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Abstract: Depression, a mental disorder that plagues the world, is a burden on many families. There is
a great need for new, fast-acting antidepressants to be developed. N-methyl-D-aspartic acid (NMDA)
is an ionotropic glutamate receptor that plays an important role in learning and memory processes
and its TMD region is considered as a potential target to treat depression. However, due to the
unclear binding sites and pathways, the mechanism of drug binding lacks basic explanation, which
brings great complexity to the development of new drugs. In this study, we investigated the binding
affinity and mechanisms of an FDA-approved antidepressant (S-ketamine) and seven potential
antidepressants (R-ketamine, memantine, lanicemine, dextromethorphan, Ro 25-6981, ifenprodil,
and traxoprodil) targeting the NMDA receptor by ligand–protein docking and molecular dynamics
simulations. The results indicated that Ro 25-6981 has the strongest binding affinity to the TMD
region of the NMDA receptor among the eight selected drugs, suggesting its potential effective
inhibitory effect. We also calculated the critical binding-site residues at the active site and found that
residues Leu124 and Met63 contributed the most to the binding energy by decomposing the free
energy contributions on a per-residue basis. We further compared S-ketamine and its chiral molecule,
R-ketamine, and found that R-ketamine had a stronger binding capacity to the NMDA receptor. This
study provides a computational reference for the treatment of depression targeting NMDA receptors,
and the proposed results will provide potential strategies for further antidepressant development
and is a useful resource for the future discovery of fast-acting antidepressant candidates.

Keywords: depression; NMDA receptor; ketamine; ligand–protein docking; binding free energy;
drug design

1. Introduction

Major depressive disorder (MDD) is a widespread mental illness that limits people’s
quality of life and is expected to rank first in the global burden of disease by 2030, according
to the WHO [1]. Unfortunately, the main problem is that our understanding of the etiology
and pathophysiology of major depression is incomplete and there is as yet no detailed
understanding of its mechanism to guide future treatments. The current mainstream
monoamine hypothesis [2,3] cannot fully explain the pathological features of depression,
and some patients with depression respond poorly to existing antidepressants.

A growing body of preclinical research has demonstrated that N-methyl-D-aspartic
acid (NMDA) glutamate receptors play a role in the pathophysiology of major depression
and the mechanism of action of antidepressant therapy. Many NMDA receptor antago-
nists show rapid clinical antidepressant and antidepressant effects, according to recent
studies [4,5]. NMDA receptors can bind with the excitatory neurotransmitter L-type glu-
tamate, which then mediates neuronal development, synaptic transmission, and many
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other physiological and pathological processes. Dysfunction in NMDA is associated with
a variety of neurological disorders, such as schizophrenia, Alzheimer’s disease, bipolar
disorder, and post-traumatic stress disorder. The GluN1 and GluN2 subunits of the NMDA
receptor consist of an extracellular n-terminal structural domain (NTD), an agonist-binding
structural domain (ABD), a transmembrane structural domain containing an ion channel
(TMD), and an intracellular C-terminal structural domain (CTD) [6,7]. The TMD region
consists of three transmembrane helices (M1, M3 and M4), and a pore ring consisting of the
M2 helix and an extended region. The TMD tetramer forms an ion-permeable pore whose
gating is controlled by NTDs and ABDs [8]. The extended region forms the narrowest
part of the ion channel and is called the selective filter. The structure of the NMDAR
selective filter is specifically responsible for ion recognition, identification and permeation,
and interaction with multiple pore-blocking drugs [9]. Recently, Zhang et al. [10] studied
the cryo-electron microscopic structures of human GluN1-GluN2B NMDA receptors in a
complex with S-ketamine, glycine, and glutamate. The binding pocket of S-ketamine was
found in the central vestibule of the TMD region. Therefore, the discovery or development
of drug molecules that can bind to the TMD region of NMDA and inhibit its function is an
effective way to resolve the current hypothesis.

