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Abstract: Schisandra henryi (Schisandraceae) is a plant species endemic to Yunnan Province in China
and is little known in Europe and America. To date, few studies, mainly performed by Chinese
researchers, have been conducted on S. henryi. The chemical composition of this plant is domi-
nated by lignans (dibenzocyclooctadiene, aryltetralin, dibenzylbutane), polyphenols (phenolic acids,
flavonoids), triterpenoids, and nortriterpenoids. The research on the chemical profile of S. henryi
showed a similar chemical composition to S. chinensis—a globally known pharmacopoeial species
with valuable medicinal properties whichis the best-known species of the genus Schisandra. The
whole genus is characterized by the presence of the aforementioned specific dibenzocyclooctadiene
lignans, known as “Schisandra lignans”. This paper was intended to provide a comprehensive
review of the scientific literature published on the research conducted on S. henryi, with particu-
lar emphasis on the chemical composition and biological properties. Recently, a phytochemical,
biological, and biotechnological study conducted by our team highlighted the great potential of
S. henryi in in vitro cultures. The biotechnological research revealed the possibilities of the use of
biomass from S. henryi as an alternative to raw material that cannot be easily obtained from natural
sites. Moreover, the characterization of dibenzocyclooctadiene lignans specific to the Schisandraceae
family was provided. Except for several scientific studies which have confirmed the most valuable
pharmacological properties of these lignans, hepatoprotective and hepatoregenerative, this article
also reviews studies that have confirmed the anti-inflammatory, neuroprotective, anticancer, an-
tiviral, antioxidant, cardioprotective, and anti-osteoporotic effects and their application for treating
intestinal dysfunction.

Keywords: Schisandra henryi; Schisandra chinensis; chemical composition; dibenzocyclooctadiene lignans;
Schisandra lignans; biotechnological research; traditional Chinese medicine; therapeutical potential

1. Introduction

The genus Schisandra (family Schisandraceae) currently includes 25 plant species [1,2],
of which Schisandra chinensis Turcz. Baill. is the best-known species. S. chinensis is a
pharmacopoeial medicinal plant that occurs naturally in Southeast Asia and is now culti-
vated in many temperate countries. The medicinal raw material of this plant is the fruit,
i.e., Schisandrae chinensis fructus, the monographs of which are available in the pharma-
copoeias of Asian countries such as China [3], Japan [4], and Korea [5]; moreover, in the
European Pharmacopoeia [6]; United States Pharmacopoeia [7]; Russian Pharmacopoeia [8];
and in the International Pharmacopoeia published by WHO [9].

The therapeutic effects of S. chinensis fruit extracts reported thus far mainly include
hepatoprotective, hepatoregenerative, anticancer, adaptogenic, immunostimulating, and
anti-inflammatory activities [10,11].

Schisandra sphenanthera Rehder & Wilson is another species of the genus Schisan-
dra that is well known in some areas of East Asia. Because of morphological similarity,
S. sphenanthera is frequently confused with S. chinensis. Like S. chinensis, the monographs
of S. sphenanthera are available in the Chinese Pharmacopoeia [3,12]. The medicinal raw
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material of this plant is also its fruit, i.e., Schisandrae sphenanthera fructus. S. sphenanthera
fruit extracts are widely used in China; the lignan isolated from these extracts, namely
schisanterin A, is the active ingredient of the standardized drug “Wuzhi tablet”, which has
a hepatoprotective effect [13–15].

This high healing potential of S. chinensis and S. sphenanthera is because of their
unique chemical composition. A characteristic of the Schisandraceae family is the presence
of dibenzocyclooctadiene lignans (“Schisandra lignans”) as the main, specific group of
compounds in plant extracts. These compounds are currently being intensively researched
by scientists from Asian countries and several European research institutions [16–18].

Other species of the genus Schisandra are practically unknown in European countries.
Most often, they are endemics that occur in a given province and have only been used in
their areas. Most often there are small mentions in the TMC of how they were used by the
local community for medicinal purposes [12].

The first little-known species is Schisandra rubriflora Rehd. and Will. Naturally,
S. rubriflora occurs in Sichuan Province in China. It is described in TCM as a tonic and
sedative. To this day, the fruit of S. rubriflora is considered a local delicacy. The analysis of
the phytochemical profile showed the presence of dibenzocyclooctadiene lignans, which are
characteristic only for this species: rubrischisantherin and rubrilignans A and B [12,19,20].

Another unknown species in Europe is Schisandra grandiflora Hook. F. & Thoms. It
naturally occurs in the area of India (Qinling Mountains), where the fruit is used by the
local population as a hepatoprotective agent and a delicacy due to its clove flavor. A small
number of studies confirmed the presence of compounds from the dibenzocyclooctadiene,
tetrahydrofuran, dibenzylbutane, diaryldimethylbutane, and tetralin group of lignans and
compounds from the group of triterpenoids [21–24].

Schisandra propinqua (Wall.) Baill. is another unknown species in European countries,
but quite widespread in southwestern China. There is quite a lot of information in the
literature about the use of S. propinqua in TCM. The most commonly used extracts from
rhizomes and stems have been administered orally or topically. S. propinqua has been
used as an analgesic, also for stomach and liver problems. The analysis of the chemical
composition of S. propinuqa primarily shows the presence of dibenzocyclooctadiene lignans,
as well as compounds from the group of terpenoids and their derivatives [25–28].

