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Abstract: 1,2,4-Triazole and 1,2,4-triazoline are important components of bioactive molecules and
catalysts employed in organic synthesis. Therefore, the efficient synthesis of these components
has received significant research attention. However, studies on their structural diversity remain
lacking. Previously, we developed chiral phase-transfer-catalyzed asymmetric reactions of α-imino
carbonyl compounds with α,β-unsaturated carbonyl compounds and haloalkanes. In this study,
we demonstrate the formal [3 + 2] cycloaddition reaction of α-imino esters with azo compounds
under Brønsted base catalysis, resulting in the corresponding 1,2,4-triazolines in high yields. The
results revealed that a wide range of substrates and reactants can be applied, irrespective of their
steric and electronic characteristics. The present reaction made the general preparation of 3-aryl
pentasubstituted 1,2,4-triazolines possible for the first time. Furthermore, a mechanistic study
suggested that the reaction proceeds without isomerization into the aldimine form.

Keywords: cycloaddition; α-imino ester; azo compound; 1,2,4-triazoline; 1,2,4-triazole

1. Introduction

1,2,4-Triazoles are fundamental core components in biologically active molecules, such
as fluconazole and voriconazole (Figure 1) [1–4]. They are also employed in chiral ligands
as well as metal and organocatalysts, such as chiral biscarbene ligands [5], 1,2,4-triazole
anion catalysts [6], and Rovis catalysts [7]. Efficient methods for preparing 1,2,4-triazoles
have been extensively investigated, and they are mainly synthesized via the Cu-catalyzed
oxidative reaction of 2-aminopyridines with nitriles [8], C–H amidation/cyclization of
azomethine imines [9], intramolecular oxidative N–N bond formation [10], electrochemical
oxidation [11], and other methods [12–17].

1,2,4-Triazoline is also an important motif owing to its wide utility as a biologically
active compound, including as an antitumor-active molecule [18]. Furthermore, it is a use-
ful precursor for synthesizing 1,2,4-triazole [19]. Therefore, efficient synthesis methods for
1,2,4-triazolines have been investigated [19–26]. In 2017, Li, Tang, and co-workers reported
the visible-light-induced cyclization of azirines with azodicarboxylate, which formed the
corresponding 1,2,4-triazolines in high yields [26]. Although synthetic methods for 1,2,4-
triazolines have been developed, candidates with pentasubstituted structures have rarely
been synthesized under metal-free conditions. In 2010, Tepe and co-workers prepared
the 3-alkyl pentasubstituted 1,2,4-triazolines by the conjugate addition of oxazolones with
azodicarboxylate, resulting in corresponding products in 50–100% yield (Figure 1a) [19].
Although an efficient synthesis method for the exclusive preparation of 3-alkyl pentasubsti-
tuted 1,2,4-triazolines has been developed, their 3-aryl-substituted compounds are rarely
synthesized. In 1992, Ibata and co-workers reported the abnormal Diels–Alder reaction of
oxazoles with a diethyl azodicarboxylate, which formed pentasubstituted 1,2,4-triazolines
in 25–92% yield with a longer reaction time of more than 23.5 h (Figure 1b) [20]. Therefore,
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the development of a general and facile method for the metal-free preparation of 3-aryl
pentasubstituted 1,2,4-triazolines is highly desirable.

α-Imino esters are useful molecular scaffolds owing to their widespread application
as electrophiles [27–35]. Previously, α-imino esters have been utilized as substrates for
umpolung reactions with several nucleophiles [36–40]. We also developed an asymmet-
ric umpolung reaction of α-imino esters with α,β-unsaturated carbonyl compounds and
haloalkanes, which provided chiral amine derivatives in high yields (Figure 1c) [41–45]. In
this work, a formal [3 + 2] cycloaddition reaction of α-imino esters with azodicarboxylates
was developed, which formed useful 3-aryl and 3-alkyl pentasubstituted 1,2,4-triazolines
in high yields without the addition of an external oxidant (Figure 1d). The present reaction
made the metal-free general preparation of 3-aryl pentasubstituted 1,2,4-triazolines under
the mild condition possible for the first time.
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Figure 1.Figure 1. Useful molecules bearing 1,2,4-triazole and 1,2,4-triazoline skeleton and synthesis of
1,2,4-triazolines in (a) Tepe’s study [19], (b) Ibata’s study [20], (c) our previous study [36–40], and
(d) present work.
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2. Results and Discussion
2.1. Reaction Condition Optimization

The reaction conditions for the synthesis of 1,2,4-triazoline 3aa were optimized using
α-imino ester 1a and diisopropyl azodicarboxylate (DIAD, 2a) as the substrate and reactant,
respectively (Table 1). Solvent screening was conducted using 1.0 equivalent of 1a and
2.0 equivalent of 2a in the presence of 50 mol% 1,8-diazabicyclo [5.4.0]undec-7-ene (DBU)
as a base at −40 ◦C for 18 h. The reaction in nonpolar solvents, such as toluene, provided
3aa in only a 9% yield, and the use of ethereal solvents and methanol resulted in poor yields
(entries 1–5). Finally, the reaction in dichloromethane afforded 3aa in a 43% yield. Next,
the amount of DBU was screened, and the use of 100 and 150 mol% DBU did not increase
the yield of 3aa (entries 6 and 7). Subsequently, the effect of the reaction temperature was
examined at −20 ◦C, 0 ◦C, and room temperature, and the reaction at 0 ◦C produced 3aa
in the highest yield of 61% (entries 8–10). The reaction was completed after 1 h (entries
11 and 12). The reaction workup procedure was changed from short column on silica gel
to extraction with dichloromethane, which increased the yield of 3aa to 88%, and 3aa was
isolated in a 72% yield (entry 13). Finally, triethylamine was employed as an inexpensive
organic base; however, 3aa was obtained in a low yield (entry 14).

Table 1. Reaction condition optimization.
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Entry Solvent X Temp. (◦C) Time (h) Yield (%) b

1 toluene 50 −40 18 9
2 Et2O 50 −40 18 4
3 CH2Cl2 50 −40 18 43
4 tetrahydrofuran 50 −40 18 28
5 MeOH 50 −40 18 0
6 CH2Cl2 100 −40 18 43
7 CH2Cl2 150 −40 18 42
8 CH2Cl2 50 −20 18 53
9 CH2Cl2 50 0 18 61

10 CH2Cl2 50 r.t 18 51
11 CH2Cl2 50 0 1 64
12 CH2Cl2 50 0 53 64

13 c CH2Cl2 50 0 1 88 (72 d)
14 c,e CH2Cl2 50 0 1 10

a 0.05 mmol scale reaction. b All yields were obtained via 1H-NMR analysis using 1,3,5-trimethoxybenzene
as an internal standard. c Workup method was changed from short column to extraction. d Isolated yield.
e Triethylamine was employed instead of DBU as a base.