Ketamine, a non-competitive channel blocker of NMDA receptors, is reported to be
effective in animal models of depression [11,12]. Ketamine is a racemic mixture consisting
of equal amounts of S-ketamine and R-ketamine. Previous studies suggested that R-
ketamine might be a safer antidepressant without side effects than (r, s)-ketamine and
S-ketamine [13,14]. Like ketamine, memantine is a derivative of amantadine [15], a drug
used to treat Parkinson’s disease that has been shown to act as a non-competitive NMDA
antagonist with low affinity and rapid kinetics of blocking and unblocking the channel [16].
Ro 25-6981 is a novel and highly selective NR2B antagonist with a higher affinity for NR2B
than conventional NR2B antagonists such as ifenprodil [17,18]. We selected eight promising
NMDA receptor antagonists based on pioneering work [19,20] (S-ketamine, R-ketamine,
memantine, lanicemine, dextromethorphan, Ro 25-6981, ifenprodil, and traxoprodil) and
performed high-precision quantum calculations to find the most effective inhibitor. Table 1
shows the chemical structure of the eight antidepressants selected for this study. Of
the eight drugs, ifenprodil [21] and traxoprodil are widely used to treat Alzheimer’s
disease. For depression, there are not enough clinical trials. Among the ifenprodil site
antagonists, we selected Ro 25-6981, which is the (R,R)-isomer of ifenprodil, because it has
been reported to have rapid and sustained antidepressant effects in animal models without
psychotomimetic side effects or abuse liability. The other isomers of ifenprodil have not
been extensively studied for their antidepressant potential or mechanism. These substances
can be classified into two groups: dizocilpine-site antagonists (ketamines, memantine,
dextromethorphan) and ifenprodil site antagonists (ifenprodil, traxoprodil, Ro 25-6981).
Glutamate site antagonists and glycine site antagonists were not included in this study
because their antidepressant potential is still unclear or controversial [22,23].

The simulation of molecular dynamics affects a variety of disciplines, including
physics, chemistry, biology, and materials, by linking the properties of microscopic systems
to those of macroscopic systems using computer calculations. Abrusán et al. used in silico
analyses to investigate whether the structural similarity of the binding sites affects the
metastable process [24]. Focusing on molecular simulation studies, Feng et al. explored the
microscale structure information of short curdlan to reveal its multi-chain conformational
behavior [25]. The activities of numerous drugs and other biomolecules are expressed
through interactions with receptor macromolecules. Therefore, the binding free energy
between receptor and ligands is a central issue in structure-based computational drug
design. Based on the structure of a protein and a small molecule ligand, it is possible
to simulate various information about the conformational changes of the whole system
over time using molecular dynamics (MD) methods and obtain the trajectory of the whole
system, which can help to further investigate the motion characteristics of the active site of
the protein during the binding of the ligand molecule.
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Table 1. Chemical structure of the eight antidepressants selected for this study, (S-ketamine,
R-ketamine, memantine, lanicemine, dextromethorphan, Ro 25-6981, ifenprodil, and traxoprodil.

Ro 25-6981 S-ketamine R-ketamine ifenprodil

C22H29NO2 C13H16ClNO C13H17Cl2NO C21H27NO2
CID: 6604887 CID: 182137 CID: 9838417 CID: 3689

traxoprodil memantine lanicemine dextromethorphan
C20H25NO3 C12H21N C13H14N2 C18H25NO
CID: 219101 CID:4054 CID:9794203 CID: 5360696

The NMDA receptor is widely involved in brain function and disease, and to find new
sites of drug action will help to understand the mechanism of antagonist and NMDAR
inhibition and provide more possibilities for subsequent drug development. In this study,
we investigated the binding affinity and mechanism of an FDA-approved antidepressant
(S-ketamine) and seven potential antidepressants (R-ketamine, memantine, lanicemine,
dextromethorphan, Ro 25-6981, ifenprodil, and traxoprodil) targeting the NMDA receptor.
The TMD region (GluN1-GluN2B) was selected as the drug target, of which a 3D structure
was recently published by the Zhang group [10]. We performed ligand–protein docking
and molecular dynamics simulations to study the interactions between the NMDA receptor
and drug molecules and evaluated the binding affinity by calculating binding free energies,
providing potential theoretical guidance for further drug molecule design.