A review has already been written by us, on the comparative analysis of three Schisan-
dra species (S. rubriflora, S. sphenanthera, S. henryi), but this review focuses primarily on the
S. henryi species [19].

Schisandra henryi C.B. Clarke is a species related to S. chinensis and S. sphenanthera; how-
ever, it is not well known. The healing properties of S. henryi are known in Far East countries,
and this plant species has been used in traditional Chinese medicine (TCM) [29,30]. How-
ever, this plant species is little known or completely unknown in European countries and
other parts of the world. S. henryi is a dioecious climber vine with characteristic yellow-
orange flowers [1,11,31]. The available scientific studies show that the chemical composition
of S. henryi is similar to that of other Schisandra species. The chemical constituents of S. hen-
ryi are mainly dominated by dibenzocyclooctadiene lignans, followed by aryltetralin and
dibenzylbutane lignans. The high contents of triterpenoids and polyphenolic compounds
have also been confirmed in S. henryi [32].

The present study aimed to review the available scientific literature on S. henryi, its
botanical and ecological characteristics, the results of phytochemical analyses, and the
biological properties of individual compounds detected in S. henryi, particularly dibenzo-
cyclooctadiene lignans.

2. Methodology

The literature contained in this article has been appropriately collected according to
the exclusion and inclusion criteria. In the first part, criteria were defined, which con-
sisted of excluding articles that were not documents and guidelines (e.g., book reviews
or commentaries). It was assumed that the main area of interest would be the chemical
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composition and biological activity, in particular, of dibenzocyclooctadiene lignans isolated
from S. henryi. The searchable databases used in this publication are PubMed/MEDLINE,
Web of Science, SCOPUS, Wiley Online Library, Google Scholar, Taylor & Francis Online,
and Science Direct/ELSEV-IER, EBSCO Discovery Service (EDS). Articles published be-
tween 1961 and 2022 were searched in these databases. The following words were used in
the search: “Schisandra henryi”, “chemical composition of Schisandra henryi” “Biological ac-
tivity of dibenzocyclooctadiene lignans” or “Activity of dibenzocyclooctadiene lignans” or
“Schisandra lignans”, “Schisandra henryi lignans”, “Schisandra henryi terpenoids”, “Schisan-
dra polyphenolic compounds”.

3. Morphology and Natural Habitats

S. henryi (Figure 1) is endemic plant to the Yunnan province in southwestern China [2,30].
Yunnan province is a mountainous area with many forests, rivers, and lakes. The area has a
subtropical climate with warm summers and mild winters. In winter, the temperature does
not fall below 10 ◦C. The area receives heavy rainfall, which is conducive to the development
of specific vegetation. Optimal locations for the growth of S. henryi vines are shady thickets,
forests, slopes, and places near mountain streams at an altitude of 500–1500 m above sea level.
In the European climate, the plant is not fully resistant to temperatures below 0 ◦C; hence, it
freezes in winter. In Poland, S. henryi is frequently grown as an ornamental plant. The twining
shoots of S. henryi grow to a length of 3–6 m, with an annual growth of approximately 1–2 m.
The shoots are initially light green and eventually become brown with visible, numerous
lighter lenticels [2,33].
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The flowering period of S. henryi is in May. The flowers of S. henryi are 1–2 cm
in diameter, single, small, and yellow orange in color. Female flowers have more than
8 petals and 14–40 free stamens, while male flowers have 6–10 petals and 14–40 free
stamens [33]. The fruits of S. henryi grow as red berries and form cluster-shaped infructes-
cences [2]. A single fruit is 3 mm in length and approximately 3.5 mm in width and contains
1–2 kidney-shaped seeds. The leaves of S. henryi reach 7–15 cm in length and 4.5–7.5 cm in
width [33]. The leaves are thin, glossy, elliptical ovoid in shape, and dark green in color.
Young leaves are sharp, while the older ones are slightly serrated at the edges [1,2,33].

4. Chemical Composition

To date, few scientific studies have reported the phytochemical analysis of S. henryi.
Most research studies have focused on the chemical composition of shoots and leaves.
Lignans are the main group of compounds found in S. henryi. The extracts contain a
particularly high content of dibenzocyclooctadiene lignans as well as aryltetralin and
dibenzylbutane lignans [30,32,34].