2.2. Substrate Scope

We then investigated the scope of the ester moiety in the substrate using DIAD as the
reactant (Scheme 1). When the bulky tert-butyl ester was employed, the product 3aa was
isolated in a 72% yield, whereas the use of less bulky isopropyl and methyl esters resulted
in 44% and 22% yields, respectively.
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Scheme 1. Scope of the ester moiety of 1.

Furthermore, the scope of the azo compounds was investigated using 1a as a substrate
under the optimal conditions (Scheme 2). The use of DIAD formed 3aa in a 72% yield, and
the utilization of diethyl azodicarboxylate (DEAD, 2b) or di-tert-butyl azodicarboxylate (2c)
resulted in corresponding products 3ab and 3ac in 53% or 78% yields, respectively. These
observations indicated that increasing the bulkiness of both the substrate and reactant
increases the yield of the product. The employment of azobenzene (2d) did not provide
any cyclized product 3ad.
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Subsequently, the substrate scope of the R1 group was determined. The substrate
scope using the inexpensive 2a and 2c as the reactants is presented in Scheme 3. In the
case of 2a as a reactant, R1 groups with electron-donating substituents, such as p-tolyl and
p-anisyl groups, were examined, and the products 3fa and 3ga were isolated in 61% and
65% yields, respectively. Substrates with m- and o-tolyl groups were well tolerated, and
3ea and 3da were obtained in 53% and 60% yields, respectively. Furthermore, the electron-
withdrawing substituents 1h, 1i, and 1j were used in the 1,2,4-triazoline synthesis, and the
products were obtained in 43%, 50%, and 42% yields, respectively. The present reaction
was successfully applied to several substituted substrates, and the products were obtained
in moderate yields. Further substrate scope studies were conducted using the bulky azo
compound 2c as the reactant. First, the same substrates used for evaluating the substrate
scope using DIAD (2a) were employed. The products 3dc–3jc were obtained in 65–87%
yields, which were higher than those obtained using DIAD as the reactant. Moreover,
2-naphthyl-substituted 1k and tert-butyl-substituted 1l were applied to the present reaction,
which formed 3kc and 3lc in 76% and 29% yields, respectively. These results show that the
present reaction is applicable to both aryl- and alkyl-substituted substrates.
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Next, we examined the necessity for a 4-nitrobenzyl moiety on the substrate (Scheme 4).
4-Trifluoromethylbenzyl-substituted 1m and benzyl-substituted 1n were prepared and ap-
plied to the present reaction, which did not afford any 1,2,4-triazoline products. Only
the substrate and its hydrolysis product were obtained together with the complex mix-
ture, thereby indicating the importance of the 4-nitro group on the benzyl moiety in the
production of 1,2,4-triazolines.
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2.3. Asymmetric Synthesis

The asymmetric synthesis of 1,2,4-triazolines was attempted to demonstrate the utility
of this reaction (Scheme 5). Here, 1a was reacted with 2c in the presence of 2.0 mol% of
chiral phase-transfer catalyst 4 and 150 mol% of potassium hydroxide in dichloromethane at
0 ◦C, which provided 1,4-addition product 5ac in a 57% yield together with a small amount
of the desired 3ac. Notably, 5ac was converted into 1,2,4-triazole 3ac using a 1.0 equivalent
of 2c and 50 mol% of DBU in dichloromethane in a 47% yield. The enantiopurity of the
synthesized 3ac was evaluated via high-performance liquid chromatography using a chiral
stationary phase column, and it was found to be a racemate.
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2.4. Reaction Mechanistic Study

Finally, to clarify the reaction pathway, α-imino ester 1a was isomerized into aldimine 1a′

because the α-imino ester isomerizes into aldimine under basic conditions [46]. Here, 1a′ was
employed as the substrate under the same conditions as that of the asymmetric synthesis
of 3ac, which directly provided 1,2,4-triazoline 3ac in a 65% yield and a shorter reaction
time; however, 5ac was not produced (Scheme 6). These results indicate that the reaction
mechanisms for each substrate were different.
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Based on the above results, we propose a plausible reaction mechanism (Figure 2).
First, the benzylic proton of substrate 1a is deprotonated by potassium hydroxide and its
counteranion is changed to the chiral ammonium salt to form a 2-aza allyl anion intermedi-
ate, which attacks the azo compounds in a 1,4-addition reaction to yield ketimine 5ac-ionic.
Finally, the cyclization of the hydrazine moiety with the imine moiety occurs, forming 1,2,4-
triazolidine 6ac-ionic, followed by the oxidation of the amine part by the additional azo
compound to afford 3ac [47]. In contrast, 1a′ reacts with potassium hydroxide to form an
enolate intermediate, which is different from the reaction starting from 1a. The as-formed
intermediate then reacts with azo compound 2c to form aldimine 5ac′-ionic, which under-
goes cyclization to form 1,2,4-triazolidine 6ac. The reaction rate difference between 1a and
1a′ can be explained by these plausible reaction mechanisms. In this reaction, 1a did not
isomerize into 1a′ under the reaction conditions, and the aldimine intermediate 5ac′-ionic
could be cyclized more rapidly than the ketimine intermediate 5ac-ionic owing to its low
steric hindrance around the electrophilic site. Therefore, the overall rate for the formation
of 3ac increased, and no intermediate 5ac′-ionic was observed, even after stirring for 18 h.
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3. Materials and Methods
1H- and 13C-NMR spectra were recorded with Bruker (Billerica, MA, USA) AVANCE

