chloride hexahydrate (NiCl,-6H,0), ethanol (CH3CH,OH), ethylene glycol
(C2HgO,), N,N-dimethylformamide (C3H7;NO, DMF), polyvinylpyrrolidone (PVP, K30)
and potassium hydroxide (KOH, >85%) were purchased from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China). Iron(II) acetate ([Fe(OAc);]), triethylamine (C¢Hy5N),
and methanol (CH30H) were purchased from Aladdin. Terephthalic acid (CsHgO4, H,BDC)
and ruthenium (IV) oxide (RuO,) were purchased from Alfa Aesar. Nafion perfluorinated
resin solution (5 wt.%) was purchased from Sigma-Aldrich. All chemicals were directly
used without further purification.

3.2. Synthesis of Fe-Precursor

Fe-precursor was prepared according to a reported method [33]. Typically, 1.15 mmol
of Fe(OAc); and 0.4 g of PVP were dissolved in 5 mL of ethylene glycol under stirring for
about 10 min. Then, 25 mL of methanol was poured into the above mixture, and stirred
at room temperature for 20 min to obtain a transparent solution. Afterwards, the solution
was transferred into a 50 mL Teflon-lined autoclave, following by a solvothermal treatment
at 90 °C for 12 h. Finally, the precipitates were washed three times with absolute ethanol
and deionized water, and dried in vacuum at 60 °C for 12 h to obtain the Fe-precursor.

3.3. Synthesis of NiFe-BDC

The bimetallic NiFe-terephthalic acid (NiFe-BDC-0.5) nanosheets were synthesized by
a solvothermal method. First, 0.5 mmol of NiCl,-6H,O was dissolved in 9 mL of DMF and
1 mL of deionized water under continuous stirring, and 0.5 mmol of H,BDC and 300 pL
of triethylamine were added in sequence to form the transparent solution. Subsequently,
2 mL of ethanol containing 60 mg of the as-prepared Fe-precursor was added to the above
solution. After continuously stirring at room temperature for 30 min, the mixture was
transferred into a 20 mL Teflon-lined autoclave, followed by a solvothermal treatment at
90 °C for 12 h. Finally, after washing with ethanol three times and drying in a vacuum
at 60 °C for 12 h, the sample was obtained and denoted as NiFe-BDC-0.5. In order to
investigate the effect of the Ni content on the OER performance, the NiFe-BDC-x (x = 0.1,
0.3, and 0.7) were also prepared by the same method, except that the added amount of
NiCl,-6H,O was changed from 0.5 mmol to 0.1 mmol, 0.3 mmol, and 0.7 mmol, respectively.

3.4. Synthesis of Ni-BDC

Ni-BDC was prepared through the same synthesis procedure as NiFe-BDC except that
Fe-precursor was not added.

3.5. Material Characterization

X-ray diffraction (XRD) patterns were collected on a Bruker D8 Advance diffractometer
equipped with a Cu K« radiation (A = 1.5406 A, 40 kV, 40 mA) ranging from 5° to 80°.
Scanning electron spectroscopy (SEM) images and energy-dispersive X-ray spectroscopy
(EDX) spectra were collected on a Hitachi SU8010. High-resolution transmission electron
microscopy (HRTEM) images and elemental mapping images were obtained on a JEOL
JEM-2100F under an accelerating voltage of 200 kV. N,-adsorption/desorption isotherms
were obtained on a Micromeritics ASAP 2020. The specific surface area and pore size
distributions were determined by the Brunauer-Emmett-Teller (BET) method and Density
Functional Theory (DFT) algorithm, respectively. X-ray photoelectron spectroscopy (XPS)
spectra were collected on a Thermo Fisher Scientific ESCALAB 250Xi instrument, taking C
1s of 284.8 eV as a reference.