Dibenzocyclooctadiene lignans are a very interesting group of secondary metabolites
because of their specific chemical structure. They are derivatives of cis-O-hydroxycinnamic
acid with a lactone structure. They are thought to be formed by metabolic transformations
of shikimic acid. The pathways for the formation of individual groups of lignans have not
been clearly explained to date. The biosynthesis pathway of dibenzocyclooctadiene lignans
was presented by Umezewa et al. [35] (Figure 2). It is hypothesized that lignans may be
formed by coupling propenylphenols due to their chemical structure—they do not have
9(9′)-oxygen attached. Their function in the plant is not yet fully understood. It is believed
that these lignans have a protective effect and affect plant development. Because these
lignans have a wide spectrum of activity, attempts have been made to extract them through
chemical and biotechnological processes. However, because of the high cost and labor
input, plant raw materials are still the most valuable source of obtaining dibenzocycloocta-
diene lignans [35]. The first dibenzocyclooctadiene lignan to be isolated was schisandrin.
The compound was isolated from S. chinensis seed oil by Kochetkow in 1961 [36]. As of
today, the literature reports that about 150 lignans containing a dibenzocyclooctadiene
skeleton have been isolated [37]. A large amount of research is focused on the creation of
derivatives of dibenzocyclooctadiene lignans that would have similar biological activity.
Bicyclol is a synthetic substance based on schisandrin C. In the initial stages of research
on Schisandra chinensis extracts, chosen dibenzocyclooctadiene lignans were isolated and
tested for hepatoprotective activity. Tests have shown that schisandrin C has promising
activity in this manner. Despite many attempts, researchers have failed to elaborate on the
full chemical synthesis procedure of schisandrin C, which has forced them to continue their
research. It was found that appropriate changes in the positions of the methylene dioxide
groups changing the length of the carboxylic acid to the biphenyl ring and changing the di-
carnoxylate group to the hydroxyl group increase the effectiveness as well as bioavailability
of the derivatives. In this way, bicyclol ((4,4′-dimethoxy-5,6,5′,6′-bis [methylenedioxy]-2-
hydroxymethyl-2′-methoxycarbonyl biphenyl) was synthesized, which was registered as a
drug by the Chinese Food and Drug Administration (FDA). The protocol of its synthesis
as well as the production method on a large scale are covered by a patent [38–41]. Bicycol
is approved by the Chinese FDA as a means of supporting the regenerative processes
of the liver, especially in people with abnormal ALT parameters associated with liver
diseases. In addition to clinical studies on the therapeutic effect of bicyclol on liver cells,
researchers are focusing on studying the anticancer activity of this compound. For now,
the tests are in the initial phase, but the results are promising [35,42–44]. The structures of
dibenzocyclooctadiene lignans found in S. henryi are shown in Figure 3.
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Figure 3. Chemical structures of dibenzocyclooctadiene lignans confirmed in S. henryi.

The presence of lignans was confirmed in the leaves and shoots of S. henryi; these lig-
nans belonged to the following groups: (1) dibenzocyclooctadiene: gomisin G, schisanterin
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A, benzylgomisin Q, deoxyschisanadrin, and schisandrin; (2) aryltetralin: wulignan A1 and
A2, epiwulignan A1, enshicin, epienshicin, and dimethylwulignan A1; (3) dibenzylbutane:
henricin A and B and isoanwulignan (Figure 4) [29,45,46]. In tests conducted by a team
from the Department of Pharmaceutical Botany, the Jagiellonian University Medical Col-
lege, the following compounds were detected: dibenzocyclooctadiene lignans: schisandrin,
gomisin G, schisantherin A and B, deoxyschisandrin, and schisandrin C (Figure 3); phenolic
acids: gallic, chlorogenic, neochlorogenic, caftaric, and caffeic; and flavonoids: hyperoside,
rutoside, trifolin, quercitrin, quercetin, and kaempferol (Figure 5) [32].
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The extracts from S. henryi shoots were also found to contain ganschisandrin—a
tetrahydrofuran lignan (Figure 4) [46]. Apart from lignans, the shoots were found to
contain triterpenoid compounds: henrischinin A, B, and C and schisanlactone B; acids:
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isoschisandronic, kadsuric, anvuweizic, schisandronic, and nigrnoic acid as well as 3-ethyl-
nigranic acid [47,48]; and nortriterpenoids: henridilactones A-D and schiprolactone A
(Figure 5) [49].

The extract from the leaves and stems of S. henryi contained as many as 11 compounds
from the group of schinortriteprenoids—henridilactones E-O [50].

The fruits of S. henryi showed the presence of compounds from the group of lig-
nans (schisantherin B, schisanhenol, and schisanhenrin) and terpenoids (kadsuric and
schisanhenric acids) (Figure 5) [51].

The literature data and procedures which have thus far been elaborated are very diverse
in terms of the extraction methodology and identification of individual S. henryi compounds.
The identification of compounds is most often based on previous works describing the
isolation and chemical structure elucidation of a given compound [29,32,48–50,52]. Table 1
summarizes the applied extraction methodology and the apparatus used to identify groups or
individual compounds from the published papers focused on S. henryi (Table 1).

Table 1. Extraction and analytical methods applied for identification of compounds applied in
previously published works on S. henryi.

Compound Extracted from
Raw Material Extraction Condition Analysis Method References

Enshicine from fruit

- the extract was dissolved in gasoline and then
extracted with methanol

- extracts were eluted with gasoline, benzene,
benzene–ethyl acetate (10:1), benzene–ethyl acetate
(4:1) and ethyl acetate

column chromatography on silica gel (gradient
mode: benzene, benzene–ethyl acetate (10:1),
benzene–ethyl acetate (4:1), and ethyl acetate)

[29]

Triterpenoids, lignans
from leaves

- samples were extracted with methanol
- extraction was carried out in an ultrasonic bath

twice for 30 min, the extracts were centrifuged in
a centrifuge

UHPLC-MS/MS with triple quadrupole mass
filter (QQQ) (analytical column: Kinetex C18
150 × 4.6 mm, 2.6 µm, gradient mode: 50%

methanol in water (A), 100% methanol (B) with
1% formic acid)

[32]