III-400M (1H-NMR 400 MHz, 13C-NMR 100 MHz, and 19F-NMR 376 MHz). 1H-NMR
spectra are reported as follows: chemical shift in ppm (δ) relative to the chemical shift of
CHCl3 at 7.26 ppm or tetramethylsilane at 0 ppm, integration, multiplicities (s = singlet,
d = doublet, t = triplet, q = quartet, m = multiplet), and coupling constants (Hz). 13C-NMR
spectra are reported in ppm (δ) relative to the central line of triplet for CDCl3 at 77 ppm.
CF3CO2H was used as an external standard for 19F. ESI-MS spectra were obtained with
Thermo Fisher, Exactive (Waltham, MA, USA). FT-IR spectra were recorded on a JASCO FT-
IR system (FT/IR-4X). HPLC analyses were performed on a JASCO HPLC system (JASCO
PU 980 pump and UV-975 UV/Vis detector, Halifax, NS, Canada). Mp was measured
with AS ONE ATM-02. Column chromatography on SiO2 and neutral SiO2 was performed
with Kanto Silica Gel 60 (40–50 µm). All reactions were carried out under Ar atmosphere
unless otherwise noted. Commercially available organic and inorganic compounds were
purchased from TCI (Tokyo, Japan), Kanto Chemical Co. Inc. (Tokyo, Japan), Wako Pure
Chemical Industries, Ltd. (Osaka, Japan), or Nacalai Tesque, Inc. (Kyoto, Japan), which
had >95% purities, and were used without further purification. All dehydrated solvents
were purchased from Wako Pure Chemical Industries, Ltd. or Nacalai Tesque, Inc., and
were used without further purification.

3.1. Synthesis of Substrates and a Catalyst

Imine substrates 1 and 1a′ were synthesized according to the reported
procedures [41,42,45]. Azo compounds were purchased from a commercial source. Chiral
catalyst 4 was synthesized according to the reported procedure [42].

3.2. Synthesis of 1,2,4-Triazolines
3.2.1. General Procedure for Table 1

A solution of 1a (1.0 equiv) in an appropriate solvent (0.05 M) was stirred for 10 min
at the reaction temperature, and 2a (2.0 equiv) was added followed by DBU (appropriate
amount). The reaction was stirred for an appropriate time at the same temperature before
stopping the reaction. For the short-column procedure, the reaction mixture was directly
passed through the short column (SiO2, ethyl acetate only) and evaporated to give the crude
mixture. The NMR yield was determined by measuring its 1H-NMR after adding 1,3,5-
trimethoxybenzene as an internal standard. For the extraction procedure, the reaction was
quenched by the addition of excess amount of sat. NH4Cl aq. at the reaction temperature,
which was extracted with CH2Cl2, dried over Na2SO4, and filtered. After the removal of
solvent by evaporation, the crude product was obtained. The NMR yield was determined
by measuring its 1H-NMR after adding 1,3,5-trimethoxybenzene as an internal standard.
3aa was isolated through the purification by column chromatography (neutral silica gel,
hexane/dichloromethane/diethylether = 7/2/1).

3.2.2. General Procedure for Schemes 1–4 (Optimized Protocol)

A solution of 1 (1.0 equiv) in CH2Cl2 (0.05 M) was stirred for 10 min at 0 ◦C, to which
2 (2.0 equiv) was added, followed by DBU (50 mol%). The reaction was stirred for 1 h
at 0 ◦C before quenching the reaction. The reaction was quenched by the addition of an
excess amount of sat. NH4Cl aq. at the reaction temperature, which was extracted with
CH2Cl2, dried over Na2SO4, and filtered. After the removal of solvent by evaporation,
the crude product was obtained. The pure 3 was isolated through purification by column
chromatography (neutral silica gel, hexane/dichloromethane/diethylether = 7/2/1).

3-(tert-butyl) 1,2-diisopropyl 5-(4-nitrophenyl)-3-phenyl-1H-1,2,4-triazole-1,2,3(3H)-tricarboxylate
(3aa), White solid, 19.4 mg, 0.036 mmol, 72% yield (0.050 mmol scale reaction). m.p.
68–70 ◦C; 1H-NMR (400 MHz, CHLOROFORM-D) δ 8.26–8.30 (m, 2H), 8.00–8.04 (m, 2H),
7.68–7.72 (m, 2H), 7.34–7.43 (m, 3H), 5.10 (sep, J = 6.2 Hz, 1H), 4.81 (sep, J = 6.2 Hz, 1H),
1.40 (s, 9H), 1.39 (d, J = 6.2 Hz, 3H), 1.36 (d, J = 6.2 Hz, 3H), 1.12 (d, J = 6.2 Hz, 3H), 1.11 (d,
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J = 6.2 Hz, 3H); 13C-NMR (101 MHz, CHLOROFORM-D) δ 165.5, 156.5, 154.5, 152.2, 149.4,
137.0, 135.0, 130.8, 128.5, 127.8, 127.3, 122.9, 95.3, 83.7, 72.5, 71.4, 27.6, 22.2, 21.8, 21.53, 21.46;
HRMS (ESI+ in MeCN) calcd. for C27H33O8N4

+ (M + H) 541.2293 found 541.2297; IR (KBr)
ν 2982, 1752, 1527, 1349, 1260, 1155, 1102, 849 cm−1.

tri-isopropyl 5-(4-nitrophenyl)-3-phenyl-1H-1,2,4-triazole-1,2,3(3H)-tricarboxylate (3ba), White
solid, 12.8 mg, 0.024 mmol, 44% yield (0.055 mmol scale reaction). m.p. 60–62 ◦C; 1H-NMR
(400 MHz, CHLOROFORM-D) δ 8.26–8.30 (m, 2H), 8.02–8.06 (m, 2H), 7.65–7.69 (m, 2H),
7.35–7.44 (m, 3H), 5.08 (sep, J = 6.2 Hz, 1H), 5.03 (sep, J = 6.2 Hz, 1H), 4.84 (sep, J = 6.2 Hz,
1H), 1.37 (d, J = 6.2 Hz, 3H), 1.33 (d, J = 6.2 Hz, 3H), 1.22 (d, J = 6.2 Hz, 3H), 1.18 (d, J = 6.2 Hz,
3H), 1.13 (d, J = 6.2 Hz, 3H), 1.12 (d, J = 6.2 Hz, 3H); 13C-NMR (101 MHz, CHLOROFORM-
D) δ 166.4, 156.8, 154.2, 152.1, 149.5, 136.8, 134.7, 130.9, 128.7, 127.9, 127.2, 122.9, 94.6, 72.7,
71.4, 71.1, 22.1, 21.7, 21.52, 21.45; HRMS (ESI+ in MeCN) calcd. for C26H31O8N4

+ (M + H)
527.2136 found 527.2241; IR (KBr) ν 2983, 1751, 1527, 1349, 1256, 1183, 1099, 849 cm−1.