2. Results and Discussion

We performed molecular dynamics simulations using Amber to study the interactions
between receptor proteins and drug molecules and evaluated the strength of the interactions
by calculating binding energies. We also analyzed the specific residues that contributed
significantly to the binding energy, which provided theoretical guidance for further drug
molecule design. For each drug, we generated 10,000 structures of the NMDA receptor and
drug–ligand complexes based on the Rosetta3 program. Among the 10,000 structures, the
scoring mechanism in Rosetta3 first filtered out the structures where the drug was not in
contact with the protein. Among the remaining structures, Rosetta3 overall scoring was
combined to filter out the most likely 3D conformation.

Table S1 in the Supplementary Materials shows the Rosetta total results, binding
energies, and some other energy reference values of the best docking complex for the eight
drugs obtained by the docking procedure. The data in the table show that the Rosetta
scores of the eight drugs were not much different, with traxoprodil having the lowest total
Rosetta score and binding energy among the selected drugs. All eight drugs had docking
binding energies below −7.2 kcal/mol and total energy scores below −144 kcal/mol with
the NMDA receptor. The Rosetta docking results indicate that the eight selected drugs
have fair binding affinity to the NMDA receptors and can be subjected to the next step of
computational simulation.
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The screened composite structures were used for molecular dynamics simulations to
investigate the binding capacity and interaction between the drug and the NMDA receptor.
Taking S-ketamine as an example, the ligand–protein complex system became stable with a
convergence of temperature, density, and total energy after a 2-ns pre-equilibrium run. Then
a production run of 40 ns was performed, and the system remained stable. The stability of
the ligand–protein system during the simulation was investigated by root-mean-square
deviation (RMSD) analysis.

The RMSD of all non-hydrogen atoms of the complex of NMDA receptor and S-
ketamine throughout the production simulation is shown in Figure 1a. The protein back-
bone of the ligand–protein complexes remained stable after 10 ns simulation. Root mean
square fluctuation (RMSF) analysis was also performed for the complex to characterize the
degree of freedom of protein residue motion in kinetic simulations. As shown in Figure 1,
Gly132, Phe137, Glu131, Ala133, Pro134, Gly130, Arg135, Ser136, Ser138, Ile129, Arg112,
and Arg140 showed a high increase and decrease during the simulation. This may indicate
that these regions have higher flexibility and are important for the protein to perform its
function. The potential significance of these elastic regions is that RMSF-labeled residues
may affect structural stability or belong to the active site of the protein. The RMSDs and
RMSFs of the complex of the rest of the seven drug molecules can be found in Supplemen-
tary Materials (Figures S1, S5, S8, S11, S14, S17 and S20). From these figures, we can see
some differences in the positions of the residues that undergo significant positional changes
when different drugs interact with the receptor, which may indicate that different drugs
tend to bind at different sites.

The binding free energy of eight drugs to the NMDA receptor was calculated using
molecular dynamics methods. The total binding free energy (∆Gbind) was determined by
the generalized binding free energy of molecular mechanics according to the Born surface
area (MM-GBSA) and is a common method in the final state approach [26], which aims
to calculate the difference in binding free energy of two molecules in solution [27]. The
MM-GBSA method can be used to calculate the binding free energy between protein and
ligand. The total binding energy is composed of two components, total enthalpy, and total
entropy, where the total enthalpy was determined by the MD simulation and the total
enthalpy included components of gas-phase energy and solvation energy. The entropy
contribution to the binding free energy was calculated by the normal mode (nmode) [28]
analysis method. We calculated the binding free energy ∆Gbind between the drug and
the NMDA receptor using MM-GBSA and nmode. Table 2 describes the binding free
energy as well as other energy subcomponents that make up the binding energy, including
the gas-phase of free energy (∆Egas), solvation enthalpy (∆Esolv), total enthalpy (∆Etotal),
entropy contribution (T∆Snmode), and total binding free energy (∆Gbind).