Phenolic acids and flavonoids
from leaves

- samples were extracted with methanol
- extraction was carried out in an ultrasonic bath

twice for 30 min, the extracts were centrifuged in
a centrifuge

HPLC-DAD (analytical column: Purospher
RP-18, mobile phase: methanol and 0.5% acetic

acid (A), methanol (B))
[32]

Triterpenoids from leaves
and stems

- samples were extracted with 70% aqueous acetone
(3 times, room temperature)

- the extract was evaporated under reduced pressure
- separation of the extract between water and

ethyl acetate

column chromatography on silica gel,
(chloroform–acetone (1:0 to 0:1),

semi-preparative HPLC (analytical column:
Agilent 1100 HPLC; Zorbax SB-C-18, Agilent, 9.4

mm 25 cm, gradient mode: methanol–water
(65:35)

[48]

Nortriterpenoids form stems
and leaves

- extraction with 80% aqueous acetone (3 times,
room temperature)

- filtrate was evaporated and the resulting residue
was partitioned between water and ethyl acetate

- the ethyl acetate layer was subjected to column
chromatography on silica gel (chloroform/acetone
gradient systems, 1:0 0:1 gradient systems)

RP-HPLC (55% methanol/water)
column chromatography on silica gel (gradient
systems: chloroform-Me2CO 1:0 0:1), repeated
column chromatography (silica gel, petroleum
ether/Me2CO, 9:1 and petroleum ether/ethyl

acetate 4:1), RP-HPLC (gradient mode: 55%
methanol/water)

[49]

Triterpenoids from stems

- extraction with 95% ethanol (4 times, room
temperature)

- evaporation ethanol under vacuum
- the obtained filtrate was extracted with petroleum

ether, ethyl acetate and n-butanol (4 times)
- ethyl acetate extract applied to a silica gel column

(petroleum elution)

column chromatography on silica gel (petroleum
ether–ethyl acetate 4:1), repeated column

chromatography on silica gel
[52]

Schinortriterpenoids from
stems and leaves

- extraction with 70% aqueous acetone (3 times,
room temperature)

- the extract was distilled under reduced pressure
under pressure to remove the acetone

- the resulting filtrate was dissolved in water and
separated with ethyl acetate

- the ethyl acetate fraction was subjected to column
chromatography with silica gel eluting with
chloroform/acetone (1:0, 9:1, 7:3, 3:2, 1:1, and 0:1)

column chromatography with silica gel
(chloroform/acetone 1:0, 9:1, 7:3, 3:2, 1:1 and 0:1),

semi-preparative HPLC (analytical column;
RP-18, Sephadex LH-20-methanol/water)

[50]
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5. Reports on the Biological Activities

Liu et al. isolated the following compounds from the seeds of S. henryi: 2 triterpenoids—
kadsuric acid and schisanhenrin and 13 lignans—schisanterin A and B, schisanhenol, de-
oxyschisandrin, epiwulignan A1, wulignan A1 and A2, schisandrone, henricin, enshicin,
epienshicin methyl ether, epischisandrone, and enshcine. Wulignan A1 and A2, epiwulignan
A1, and epischisandrone were found to have inhibitory activity against P-388 lymphoma
cell lines [45,53].

Chen et al. isolated four compounds from the dried shoots of S. henryi, namely
gomisin G, schisantherin A, benzoylgomisin Q, and isowulignan, and they then tested
the biological activity of these compounds on DNA strand cleavage and the cytotoxic
activity in leukemia cell lines and HeLa cells (cervical cancer line) in vitro. Gomisin G in
the presence of Cu2+ ions showed strong DNA cleavage activity at 50 µg/mL concentration,
with more than 50% relaxation of supercoiled DNA. The other compounds showed no
activity. In in vitro tests on cell lines, gomisin G exhibited the highest cytotoxic effect
(IC50 = 5.51 µg/mL) on leukemia and HeLa cell lines. Schisantherin A and benzoylgomisin
Q showed a moderate cytotoxic effect on leukemia cells (IC50 = 55.1 and 61.2 µg/mL,
respectively). Benzoylgomisin Q showed a moderate cytotoxic effect (IC50 = 61.2 µg/mL)
on HeLa cells, while schisantherin A did not affect these cells [52].

Jafernik et al., from the Department of Pharmaceutical Botany, the Jagiellonian Univer-
sity Medical College, studied the antioxidant and anti-inflammatory activities of S. henryi
leaf extracts. Antioxidant tests were conducted using the CUPRAC, FRAP, and DPPH
methods, while the anti-inflammatory activity was determined using the method for the
inhibition of enzyme activity: 15-LOX, COX-1, COX-2, and sPLA2. The total polyphenol
content was determined by the Folin–Ciocalteu spectrophotometric method. The total
content of polyphenols in leaf extracts was 277 nmol/Gal/mg dry matter (DM). The an-
tioxidant activity of leaf extracts according to the different methods was as follows: the
CUPRAC method: 67 TE nmol/mg DM; the FRAP method: 24 TE nmol/mg DM; and the
DPPH method: 53 TE nmol/mg DM. The anti-inflammatory effect (percent inhibition) of
leaf extracts was as follows: sPLA2: 19%, 15-LOX: 26%, COX-1: 70%, and COX-2: 33% [32].