1,2-diisopropyl 3-methyl 5-(4-nitrophenyl)-3-phenyl-1H-1,2,4-triazole-1,2,3(3H)-tricarboxylate
(3ca), White solid, 7.6 mg, 0.016 mmol, 23% yield (0.069 mmol scale reaction). m.p. 60–62 ◦C;
1H-NMR (400 MHz, CHLOROFORM-D) δ 8.26–8.31 (m, 2H), 8.04–8.08 (m, 2H), 7.66–7.70
(m, 2H), 7.37–7.46 (m, 3H), 5.11 (sep, J = 6.4 Hz, 1H), 4.83 (sep, J = 6.4 Hz, 1H), 3.76 (s, 3H),
1.36 (d, J = 6.4 Hz, 3H), 1.32 (d, J = 6.4 Hz, 3H), 1.14 (d, J = 6.4 Hz, 3H), 1.13 (d, J = 6.4 Hz,
3H); 13C-NMR (101 MHz, CHLOROFORM-D) δ 167.5, 157.1, 154.2, 151.9, 149.5, 136.6, 134.4,
131.1, 128.9, 128.1, 127.1, 122.9, 94.3, 72.8, 71.6, 53.6, 22.0, 21.7, 21.54, 21.47; HRMS (ESI+ in
MeCN) calcd. for C24H27O8N4

+ (M + H) 499.1823 found 499.1828; IR (KBr) ν 2983, 1748,
1526, 1349, 1254, 1184, 1102, 849 cm−1.

3-(tert-butyl) 1,2-diisopropyl 5-(4-nitrophenyl)-3-(o-tolyl)-1H-1,2,4-triazole-1,2,3(3H)-tricarboxylate
(3da), White solid, 16.6 mg, 0.299 mmol, 60% yield (0.050 mmol scale reaction). m.p.
81–83 ◦C; 1H-NMR (400 MHz, CHLOROFORM-D) δ 8.25–8.29 (m, 2H), 7.96–8.00 (m, 2H),
7.67 (d, J = 7.7 Hz, 1H), 7.25–7.30 (m, 2H), 7.17–7.22 (m, 1H), 5.09 (sep, J = 6.4 Hz, 1H), 4.86
(sep, J = 6.4 Hz, 1H), 2.62 (s, 3H), 1.42 (s, 9H), 1.38 (d, J = 6.4 Hz, 6H), 1.20 (d, J = 6.4 Hz,
3H), 1.19 (d, J = 6.4 Hz, 3H); 13C-NMR (101 MHz, CHLOROFORM-D) δ 165.0, 155.9, 154.5,
152.2, 149.3, 137.5, 135.0, 134.7, 131.6, 130.9, 128.7, 126.7, 125.5, 122.9, 96.9, 83.6, 72.5, 71.4,
27.5, 22.1, 21.99, 21.85, 21.64, 21.58; HRMS (ESI+ in MeCN) calcd. for C28H35O8N4

+ (M + H)
555.2449 found 555.2449; IR (KBr) ν 2982, 1744, 1527, 1349, 1257, 1157, 1103, 849 cm−1.

3-(tert-butyl) 1,2-diisopropyl 5-(4-nitrophenyl)-3-(m-tolyl)-1H-1,2,4-triazole-1,2,3(3H)-tricarboxylate
(3ea), White solid, 14.8 mg, 0.027 mmol, 53% yield (0.050 mmol scale reaction). m.p.
96–98 ◦C; 1H-NMR (400 MHz, CHLOROFORM-D) δ 8.26–8.30 (m, 2H), 8.04–8.00 (m, 2H),
7.50 (s, 1H), 7.48 (d, J = 6.8 Hz, 1H), 7.28–7.32 (m, 1H), 7.18 (d, J = 7.8 Hz, 1H), 5.11
(sep, J = 6.3 Hz, 1H), 4.81 (sep, J = 6.3 Hz, 1H), 2.40 (s, 3H), 1.40 (s, 9H), 1.39 (d, J = 6.3 Hz,
3H), 1.36 (d, J = 6.3 Hz, 3H), 1.14 (d, J = 6.3 Hz, 6H); 13C-NMR (101 MHz, CHLOROFORM-
D) δ 165.5, 156.3, 154.5, 152.2, 149.4, 137.4, 136.9, 135.0, 130.8, 129.3, 127.93, 127.81, 124.5,
122.9, 95.4, 83.6, 72.6, 71.3, 27.6, 22.2, 21.8, 21.59, 21.56, 21.48; HRMS (ESI+ in MeCN) calcd.
for C28H35O8N4

+ (M + H) 555.2449 found 555.2454; IR (KBr) ν 2981, 1747, 1526, 1348, 1253,
1155, 1103, 845 cm−1.

3-(tert-butyl) 1,2-diisopropyl 5-(4-nitrophenyl)-3-(p-tolyl)-1H-1,2,4-triazole-1,2,3(3H)-tricarboxylate
(3fa), White solid, 16.8 mg, 0.030 mmol, 61% yield (0.050 mmol scale reaction). m.p.
76–78 ◦C; 1H-NMR (400 MHz, CHLOROFORM-D) δ 8.26–8.30 (m, 2H), 7.99–8.03 (m, 2H),
7.55–7.59 (m, 2H), 7.21 (d, J = 8.0 Hz, 2H), 5.09 (sep, J = 6.3 Hz, 1H), 4.81 (sep, J = 6.3 Hz, 1H),
2.37 (s, 3H), 1.40 (s, 9H), 1.39 (d, J = 6.4 Hz, 3H), 1.35 (d, J = 6.4 Hz, 3H), 1.13 (d, J = 6.4 Hz,
3H), 1.20 (d, J = 6.4 Hz, 3H); 13C-NMR (101 MHz, CHLOROFORM-D) δ 165.6, 156.3, 154.5,
152.2, 149.3, 138.4, 135.1, 134.0, 130.7, 128.6, 127.2, 122.9, 95.3, 83.6, 72.6, 71.3, 27.6, 22.2, 21.8,
21.56, 21.45, 21.1; HRMS (ESI+ in MeCN) calcd. for C28H35O8N4

+ (M + H) 555.2449 found
555.2455; IR (KBr) ν 2982, 1747, 1526, 1348, 1258, 1155, 1102, 849 cm−1.