To better compare the binding energies of the eight drugs, we plotted the data from
Table 2 in Figure 2. As can be seen in the figure, the total enthalpy ∆Gbind (blue column)
shows that of the eight drugs, Ro 25-6981 has the strongest binding energy to the NMDA
receptor, as −50.1926 kcal/mol. The calculation of entropy change also has a significant
impact on the calculation of binding free energy, which could be due to the changes in the
complex system caused by the binding. After calculating the contribution of entropy value
to binding energy, Ro 25-6981 has the lowest binding free energy (−29.4311 kcal/mol),
followed by R-ketamine (−14.9605 kcal/mol), S-ketamine (−11.9223 kcal/mol), ifenprodil
(−6.8353 kcal/mol), traxoprodil (−3.5063 kcal/mol), and memantine (−2.9621 kcal/mol).

Figure 3 shows the structure of Ro 25-6981 and the NMDA receptor and the five
residues that contribute most to the binding interaction. The blue, yellow-orange, red, and
pink molecules in Figure 3 indicate Leu124, Met63, Asn45, Val103, and Val42, respectively.
Table 3 lists the top five residues that contribute substantially to the binding of the eight
selected drugs to the NMDA receptor. Our molecular docking results showed that Ro
25-6981 had the strongest binding affinity to the NMDA receptor among the eight selected
antidepressants, with a binding free energy of −29.431 kcal/mol. This is consistent with a
previous study by Fischer et al. [17], who reported that Ro 25-6981 is a potent and selective
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antagonist of NMDA receptors containing the GluN2B subunit, with an IC50 value of
0.009 µM for GluN2B vs. 52 µM for GluN2A subunits. To further investigate the binding
mechanism of Ro 25-6981 and other antidepressants with the NMDA receptor, we analyzed
their interactions with key residues in the GluN2B subunit using Amber MMGBSA. As
shown in Figure 3, Ro 25-6981 formed four hydrogen bonds and six hydrophobic interac-
tions with Leu124, Met63, Asn45, Val103, Val42 and other residues in the GluN2B subunit.
In contrast, other antidepressants formed fewer or weaker interactions with these residues.
These results suggest that Ro 25-6981 has a high affinity and specificity for the GluN2B
subunit of the NMDA receptor, which may contribute to its antidepressant effects.

Figure 1. Root mean square deviation (RMSD) and root mean square fluctuation (RMSF) of S-
ketamine and NMDA receptor complex in a 40-ns MD simulation: (a) the RMSD and (b) the RMSF of
all non-hydrogen atoms in the NMDA acceptor throughout the simulation.



Molecules 2023, 28, 4346 6 of 14

Table 2. Binding free energies of eight drugs with NMDA receptor, where ∆Egas, ∆Esolv, ∆Etotal

T∆Snmode, and ∆Gbind represent the gas phase enthalpy, solvation enthalpy, total enthalpy, entropy
contribution, and total binding free energy, respectively. All energy values are given in kcal/mol.

Conformations ∆Egas ∆Esolv ∆Etotal T∆Snmode ∆Gbind

Ro 25-6981 −63.116 12.923 −50.193 −20.762 −29.431
R-ketamine −37.565 9.795 −27.770 −12.809 −14.961
S-ketamine −36.777 8.675 −28.102 −16.179 −11.922
ifenprodil −32.952 5.366 −27.587 −20.751 −6.835

Traxoprodil −30.773 9.995 −20.777 −17.271 −3.506
Memantine −22.044 4.409 −17.635 −14.673 −2.962

Dextromethorphan −13.273 3.056 −10.217 −12.206 1.989
Lanicemine −19.317 7.180 −12.136 −15.054 2.918

Figure 2. Binding free energies and components of eight drugs with NMDA receptors, including
∆Egas, ∆Esolv, ∆Etotal, T∆Snmode and ∆Gbind.