He et al. isolated 12 schinortriterpenoids (E-O henridilactones) from the stems and
leaves of S. henryi, including 11 schinortriterpenoids, for the first time. The biological
activity of the isolated compounds was then tested in terms of neuroprotective effects by
inducing apoptosis with corticosterone in PC12 cells (a rat pheochromocytoma cell line
used in neurological and toxicological studies). Four compounds, namely henridilactone
E, H, N, and O, exhibited the strongest neuroprotective effect related to cell apoptosis
inhibition. Additionally, henridilactone O increased the number of neurites [50].

6. Biological Activity of Chosen Dibenzocyclooctadiene Lignans

The review of scientific research showed that dibenzocyclooctadiene lignans are the
most interesting group of compounds detected in S. henryi in terms of pharmacological
activity. The best-studied compounds identified in S. henryi are schisandrin C, gomisin
G, schisantherin A, and deoxyschisandrin. These compounds were confirmed to possess
hepatoprotective, antioxidant, anti-inflammatory, and anticancer properties. These com-
pounds also showed beneficial effects on nervous system functioning and could resolve
issues associated with intestinal dysfunction (Table 2) [54–61].
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Table 2. Biological activity of selected dibenzocyclooctadiene lignans present in S. henryi.

Lignan Chemical Structure of Compound

Maximal Content
[mg/100 g DM ± SD]

Action Mode of Action Reference
Microshoot

Cultures
Leaves of the
Parent Plant

Schisandrin
(schizandrin,

schizandrol A,
schisandrol A)
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Table 2. Cont.

Lignan Chemical Structure of Compound

Maximal Content
[mg/100 g DM ± SD]

Action Mode of Action Reference
Microshoot

Cultures
Leaves of the
Parent Plant
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phosphatase in osteoblasts

[61]
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Table 2. Cont.

Lignan Chemical Structure of Compound

Maximal Content
[mg/100 g DM ± SD]

Action Mode of Action Reference
Microshoot

Cultures
Leaves of the
Parent Plant
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Table 2. Cont.

Lignan Chemical Structure of Compound

Maximal Content
[mg/100 g DM ± SD]

Action Mode of Action Reference
Microshoot

Cultures
Leaves of the
Parent Plant

Hepatoprotective

- relieves oxidative/nitrosative stress
- reduces hepatocyte apoptosis
- inhibits the protein kinase signaling pathway
- alleviates pathological changes caused by thioacetamide
- reduces serum levels of transaminases and hydroxyproline
- reduces the expression of α-smooth muscle actin and

collagen 1A1 proteins in the liver tissue
- reduces the levels of TNF-α, IL-1β, and IL-6
- inhibits the proliferation and activation of HCS-T6 cells

[73,74]

Cardioprotective

- reduces arrhythmia
- regulates the activity of the heart
- minimizes the risk of heart attack
- reduces the release of MDA
- reduces apoptosis
- reduces caspase-3 activity

[64]

Schisantherin B
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Table 2. Cont.

Lignan Chemical Structure of Compound

Maximal Content
[mg/100 g DM ± SD]

Action Mode of Action Reference
Microshoot

Cultures
Leaves of the
Parent Plant
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6.1. Antioxidant Activity

Park et al. investigated the effect of schisandrin on MMP-1 (metalloproteinase-1) ex-
pression in UV-irradiated human HDF fibroblasts. Schisandrin inhibited lipid peroxidation
in cells and decreased MMP-1 expression [54] (Table 2).

Lam et al. tested the use of schisandrin C and B as sunscreen compounds with an-
tioxidant activity. Both lignans showed antioxidant activity, protected rat skin tissue from
oxidative damage caused by UV radiation, and increased the concentration of reduced glu-
tathione and α-tocopherol in cells. These lignans also increased the activity of antioxidant
enzymes and malondialdehyde production [62] (Table 2).

Lu et al. tested the antioxidant activity of selected dibenoscyclooctadiene lignans. It
has been shown that schisantherin B at a concentration (1 mM) effectively inhibits cysteine-
induced iron-induced lipid peroxidation in rat liver microsomes. The study also showed a
reduction in the production of superoxide anions in the xanthine/xanthine oxidase system.
The comparative analysis showed that the effect of schisantherin B was much stronger than
that of vitamin E at the same concentration (Table 2) [76].

6.2. Anti-Inflammatory Activity

Oh et al. showed that schisandrin C and gomisin N and J could suppress lipopolysac-
charide (LPS)-induced inflammatory responses in RAW 264.7 mouse macrophage cell
line (mouse macrophage cells). These compounds reduced nitric oxide (NO) production
in stimulated RAW 264.7 cells, but did not show a cytotoxic effect. They also reduced
the mRNA expression and secretion of proinflammatory cytokines. The mechanism of
action for these compounds is based on blocking p38 mitogen-activated protein kinase
(MAPK) [57] (Table 1).

Ci et al. confirmed that schisantherin A exhibits a strong anti-inflammatory effect by
lowering the concentration of compounds involved in inflammatory processes, namely
TNF-α (tumor necrosis factor α), IL-6 (interleukin 6), NO, and PGE2 (prostaglandin E2),
induced by LPS. Schisantherin A was also found to reduce iNOS and COX-2 levels in RAW
264.7 macrophages. Signal transduction studies showed that schisanterin A significantly
inhibited the expression of the extracellular signal-regulated kinase (ERK) phosphorylation
protein, p38, and C-jun NH2-terminal kinase (JNK). Schisantherin A also inhibited the
nuclear translocation of p65-NF-kB by IkB-α degradation. By using specific inhibitors
of ERK, JNK, and p38, a previous study showed that schisantherin A can inhibit TNF-α
mainly through the ERK pathway [66] (Table 2).