3-(tert-butyl) 1,2-diisopropyl 3-(4-methoxyphenyl)-5-(4-nitrophenyl)-1H-1,2,4-triazole-1,2,3(3H)-
tricarboxylate (3ga), White solid, 18.6 mg, 0.033 mmol, 65% yield (0.050 mmol scale reaction).
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m.p. 98–100 ◦C; 1H-NMR (400 MHz, CHLOROFORM-D) δ 8.26–8.30 (m, 2H), 8.00–8.04 (m,
2H), 7.59–7.63 (m, 2H), 6.91–6.95 (m, 2H), 5.09 (sep, J = 6.4 Hz, 1H), 4.81 (sep, J = 6.4 Hz,
1H), 3.83 (s, 3H), 1.40 (s, 9H), 1.39 (d, J = 6.4 Hz, 3H), 1.35 (d, J = 6.4 Hz, 3H), 1.13 (d,
J = 6.4 Hz, 3H), 1.10 (d, J = 6.4 Hz, 3H); 13C-NMR (101 MHz, CHLOROFORM-D) δ 165.7,
159.7, 156.3, 154.5, 152.2, 149.3, 135.1, 130.7, 129.1, 128.6, 122.9, 113.2, 95.0, 83.6, 72.6, 71.3,
55.2, 27.6, 22.2, 21.8, 21.56, 21.44; HRMS (ESI+ in MeCN) calcd. for C28H35O9N4

+ (M + H)
571.2399 found 571.2404; IR (KBr) ν 2980, 1757, 1526, 1348, 1253, 1155, 1102, 849 cm−1.

3-(tert-butyl) 1,2-diisopropyl 3-(4-bromophenyl)-5-(4-nitrophenyl)-1H-1,2,4-triazole-1,2,3(3H)-
tricarboxylate (3ha), White solid, 13.3 mg, 0.215 mmol, 43% yield (0.050 mmol scale reaction).
m.p. 156–158 ◦C; 1H-NMR (400 MHz, CHLOROFORM-D) δ 8.27–8.31 (m, 2H), 7.99–8.03
(m, 2H), 7.51–7.59 (m, 4H), 5.10 (sep, J = 6.3 Hz, 1H), 4.82 (sep, J = 6.3 Hz, 1H), 1.40 (s, 9H),
1.39 (d, J = 6.3 Hz, 3H), 1.36 (d, J = 6.3 Hz, 3H), 1.13 (d, J = 6.3 Hz, 3H), 1.11 (d, J = 6.3 Hz,
3H); 13C-NMR (101 MHz, CHLOROFORM-D) δ 165.0, 156.7, 154.5, 152.0, 149.5, 136.3, 134.8,
131.0, 130.8, 129.1, 122.99, 122.00, 94.8, 84.1, 72.8, 71.6, 27.6, 22.2, 21.8, 21.56, 21.42; HRMS
(ESI+ in MeCN) calcd. for C27H32O8N4Br+ (M + H) 619.1398 found 619.1402; IR (KBr) ν
2981, 1751, 1526, 1348, 1257, 1155, 1102, 849 cm−1.

3-(tert-butyl) 1,2-diisopropyl 3-(4-chlorophenyl)-5-(4-nitrophenyl)-1H-1,2,4-triazole-1,2,3(3H)-
tricarboxylate (3ia), White solid, 14.4 mg, 0.025 mmol, 50% yield (0.050 mmol scale reaction).
m.p. 154–156 ◦C; 1H-NMR (400 MHz, CHLOROFORM-D) δ 8.27–8.31 (m, 2H), 7.99–8.03
(m, 2H), 7.61–7.65 (m, 2H), 7.35–7.40 (m, 2H), 5.10 (sep, J = 6.4 Hz, 1H), 4.82 (sep, J = 6.4 Hz,
1H), 1.40 (s, 9H), 1.39 (d, J = 6.4 Hz, 3H), 1.35 (d, J = 6.4 Hz, 3H), 1.13 (d, J = 6.4 Hz, 3H),
1.11 (d, J = 6.4 Hz, 3H); 13C-NMR (101 MHz, CHLOROFORM-D) δ 165.2, 156.7, 154.5, 152.0,
149.4, 135.7, 134.8, 134.5, 130.8, 128.8, 128.0, 123.0, 94.8, 84.1, 72.8, 71.6, 27.6, 22.2, 21.8, 21.54,
21.42; HRMS (ESI+ in MeCN) calcd. for C27H32O8N4Cl+ (M + H) 575.1903 found 575.1910;
IR (KBr) ν 2981, 1751, 1527, 1351, 1259, 1155, 1102, 849 cm−1.

3-(tert-butyl) 1,2-diisopropyl 5-(4-nitrophenyl)-3-(4-(trifluoromethyl)phenyl)-1H-1,2,4-triazole-
1,2,3(3H)-tricarboxylate (3ja), White solid, 12.7 mg, 0.021mmol, 42% yield (0.050 mmol scale
reaction). m.p. 77–79 ◦C; 1H-NMR (400 MHz, CHLOROFORM-D) δ 8.27–8.32 (m, 2H),
8.00–8.04 (m, 2H), 7.83 (d, J = 8.0 Hz, 2H), 7.67 (d, J = 8.3 Hz, 2H), 5.12 (sep, J = 6.3 Hz,
1H), 4.82 (sep, J = 6.3 Hz, 1H), 1.40 (s, 9H), 1.39 (d, J = 6.3 Hz, 3H), 1.37 (d, J = 6.3 Hz, 3H),
1.13 (d, J = 6.3 Hz, 3H), 1.10 (d, J = 6.3 Hz, 3H); 13C-NMR (101 MHz, CHLOROFORM-D)
δ 165.0, 157.0, 154.5, 151.9, 149.5, 141.1, 134.6, 130.86, 130.71 (q, J = 32.3 Hz), 127.8, 124.8
(q, J = 3.9 Hz), 123.9 (q, J = 272.8 Hz), 123.0, 94.8, 84.3, 72.9, 71.7, 27.6, 22.2, 21.8, 21.54,
21.40; 19F-NMR (376 MHz, CHLOROFORM-D) δ -62.5; HRMS (ESI+ in MeCN) calcd. for
C28H32O8N4F3

+ (M + H) 609.2167 found 609.2172; IR (KBr) ν 2983, 1752,1528,1326, 1257,
1165, 1102, 850 cm−1.