Figure 4a shows the 10 protein residues that contribute most to the binding process
of Ro 25-6981 to the NMDA receptor, and Figure 4b shows the analysis of the binding
free energy components of the top 5 contributing residues. The figure shows the values of
the five energy terms of the residues, namely van der Waals energy (vdW), electrostatic
energy (Ele.), polar solvation energy (Polar), and nonpolar solvation energy (Nonpolar).
From the figure, we can see that the five residues that contribute the most to the binding
process are Leu124, Met63, Asn45, Val103, and Val42. If we further break down the energy
of each residue, we can see from Figure 4b that for most of the residues, the van der
Waals interaction (green column) plays the most important role. However, for the energy
contributed by Val42, electrostatic energy (purple column) plays an important role. From
Table S2 in the Supplementary Materials, we can see that this is due to the hydrogen
bonding interaction between Val42 and the drug molecule.
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Figure 3. Visualization of the docking conformation of the NMDA receptor and Ro 25-6981. The
ball-and-stick model shows the binding pocket of five residues in the NMDA receptor with dominant
binding contributions to Ro 25-6981.

Table 3. Top five residues with dominant binding contributions to the NMDA receptor with
eight drugs.

Conformations
Important Residues

1 2 3 4 5

S-ketamine Phe88 Asn160 Leu92 Tyr157 Trp93
R-ketamine Met63 Ile64 Leu124 Ile153 Tyr157
ifenprodil Leu77 Thr70 Thr158 Leu73 Ala74

traxoprodil Ile152 Ala155 Leu77 Leu92 Met151
Ro 25-6981 Leu124 Met63 Asn45 Val103 Val42
memantine Met36 Val15 Trp12 Val19 Trp40

dextromethorphan Val96 Phe149 Trp146 Arg81 Val154
lanicemine Ala155 Leu73 Met151 Leu77 Val154

S-ketamine is an FDA-approved antidepressant, and R-ketamine is its chiral molecule.
In recent studies [29–31], R-ketamine was shown to have a stronger potency and a longer
antidepressant effect than S-ketamine. R-ketamine is a promising candidate for the treat-
ment of depression because of the lower potential for psychotropic side effects and abuse
after ingestion of R-ketamine [32].Therefore, we are interested in comparing the receptor
binding energy of S-ketamine with that of R-ketamine. The same conclusion was drawn
in our experiments, in which the results of the molecular dynamics simulations showed
that the binding free energy of R-ketamine in the TMD region of the NMDA receptor was
higher than that of S-ketamine. This might suggest the stronger effect of R-ketamine than
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S-ketamine. Importantly, compared with S-ketamine, R-ketamine appears to be an effective,
long-lasting, and safer antidepressant because of the lower potential for psychotropic
side effects and abuse after ingestion of R-ketamine. In addition, we can see in Figure 2
that the two selected drugs, ifenprodil, and traxoprodil, have favorable free energies for
binding to NMDA receptors, suggesting that these two drugs may also be considered as
antidepressants in the future. Although all eight drugs showed negative binding energies
upon molecular docking, both dextromethorphan and lanicemine showed positive binding
energies after the molecular dynamics simulations, indicating a low probability of protein–
drug molecule binding. This could be due to the drugs not binding to NMDA receptors in
the TMD region.