Liao et al. studied the anti-inflammatory effect of schisantherin A on interleukin-1β
(IL-1β)-stimulated human chondrocytes with osteoarthritis. Human chondrocytes with
osteoarthritis were pretreated with schisantherin A 1 h before administration. This study
found that schisantherin A affects the production of NO, PGE2, iNOS, COX-2, and TNF-α.
Schisantherin A also inhibited the IL-1β-induced production of NO, PGE2, and TNF-α in a
dose-dependent manner. Moreover, the IL-1β-induced expression of MMP1, MMP3, and
MMP13 was inhibited by schisantherin A. Furthermore, schisantherin A prevented the
activation of NF-κB and MAPK by IL-1β [67] (Table 2).

Li et al. studied the anti-inflammatory effects of schisantherin A in neuroinflammatory
conditions. Schisantherin A suppressed the inflammatory response in LPS-activated BV-2
microglia. It also inhibited NF-κB activation induced by LPS by affecting the IκB degrada-
tion and phosphorylation of IκB, IKK, PI3K/Akt, JNK, and p38 MAPK. Schisantherin A also
showed indirect antioxidant activity by silencing the production of reactive oxygen species
(ROS) and stimulating the expression of antioxidant enzymes (HO-1 and NQO-1) by stimu-
lating Nrf2 activation pathways. Another study confirmed that schisantherin A exhibits
an anti-neuroinflammatory effect by inducing Nrf2 through ERK phosphorylation [68]
(Table 2).

Zhou et al. tested the anti-inflammatory effects of schisantherin A in acute respi-
ratory distress syndrome, which involves the adhesion, activation, and sequestration of
polymorphonuclear neutrophils and inflammatory damage to the alveolar capillary tissue
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membrane. This study was conducted in a mouse model of acute respiratory distress
syndrome induced by LPS. The severity of lung injury was assessed 7 h after LPS admin-
istration. The results showed that the wet weight to dry weight ratio; myeloperoxidase
activity; and the total number of cells, neutrophils, and macrophages in the bronchoalve-
olar lavage fluid were significantly reduced after schisanterin A treatment. Pretreatment
with schisantherin A significantly alleviated LPS-induced histopathology and decreased
levels TNF-α, IL-6, and IL-1β in bronchoalveolar fluid. Schisanterin A also suppressed
LPS-induced phosphorylation of NF-κB p65, inhibitor kappa B-alpha (IκB-α), JNK, ERK,
and p38. Previous studies have also confirmed the strong anti-inflammatory effects of
schisantherin A, which resulted from blocking the activation of NF-kB and MAPK signaling
pathways [69] (Table 2).

6.3. Anticancer Activity

Casarin et al. investigated the anticancer effect of deoxychisandrin and gomisin N on
two human cancer cell lines: colon adenocarcinoma (LoVo) and ovarian adenocarcinoma
(OV-2008). Lignans inhibited cell growth in a dose-dependent manner in both cell lines,
but they induced different types of cell death. Deoxyschisandrin induced apoptosis in
LoVo cells but not in OV-2008 cells, while gomisin N induced apoptosis in both cell lines.
Both compounds caused cell growth arrest in the G2/M phase, which was correlated with
tubulin polymerization [58] (Table 2).

Maharjan et al. confirmed the anticancer effect of gomisin G. They showed that
gomisin G suppresses the viability of breast cancer cell lines: TNBC, MDA-MB-231, and
MDA-MB-468. Gomisin G did not induce apoptosis but drastically inhibited AKT phospho-
rylation and downregulated retinoblastoma tumor suppressor protein (Rb) and phospho-
rylated Rb. It also decreased cyclin D1 level in a proteasome-dependent manner, thereby
leading to cell cycle arrest in the G1 phase [77] (Table 1).

The same team extended their research on the anticancer effect of gomisin G on
colorectal cancer cells. Gomisin G significantly inhibited the viability and production of
LoVo cells. Gomisin G downregulated AKT phosphorylation, thereby suppressing the PI3K-
AKT signaling pathway; it also induced apoptosis as demonstrated by annexin V staining
and increased levels of cleaved poly-ADP ribose polymerase (PARP) and caspase-3 proteins.
Gomisin G significantly accumulated cells in the sub-G1 phase, which represents apoptotic
cells [78] (Table 2).

Wang et al. showed that schisantherin A has antiproliferative effects on gastric cancer
cell lines MKN45 and SGC-7901. Schisantherin A induced cell cycle arrest at the G2/M
phase and cell apoptosis and inhibited cell migration in MKN45 and SGC7901 gastric cancer
cells. Schisantherin A induced ROS-dependent JNK phosphorylation with higher ROS
production. The ROS scavenger JNKi NAC inhibitor caused schisantherin A-induced cell
apoptosis and cell cycle arrest [59] (Table 2).