3-(tert-butyl) 1,2-diethyl 5-(4-nitrophenyl)-3-phenyl-1H-1,2,4-triazole-1,2,3(3H)-tricarboxylate
(3cb), White solid, 13.6 mg, 0.027 mmol, 53% yield (0.050 mmol scale reaction). m.p.
67–69 ◦C; 1H-NMR (400 MHz, CHLOROFORM-D) δ 8.26–8.30 (m, 2H), 8.01–8.05 (m, 2H),
7.68–7.72 (m, 2H), 7.35–7.45 (m, 3H), 4.38–4.46 (m, 1H), 4.20–4.30 (m, 1H), 4.05–4.18 (m,
2H), 1.40 (s, 9H), 1.36 (t, J = 7.1 Hz, 3H), 1.10 (t, J = 7.1 Hz, 3H); 13C-NMR (101 MHz,
CHLOROFORM-D) δ 165.4, 156.2, 154.9, 152.4, 149.4, 136.8, 134.8, 130.8, 128.6, 127.9, 127.3,
123.0, 95.5, 83.9, 64.1, 63.1, 27.6, 14.4, 13.8; HRMS (ESI+ in MeCN) calcd. for C25H29O8N4

+

(M + H) 513.1980 found 513.1984; IR (KBr) ν 2980, 1752, 1526, 1351, 1258, 1153, 1022,
845 cm−1.

tri-tert-butyl 5-(4-nitrophenyl)-3-phenyl-1H-1,2,4-triazole-1,2,3(3H)-tricarboxylate (3ac), White
solid, 22.4 mg, 0.039 mmol, 78% yield (0.050 mmol scale reaction). Large-scale synthesis
was conducted using 1.0 mmol (340.4 mg) of 1a, and 0.79 mmol (447.5 mg, 79% yield) of
3ac was isolated. m.p. 87–89 ◦C; 1H-NMR (400 MHz, CHLOROFORM-D) δ 8.26–8.30 (m,
2H), 7.99–8.03 (m, 2H), 7.68–7.71 (m, 2H), 7.33–7.44 (m, 3H), 1.58 (s, 9H), 1.41 (s, 9H), 1.29 (s,
9H); 13C-NMR (101 MHz, CHLOROFORM-D) δ 165.9, 156.6, 153.5, 151.0, 149.3, 137.3, 135.4,
130.7, 128.4, 127.8, 127.3, 122.9, 94.8, 84.8, 83.6, 83.0, 28.2, 27.6 (1 peak is overlapped with
the other peak); HRMS (ESI+ in MeCN) calcd. for C29H37O8N4

+ (M + H) 569.2606 found
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569.2615; IR (KBr) ν 2979, 1744, 1527, 1369, 1349, 1253, 1149, 849 cm−1; HPLC (CHIRALPAK
AD-H column, hexane/2-propanol = 95/5, flow rate 1.0 mL/min, 25 ◦C, 254 nm) first peak:
tR = 5.8 min and second peak: tR = 6.7 min.

tri-tert-butyl 5-(4-nitrophenyl)-3-(o-tolyl)-1H-1,2,4-triazole-1,2,3(3H)-tricarboxylate (3dc), White
solid, 19.0 mg, 0.033 mmol, 65% yield (0.050 mmol scale reaction). m.p. 99–101 ◦C; 1H-NMR
(400 MHz, CHLOROFORM-D) δ 8.25–8.29 (m, 2H), 7.94–7.98 (m, 2H), 7.70 (d, J = 7.5 Hz, 1H),
7.19–7.29 (m, 3H), 2.62 (s, 3H), 1.58 (s, 9H), 1.42 (s, 9H), 1.36 (s, 9H); 13C-NMR (101 MHz,
CHLOROFORM-D) δ 165.5, 156.0, 153.7, 151.0, 149.2, 137.5, 135.4, 135.0, 131.6, 130.8, 128.6,
126.6, 125.5, 122.9, 96.4, 84.8, 83.6, 83.0, 28.2, 27.7, 27.5, 22.0; HRMS (ESI+ in MeCN) calcd.
for C30H39O8N4

+ (M + H) 583.2762 found 583.2767; IR (KBr) ν 2979, 1742, 1527, 1369, 1348,
1254, 1150, 849 cm−1.

tri-tert-butyl 5-(4-nitrophenyl)-3-(m-tolyl)-1H-1,2,4-triazole-1,2,3(3H)-tricarboxylate (3ec), White
solid, 23.0 mg, 0.039 mmol, 79% yield (0.050 mmol scale reaction). m.p. 76–78 ◦C; 1H-NMR
(400 MHz, CHLOROFORM-D) δ 8.26–8.30 (m, 2H), 7.99–8.03 (m, 2H), 7.50 (s, 1H), 7.49 (d,
J = 7.7 Hz, 1H), 7.28–7.33 (m, 1H), 7.17 (d, J = 7.8 Hz, 1H), 2.41 (s, 3H), 1.58 (s, 9H), 1.42
(s, 9H), 1.31 (s, 9H); 13C-NMR (101 MHz, CHLOROFORM-D) δ 165.9, 156.5, 153.5, 151.0,
149.2, 137.3, 137.1, 135.4, 130.7, 129.2, 127.9, 127.7, 124.5, 122.9, 94.9, 84.7, 83.5, 82.9, 28.2,
27.6, 21.6 (1 peak is overlapped with the other peak); HRMS (ESI+ in MeCN) calcd. for
C30H39O8N4

+ (M + H) 583.2762 found 583.2770; IR (KBr) ν 2979, 1743, 1526, 1369, 1348,
1257, 1149, 851 cm−1.

tri-tert-butyl 5-(4-nitrophenyl)-3-(p-tolyl)-1H-1,2,4-triazole-1,2,3(3H)-tricarboxylate (3fc), White
solid, 21.4 mg, 0.0367 mmol, 73% yield (0.050 mmol scale reaction). m.p. 96–98 ◦C; 1H-NMR
(400 MHz, CHLOROFORM-D) δ 8.25–8.30 (m, 2H), 7.98–8.02 (m, 2H), 7.56–7.59 (m, 2H),
7.22 (d, J = 8.0 Hz, 2H), 2.38 (s, 3H), 1.57 (s, 9H), 1.41 (s, 9H), 1.29 (s, 9H); 13C-NMR
(101 MHz, CHLOROFORM-D) δ 166.0, 156.5, 153.4, 151.0, 149.2, 138.2, 135.5, 134.3, 130.7,
128.5, 127.2, 122.9, 94.8, 84.7, 83.5, 82.9, 28.2, 27.6, 21.1 (1 peak is overlapped with the other
peak); HRMS (ESI+ in MeCN) calcd. for C30H39O8N4