Figure 5a,b compares the energies of the top five residues that make dominant contri-
butions to the binding of S-ketamine and R-ketamine to the NMDA receptor. The binding
of S-ketamine to the NMDA receptor is mainly due to five residues: Phe88, Asn160, Leu92,
Tyr157, and Trp93. The binding of R-ketamine to the NMDA receptor is mainly attributed
to Met63, Ile64, Leu124, Ile153, and Tyr157. We see that for these two drugs, although they
are mirror isomers of each other, the protein residues that play an important role in the
binding to each of the two drugs are not the same. To explore the specific contribution of the
protein residues in the binding process to enable better drug design, we further analyzed
the specific contribution of each residue of the NMDA receptor. Further decomposing the
energy of each residue, we can see in Figure 4b that for both drugs, the dominant role in
the energy contribution of residues is still the van der Waals interaction (green column).
The difference, however, is that the electrostatic energy (purple column) plays a major role
in the energy contributed by Asn160. Table S2 in the Supplementary Materials presents
the hydrogen bonding in the eight drugs, and it can also be seen that the nitrogen and
hydrogen atoms in Asn160 form hydrogen bonds with the oxygen atoms in S-ketamine,
but at the same time, the polar term energy in the solvation free energy is high, resulting in
an average value of the overall residue energy contribution. For R-ketamine, it can be seen
from Figure 5b that the distribution of its energy contribution per residue is basically the
same, and that all of them are higher than those of S-ketamine. From the calculated data,
we can assume that R-ketamine has a stronger binding capacity than S-ketamine at this
binding site.

The key residues of eight drugs (S-ketamine, R-ketamine, memantine, lanicemine,
dextromethorphan, Ro 25-6981, ifenprodil, and traxoprodil) that contribute mainly to
the binding free energy and the main energy of the key residues are discussed in the
Supplementary Materials (Tables S3–S9, and Figures S3, S6, S9, S12, S15, S18 and S21).
These may provide some guidance for the design of future antidepressants with a greater
affinity for NMDA receptors.
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Figure 4. Decomposition of the binding free energy of key residues: (a) the 10 key residues with
dominant binding contributions for Ro 25-6981 to the NMDA receptor; and (b) decomposition of
the energy of the five key residues to Ro 25-6981 pairs into four energy terms, namely van der
Waals interaction (vdW), electrostatic interaction (Ele.), polar solvation energy (Polar), and nonpolar
energy (Nonpolar).
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Figure 5. Comparison of the energies of the first five residues which contribute in a predominant
way to the binding of S-ketamine and R-ketamine to the NMDA receptor. (a) decomposition of the
energy of the five key residues to S-ketamine. (b) decomposition of the energy of the five key residues
to R-ketamine.
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3. Method
3.1. Protein Structures

The model of GluN1–GluN2B receptor was obtained from the RCSB Protein Data
Bank [33], which was determined by Zhang et al. [10] in complex with S-ketamine, glycine,
and glutamate. We isolated the TMD region as an individual lobe in the structure as protein
receptors. SWISS-MODEL [34], an automated protein structure homology-modeling server,
was used to add the missing residues from D582 to L603 in GluN1 and E618 to S626
in GluN2B.

3.2. Compounds Selection

Based on previous studies, we selected eight known NMDA receptor antagonists. Six
of them (S-ketamine, R-ketamine, memantine, lanicemine [35], dextromethorphan [36],
Ro 25-6981, ifenprodil, and traxoprodil [37]) have some clinical trials targeting MDD, while
studies with ifenprodil and traxoprodil on the treatment of depression are still ongoing.
Structures of eight selected drug molecules were obtained from the PubChem [38] database.
We chose both S-ketamine and R-ketamine, hoping to compare their properties. In this
study, we investigated the antidepressant effects of the eight drugs on the NMDA receptor.