Chen et al. studied the biological activity of three lignans: gomisin G, schisantherin A,
and benzoylgomisin Q. The authors demonstrated a significant cytotoxic effect of gomisin
G on leukemia and HeLa cells (cervical cancer cells) in vitro with an IC50 (half of the
maximum inhibitory concentration) value of 5.51 µg/mL against both cell lines. Schisan-
therin A and benzoylgomisin Q showed moderate cytotoxic activity against leukemia cells,
with IC50 values of 55.1 and 61.2 µg/mL, respectively. Benzoylgomisin Q also showed
cytotoxicity against HeLa cells, with an IC50 value of 61.2 µg/mL [70] (Table 2).

6.4. Antiviral Activity

Chen et al. conducted a study on the anti-HIV-1 effect of gomisin G. The EC50 (half of
the maximum effective concentration) value was 0.006 µg/mL, and the therapeutic index
(TI) was 300. Gomisin G inhibited HIV-1 replication, and according to the researchers,
this inhibitory effect was due to the chemical structure of gomisin G with the appropriate
position of the phenolic substituents on the hydroxyl groups [50] (Table 1).
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Xu et al. tested six lignans, of which two, namely deoxyschisandrin and schisandrin B,
showed antiviral activity. Both lignans exhibited a significant inhibitory effect on HIV-1
reverse transcriptase and viral replication. Their mechanism of antiviral activity is based on
the selective inhibition of DNA polymerase associated with HIV-1 reverse transcriptase [63]
(Table 2).

6.5. Neuroprotective Activity

Li et al. studied the effects of schisantherin A on cognition and neurodegeneration in
mice with Alzheimer’s disease (AD) induced by Aβ1-42 (amyloid β-peptide). The authors
found that the intracerebroventricular (ICV) administration of schisantherin A (at the doses
of 0.01 and 0.1 mg/kg body weight) for 5 days significantly attenuated Aβ1-42-induced
learning and memory impairment as assessed by the Y-maze test, the Morris Water Maze
test, and the Shuttle Box test. Schisantherin A at the dose of 0.1 mg/kg restored some
degree of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) enzyme
activity as well as the levels of Aβ1-42, malondialdehyde (MDA), and glutathione (GSH) in
the hippocampus and cerebral cortex. Schisantherin A also improved histopathological
changes in the hippocampus. These results suggest that schisantherin A may protect
against cognitive deficits, oxidative stress, and Aβ1-42-induced neurodegeneration and
serve as a potential agent for treating AD [71] (Table 2).

Sa et al. assessed the neuroprotective effects of schisantherin A in preventing Parkin-
son’s disease (PD). This study used SH-SY5Y cells (neuroblastoma cells) incubated with 1-
methyl-4-phenylpyridinium ion (MPP(+)) and mice treated with 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP). Schisantherin A treatment significantly inhibited MPP(+)-
induced cytotoxicity in SH-SY5Y cells and provided significant protection against MPTP-
induced loss of TH-positive dopaminergic neurons in a mouse model of PD. Western
blotting assay showed that schisantherin A exerts a neuroprotective effect against MPP(+)
by regulating two different pathways, including the CREB-mediated upregulation of Bcl-2
and activation of the PI3K/Akt survival signaling pathway [60] (Table 2).

Zhang et al. focused on the neuroprotective effect of schisantherin A. The protective
effect of this compound against selective neuronal damage induced by the dopaminergic
neurotoxin 6-hydroxydopamine (6-OHDA) was investigated in human SH-SY5Y cells and
in a zebrafish model. Pretreatment with schisantherin A provided neuroprotection against
6-OHDA-induced cytotoxicity in SH-SY5Y cells and prevented the 6-OHDA-stimulated
loss of dopaminergic neurons in zebrafish. Previous studies have shown that schisantherin
A can regulate intracellular ROS accumulation and inhibit NO overproduction by reducing
iNOS overexpression in SH-SY5Y cells treated with 6-OHDA. Schisantherin A was also
confirmed to protect against the 6-OHDA-mediated activation of MAPK, PI3K/Akt, and
GSK3β [72] (Table 2).

6.6. Hepatoprotective and Hepatoregenerative Activity

Zheng et al. investigated the effect of schisantherin A on ischemic and reperfusion-
induced liver damage. The studies were conducted in male C57BL/6 mice in which sham
laparotomy or liver reperfusion was induced after schisantherin A administration. The fol-
lowing parameters were assessed: liver function, histological damage, oxidative/nitrosative
stress, inflammatory cell infiltration, cytokine production, cell apoptosis, cell autophagy,
and activation/inhibition of intracellular signaling pathways with reperfusion. The treat-
ment of mice with schisantherin A significantly preserved liver function, decreased histolog-
ical damage, reduced oxidative/nitrosative stress, prevented inflammation, and inhibited
cell apoptosis. The primary protective mechanism elicited by schisantherin A is presumed
to be involved in inhibiting the MAPK signaling pathway [73] (Table 2).

Wang et al. also found beneficial effects of schisantherin A on the liver. Their study
was conducted on a model of liver fibrosis in mice, which were gradually administered
intraperitoneally thioacetoamide and schisantherin A (1, 2, and 4 mg/kg body weight)
for 5 weeks. Schisantherin A significantly alleviated the pathological changes in the
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liver tissue induced by thioacetamide. It also reduced the levels of serum transaminases
and hydroxyprolines and decreased the expression of α-smooth muscle actin (α-SMA)
and collagen 1A1 (COL1A1) proteins in the liver tissue. Schisantherin A also reduced
the levels of TNF-α, IL-1β, and IL-6 in serum and liver tissue and downregulated the
expression of a target protein associated with the TAK1/MAPK and NF-κB pathways
in the liver tissue. In vitro studies revealed that schisantherin A significantly inhibits
TGF-β1-induced HCS-T6 cell proliferation and activation, downregulates TNF-α and IL-6
expression, and inhibits TGF-β1-induced TAK1 activation and subsequent expression of
MAPK and proteins associated with the NF-κB signaling pathway [74] (Table 2).