+ (M + H) 583.2762 found 583.2767; IR
(KBr) ν 2979, 1744, 1527, 1369, 1348, 1254, 1150, 850 cm−1.

tri-tert-butyl 3-(4-methoxyphenyl)-5-(4-nitrophenyl)-1H-1,2,4-triazole-1,2,3(3H)-tricarboxylate
(3gc), White solid, 24.4 mg, 0.041 mmol, 82% yield (0.050 mmol scale reaction). m.p.
87–89 ◦C; 1H-NMR (400 MHz, CHLOROFORM-D) δ 8.26–8.30 (m, 2H), 7.98–8.02 (m, 2H),
7.59–7.64 (m, 2H), 6.91–6.96 (m, 2H), 3.83 (s, 3H), 1.58 (s, 9H), 1.41 (s, 9H), 1.29 (s, 9H);
13C-NMR (101 MHz, CHLOROFORM-D) δ 166.1, 159.6, 156.5, 153.4, 151.0, 149.2, 135.5,
130.6, 129.4, 128.6, 122.9, 113.2, 94.5, 84.7, 83.5, 82.9, 55.2, 28.2, 27.6 (1 peak is overlapped
with the other peak); HRMS (ESI+ in MeCN) calcd. for C30H39O9N4

+ (M + H) 599.2712
found 599.2715; IR (KBr) ν 2979, 1744, 1527, 1369, 1348, 1253, 1150, 849 cm−1.

tri-tert-butyl 3-(4-bromophenyl)-5-(4-nitrophenyl)-1H-1,2,4-triazole-1,2,3(3H)-tricarboxylate (3hc),
White solid, 27.0 mg, 0.042 mmol, 83% yield (0.050 mmol scale reaction). m.p. 94–96 ◦C;
1H-NMR (400 MHz, CHLOROFORM-D) δ 8.26–8.30 (m, 2H), 7.97–8.00 (m, 2H), 7.52–7.60
(m, 4H), 1.58 (s, 9H), 1.41 (s, 9H), 1.29 (s, 9H); 13C-NMR (101 MHz, CHLOROFORM-D) δ
165.6, 157.0, 153.4, 150.8, 149.3, 136.6, 135.2, 130.9, 130.7, 129.1, 123.0, 122.7, 94.2, 85.1, 84.2,
83.2, 28.2, 27.6 (1 peak is overlapped with the other peak); HRMS (ESI+ in MeCN) calcd. for
C29H36O8N4Br+ (M + H) 647.1711 found 647.1721; IR (KBr) ν 2979, 1751, 1527, 1369, 1348,
1253, 1149, 849 cm−1.

tri-tert-butyl 3-(4-chlorophenyl)-5-(4-nitrophenyl)-1H-1,2,4-triazole-1,2,3(3H)-tricarboxylate (3ic),
White solid, 25.4 mg, 0.042 mmol, 84% yield (0.050 mmol scale reaction). m.p. 86–88 ◦C;
1H-NMR (400 MHz, CHLOROFORM-D) δ 8.26–8.31 (m, 2H), 7.97–8.02 (m, 2H), 7.62–7.66
(m, 2H), 7.36–7.40 (m, 2H), 1.58 (s, 9H), 1.41 (s, 9H), 1.28 (s, 9H); 13C-NMR (101 MHz,
CHLOROFORM-D) δ 165.6, 156.9, 153.4, 150.8, 149.3, 136.0, 135.2, 134.4, 130.7, 128.8, 128.0,
123.0, 94.3, 85.0, 84.0, 83.2, 28.2, 27.6 (1 peak is overlapped with the other peak); HRMS
(ESI+ in MeCN) calcd. for C29H36O8N4Cl+ (M + H) 603.2216 found 603.2227; IR (KBr) ν
2979, 1752, 1527,1369, 1348, 1255, 1149, 848 cm−1.
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tri-tert-butyl 5-(4-nitrophenyl)-3-(4-(trifluoromethyl)phenyl)-1H-1,2,4-triazole-1,2,3(3H)-tricarboxylate
(3jc), White solid, 27.7 mg, 0.044 mmol, 87% yield (0.050 mmol scale reaction). m.p.
106–108 ◦C; 1H-NMR (400 MHz, CHLOROFORM-D) δ 8.27–8.31 (m, 2H), 7.98–8.02 (m,
2H), 7.84 (d, J = 8.2 Hz, 2H), 7.67 (d, J = 8.2 Hz, 2H), 1.59 (s, 9H), 1.41 (s, 9H), 1.28 (s, 9H);
13C-NMR (101 MHz, CHLOROFORM-D) δ 165.5, 157.1, 153.5, 150.7, 149.4, 141.4, 135.1,
130.8, 130.5 (q, J = 33.1 Hz), 127.8, 124.8 (q, J = 3.7 Hz), 124.0 (q, J = 273.1 Hz), 123.0, 94.3,
85.1, 84.2, 83.4, 28.2, 27.6 (1 peak is overlapped with the other peak); 19F-NMR (376 MHz,
CHLOROFORM-D) δ -62.5; HRMS (ESI+ in MeCN) calcd. for C30H36O8N4F3

+ (M + H)
637.2480 found 637.2484; IR (KBr) ν 2980, 1751, 1528, 1370, 1326, 1253, 1149, 850 cm−1.

tri-tert-butyl 3-(naphthalen-2-yl)-5-(4-nitrophenyl)-1H-1,2,4-triazole-1,2,3(3H)-tricarboxylate (3kc),
White solid, 23.6 mg, 0.038 mmol, 76% yield (0.050 mmol scale reaction). m.p. 108–110 ◦C;
1H-NMR (400 MHz, CHLOROFORM-D) δ 8.26–8.30 (m, 2H), 8.13 (s, 1H), 8.00–8.04 (m,
2H), 7.83–7.91 (m, 4H), 7.46–7.53 (m, 2H), 1.61 (s, 9H), 1.43 (s, 9H), 1.31 (s, 9H); 13C-NMR
(101 MHz, CHLOROFORM-D) δ 166.0, 156.8, 153.6, 151.0, 149.3, 135.3, 134.83 133.3, 132.7,
130.8, 128.4, 127.6, 127.3, 126.4, 126.02, 125.96, 125.7, 123.0, 95.0, 84.8, 83.9, 83.1, 28.2, 27.7 (1
peak is overlapped with the other peak); HRMS (ESI+ in MeCN) calcd. for C33H39O8N4