3.3. Ligand–Protein Docking

Most of the drugs in this study lacked actual ligand–protein binding structures, thus
we used Rosetta3 [39] to simulate the docking of NMDA receptor proteins and the small
drug molecules. The initial site of the ligand starts at the location of the known binding
pocket of ketamine to the protein, which is provided by PDB ID: 7EU8. The Ligand _dock
portion of Rosetta requires a receptor structure (usually a protein) and a small molecule to
complete the docking, and it attempts to find a conformation and relative orientation of the
two that minimizes the Rosetta score function. The score functions in Rosetta are weighted
sums of energy terms, with some representing physical forces such as electrostatic and van
der Waals interactions. We obtained 10,000 conformations after Monte Carlo minimization.
By clustering ligand poses, we chose the best model from each low-energy cluster. From
the 10,000 structures, the 5% lowest-energy candidates were selected based on the fraction
of energy they received from the ligand–protein contact structure. Then, the structures
with the lowest binding energy were selected as the target structures based on the binding
energy of ligands and proteins again for MD simulation.

3.4. Molecular Dynamic Simulation

In our study, we used Amber16 software [40] to perform MD simulations and binding
energy calculations of drug molecules with the NMDA receptor. In the simulation, the
ff14sb and the general Amber force field were used for protein and the small molecule
ligand [41], respectively. We used the TIP3P BOX water model for this simulation with at
least 12 Angstroms between the NMDA receptor and the periodic box wall. The system
was kept neutral by adding Na+ and Cl−. We used the sander procedure to equilibrate the
solvated complex by performing a short-time energy minimization. Then, the solvated
ligand–protein complex was gradually heated from 0 to 300 K in the NVT ensemble using
Langevin thermostat, 100 ps of heating and 100 ps of density equilibration to weakly
constrain the complex. Then, an equilibrium run of 1 ns was performed in the NPT
ensemble at a temperature of 300 K and a pressure of 1 atm. Finally, we performed 40-ns
production runs in the NPT ensemble for each dissolved complex system with a collection
interval of 10 ps and collected 3000 frames for further energy calculations.

3.5. Binding Free Energy Calculation

Molecular mechanics generalized Born surface area (MM-GBSA) method [42] was
used to calculate the binding free energy of small drug molecules and proteins using the
MMPBSA.py script in Amber based on the MD trajectories. The overall goal of the MM-
GBSA method [42] is to compare the free energies of two different solvated conformations
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of the same molecule and to calculate the free energy difference between the two states.
The equation for calculating the binding free energy using the MM-GBSA method is
shown below.

∆Gbind = ∆Etotal − T∆Snmode.

∆Etotal = ∆Egas + ∆Esolv = ∆EvdW + ∆Eele + ∆GP + ∆Gnp

where ∆Etotal represents the gas-phase of free energy, ∆Esolv represents the solvation-
phase of free energy, ∆EvdW describes the van der Waals energy and ∆Eele describes the
electrostatic energy. ∆GP and ∆Gnp are used to account for the polar solvation free energy
and the nonpolar solvation free energy in the simulation. ∆Etotal represents the average
interaction energy between the receptor and the ligand. ∆Snmode represents the entropy
value obtained by the normal mode analysis method [28], and we would normally expect a
negative ∆S value for the complex. This means that the ligand is confined near the binding
site when the protein and ligand bind to form the complex and that the ligand movement
is restricted when the ligand is bound to the protein.

4. Conclusions

In summary, based on molecular dynamics simulations, we tentatively determined
that Ro 25-6981 had the strongest binding affinity to the NMDA receptor among the eight
selected antidepressants, with the binding free energy of −29.431 kcal/mol. We also
analyzed the specific residues that contributed significantly to the binding energy. The five
residues that contribute most to the binding process of Ro 25-6981 and NMDA receptors
are Leu124, Met63, Asn45, Val103, and Val42. In this paper, we also compared two hotly
debated drugs, S-ketamine, and R-ketamine, and concluded that R-ketamine had a stronger
binding capacity to the NMDA receptor. The results of this study suggest that Ro 25-6981
and R-ketamine are expected to be good candidates for targeting the NMDA receptor in the
treatment of depression and provide potential theoretical guidance for the further design
of drug molecular structures with the enhanced binding ability to target proteins.

Supplementary Materials: The following supporting information can be downloaded at:
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