3.6. Electrochemical Measurements

Electrochemical measurements were performed on a CHI 760E electrochemical work-
station (CH Instruments, Inc., Shanghai) with a typical three-electrode system in 1 M KOH
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solution. A glassy carbon electrode (GCE) with a diameter of 5 mm, an Hg/HgO (filled
with 1 M KOH, pH = 14) electrode, and a graphite rod were used as the working electrode,
reference electrode, and counter electrode, respectively. To prepare the working electrode,
an ink containing 2.5 mg of the catalyst, 480 pL of ethanol and 20 pL of Nafion solution
(5 wt.%) was ultrasonically mixed for about 30 min. Then, 10 pL of the well-dispersed ink
was dropped onto the surface of the GCE with a fixed catalyst loading of 0.255 mg cm 2,
then naturally dried in air before the electrochemical test. All the potentials were referenced
with a reversible hydrogen electrode (RHE) according to the follow equation:

ERHE = Exg/Hgo + 0.098 V + 0.059 pH

Linear sweep voltammetry (LSV) polarization curves were performed at a scan rate of
5mV s7!. Nyquist plots of electrochemical impedance spectroscopy (EIS) measurements
with a frequency ranging from 100 kHz to 0.01 Hz at an amplitude of 5 mV were charted.
The electrical double-layer capacitances (Cq;) were obtained by cyclic voltammetry (CV)
curves in a non-faradaic region with 0.1 V potential range. The electrochemically active
surface area (ECSA) was obtained by dividing the calculated capacitance to a specific
capacitance (Cg = 40 uF cm~2 in 1 M KOH). Accelerated CV scanning was conducted
from 1.1 V to 1.7 V with a scan rate of 100 mV s~! for 5000 cycles to evaluate durability.
The long-term stability test was carried out by a chronoamperometric measurement at an
overpotential of g for 50 h. All LSV curves were obtained with 100% iR compensation.

4. Conclusions

In summary, NiFe bimetallic MOFs (NiFe-BDC-0.5) were prepared by a facile solvother-
mal method. When directly applied as an OER electrocatalyst, the NiFe-BDC-0.5 transforms
into nickel iron hydroxide and more Ni®* active sites are generated. The large specific
surface area, synergistic effect between Ni and Fe, as well as the enhanced Ni** active
sites via electrochemical reconstruction ensure a superior OER performance over long-term
electrocatalysis in alkaline media, even exceeding commercial RuO; and most of the re-
ported transition-metal-based MOFs. This work provides a simple method for the design
of low-cost and highly efficient electrocatalysts based on MOFs.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390 /molecules28114366/s1, Figure S1: XRD pattern of the Fe-precursor;
Figure S2: XRD patterns of the NiFe-BDC-x (x = 0.1, 0.3, 0.5, 0.7); Figure S3: XRD patterns of Ni-BDC
and simulated NiFe-BDC; Figure S4: SEM images of (a) Ni-BDC, (b) NiFe-BDC-0.1, (c) NiFe-BDC-0.3,
and (d) NiFe-BDC-0.7; Figure S5: EDX spectra of NiFe-BDC-x (x = 0.1, 0.3, 0.5, and 0.7); Figure S6:
XPS survey spectra of (a) Ni-BDC and (b) NiFe-BDC-0.5; Figure S7: (a) LSV curves and (b) Tafel
slopes of the NiFe-BDC-x (x = 0.1, 0.3, 0.5, and 0.7); Figure S8: (a-d) CV curves, (e) Cq;, and (f) ECSA
of the NiFe-BDC-x (x = 0.1, 0.3, 0.5, and 0.7); Figure S9: EIS of the NiFe-BDC-x (x = 0.1, 0.3, 0.5, and
0.7); Figure S10: EDX spectrum of the NiFe-BDC-0.5 after OER; Figure S11: XPS survey scan of the
NiFe-BDC-0.5 after the OER; Figure S12: Fe 2p XPS spectrum of the NiFe-BDC-0.5 after OER; Table S1:
Comparisons of the OER performances of the NiFe-BDC-0.5 with other reported transition-metal-
based MOFs in the literature in 1 M KOH [27-29,60-80]; Table S2: The contents of Ni, Fe, C, and O in
NiFe-BDC-0.5 before and after the OER test.
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