+

(M + H) 619.2762 found 619.2767; IR (KBr) ν 2979, 1746, 1526, 1369, 1348, 1252, 1149,
851 cm−1.

tri-tert-butyl 3-(tert-butyl)-5-(4-nitrophenyl)-1H-1,2,4-triazole-1,2,3(3H)-tricarboxylate (3lc), White
solid, 7.92 mg, 0.014 mmol, 29% yield (0.050 mmol scale reaction). m.p. 68–70 ◦C; 1H-NMR
(400 MHz, CHLOROFORM-D) δ 8.27–8.31 (m, 2H), 7.91–7.95 (m, 2H), 1.56 (s, 9H), 1.40 (s,
9H), 1.30 (s, 9H), 1.19 (s, 9H); 13C-NMR (101 MHz, CHLOROFORM-D) δ 164.8, 155.9, 154.6,
150.7, 149.0, 136.4, 130.0, 123.0, 98.7, 84.3, 82.8, 82.6, 39.1, 28.1, 27.76, 27.62, 25.2; HRMS (ESI+

in MeCN) calcd. For C27H41O8N4
+ (M + H) 549.2919 found 549.2920; IR (KBr) ν 2979, 1758,

1528, 1370, 1348, 1255, 1149, 850 cm−1.

3.2.3. General Procedure for Scheme 5 (for the Synthesis of 5ac)

A solution of 1a (1.0 equiv) and 4 (2 mol%) in CH2Cl2 (0.05 M) was stirred for 10 min
at 0 ◦C, to which 2c (2.0 equiv) was added, followed by potassium hydroxyde (50% aq.,
150 mol%). The reaction was stirred for 48 h at 0 ◦C before quenching the reaction. The
reaction was quenched by the addition of an excess amount of sat. NH4Cl aq. at the
reaction temperature, which was extracted with CH2Cl2, dried over Na2SO4, and filtered.
After the removal of solvent by evaporation, the crude product was obtained. The pure
5ac was isolated through purification by column chromatography (neutral silica gel, hex-
ane/dichloromethane/diethylether = 7/2/1) in 53% yield.

di-tert-butyl (Z)-1-(((2-(tert-butoxy)-2-oxo-1-phenylethylidene)amino)(4-nitrophenyl)methyl)hydra
zine-1,2-dicarboxylate (5ac), White solid, 30.3 mg, 0.053 mmol, 53% yield (0.10 mmol scale
reaction). m.p. 85–87 ◦C: 1H-NMR (400 MHz, CHLOROFORM-D) δ 8.15 (d, J = 8.8 Hz, 2H),
7.84–7.86 (m, 2H), 7.64 (d, J = 8.5 Hz, 2H), 7.49–7.53 (m, 1H), 7.42–7.46 (m, 2H), 6.88 (br, 1H),
6.50 (br, 1H), 1.48 (s, 9H), 1.46 (s, 9H), 1.31 (s, 9H); 13C-NMR (101 MHz, CHLOROFORM-D)
δ 163.4, 162.2, 154.4, 147.8, 145.4, 133.9, 131.8, 128.9, 128.6, 127.9, 123.0, 84.9, 82.4, 80.9, 28.2,
28.08, 28.01 (2 peaks are overlapped with the other peaks); HRMS (ESI+ in MeCN) calcd.
for C29H39O8N4

+ (M + H) 571.2762 found 571.2761; IR (KBr) ν 2979, 1727, 1525, 1368, 1346,
1259, 1153, 854 cm−1.

3.2.4. General Procedure for Scheme 5 (for the Synthesis of 3ac)

A solution of 5ac (1.0 equiv) in CH2Cl2 (0.05 M) was stirred for 10 min at 0 ◦C, which
2c (1.0 equiv) was added, followed by DBU (50 mol%). The reaction was stirred for 1 h
at 0 ◦C before quenching the reaction. The reaction was quenched by the addition of an
excess amount of sat. NH4Cl aq. at the reaction temperature, which was extracted with
CH2Cl2, dried over Na2SO4, and filtered. After the removal of solvent by evaporation, the
crude product was obtained. The pure 3ac was isolated through the purification by column
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chromatography (neutral silica gel, hexane/dichloromethane/diethylether = 7/2/1) in a
47% yield as a racemate.

Enantiomeric excess was determined by HPLC (CHIRALPAK AD-H, hexane/2-propa
nol = 95/5, flow rate 1.0 mL/min, 25 ◦C, 254 nm): first peak: tR = 5.8 min and second peak:
tR = 6.8 min.

3.2.5. General Procedure for Scheme 6

A solution of 1a′ (1.0 equiv) and 4 (2 mol%) in CH2Cl2 (0.05 M) was stirred for 10 min
at 0 ◦C, to which 2c (2.0 equiv) was added, followed by potassium hydroxyde (50% aq.,
150 mol%). The reaction was stirred for 18 h at 0 ◦C before quenching the reaction. The
reaction was quenched by the addition of an excess amount of sat. NH4Cl aq. at the
reaction temperature, which was extracted with CH2Cl2, dried over Na2SO4, and filtered.
After the removal of solvent by evaporation, the crude product was obtained. The pure
3ac was isolated through the purification by column chromatography (neutral silica gel,
hexane/dichloromethane/diethylether = 7/2/1) in a 65% yield as a racemate.

Enantiomeric excess was determined by HPLC (CHIRALPAK AD-H, hexane/2-propa
nol = 95/5, flow rate 1.0 mL/min, 25 ◦C, 254 nm): first peak: tR = 5.8 min and second peak:
tR = 6.8 min.

4. Conclusions

This study developed a direct synthesis method of 1,2,4-triazolines from easily accessi-
ble α-imino esters using commercial azo compounds under DBU catalysis, which provided
excellent product yields. The study on the substrate scope revealed that the present reaction
could be applied to a wide range of substrates and reactants, irrespective of their steric and
electronic characteristics. The present reaction is the first general method for the metal-free
preparation of 3-aryl pentasubstituted 1,2,4-triazolines under the mild condition. The
reaction mechanism suggests that the α-imino ester reacts through the 2-aza allyl anion
intermediate. However, its isomerized aldimine reacts with the enolate intermediate. We
are further investigating the application of these products in the preparation of useful
molecules.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28114339/s1, It contains 1H, 13C, and 19F NMR
charts and HPLC spectra of the products and intermediates.
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