6.7. Cardioprotective Activity

Chang et al. conducted studies that evaluated the effects of deoxyschisandrin and
schisantherin A on the myocardium. The research was conducted on a rat model of my-
ocardial ischemia–reperfusion injury. Male rats were administered deoxyschisandrin and
schisantherin A (40 µmol/kg body weight) through the tail vein after 45 min of ischemia
and 2 h of reperfusion. Cardiac function, infarct size, biochemical markers, histopatho-
logical changes, and apoptosis were assessed, and the mRNA expression level of gp91
phox in myocardial tissues was determined. Rat cardiomyocytes were initially treated
with deoxyschisandrin and schisantherin A and then subjected to H2O2-induced damage.
Both deoxyschisandrin and schisantherin A reduced arrhythmias, exerted a protective
effect on heart function, significantly reduced myocardial infarction and MDA release,
and increased SOD activity, which subsequently reduced myocardial damage. Further-
more, both compounds alleviated changes in myocardial histopathology and reduced cell
apoptosis and caspase-3 activity in the myocardium; this exerted a protective effect on
cardiomyocytes [64] (Table 2).

6.8. Supportive Activity in the Treatment of Intestinal Dysfunction

Xu et al. investigated the application of deoxyschisandrin for treating inflammatory
bowel disease (IBD). Deoxychisandrin was administered to a mouse model of IBD and
was found to affect the visceral sensitivity of the animals. The level of brain-derived
neurotrophic factor (BDNF) was also determined in mice with intestinal hypersensitivity. It
was observed that deoxyschisandrin inhibited the contraction of isolated smooth muscles,
modulated the function of the gastrointestinal tract, and effectively reduced the disease
activity index in the tested animals. The experiment also confirmed that deoxyschisandrin
has an antidiarrheal effect [65] (Table 2).

In a colonic distension (CRD) experiment, visceral sensitivity was increased in the
model group. However, the Abdominal Withdrawal Reflex (AWR) test showed that de-
oxyschisandrin reduced the AWR. This study revealed that schisandrin A significantly
affects the reduction of visceral hypersensitivity in IBD mice. Immunohistochemical analy-
sis and western blotting assay also demonstrated that BDNF protein expression was clearly
increased in the colon of IBD mice. Following treatment with deoxyschisandrin, the BDNF
protein expression in the colonic mucosa in IBD mice was decreased; this finding explains
the mechanism of action for schisandrin A: a reduction in the intestinal sensitivity of mice
by reducing BDNF expression in the colonic mucosa [65] (Table 2).

6.9. Anti-Osteoporotic Activity

Caichompoo et al. conducted an in vitro study to determine the effect of lignans on
osteoblasts of the UMR 106 cell line. Deoxychisandrin, schisandrin, and γ-schisandrin
increased cell proliferation and alkaline phosphatase activity in the osteoblasts, thus indi-
cating their potential anti-osteoporotic activity [61] (Table 2).

7. Plant Biotechnology Research

In the Department of Pharmaceutical Botany of the Collegium Medicum of Jagiel-
lonian University (UJCM), the in vitro cultures of S. henryi were initiated for the first
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time on a global scale (Figure 6). The culturing process was initiated using leaf buds
from the male specimen of S. henryi, which were provided by the CLEMATIS company
(Clematis Spółka z o.o., Pruszków, Poland). The cultures were grown on a Murashige
and Skoog (MS) medium with the addition of the following plant growth regulators:
1 mg/L BA (6-benzyladenine) and 1 mg/L IBA (3-indolylbutyric acid). Various cultiva-
tion periods (10, 20, and 30 days) and concentrations of plant growth regulators (BA,
IBA, and gibberellic acid (GA3)) were tested to optimize the conditions for the cultiva-
tion of stationary cultures—microshoot and callus (Figure 4). The biomass was found to
contain dibenzocyclooctadiene lignans: schisandrin, gomisin G, schisantherin A and B,
deoxyschisandrin, and schisandrin C; dibenzylbutane lignan: henricin B; aryltetralin lig-
nans: wulignan A1 and A2, epiwulignan A1, enshicin, epienshicin, and dimethylwulignan
A1; and triterpenoids: kadsuric acid and schisanhenric acid. Additionally, the content of
selected dibenzocyclooctadiene lignans, phenolic acids, and flavonoids in the methanolic
extracts of the biomass was estimated. The maximum contents of lignans, phenolic acids,
and flavonoids were 873.71, 840.89, and 421.98 mg/100 g dry mass (DM), respectively. The
highest content was noted for schisantherin B (maximum: 622.59 mg/100 g dry weight)
and schisantherin A (maximum: 143.74 mg/100 g DM) among lignans; neochlorogenic
acid (maximum: 472.82 mg/100 g DM) and caftaric acid (maximum: 370.81 mg/100 g
DM) among phenolic acids; and trifolin (maximum: 138.56 mg/100 g DM) and quercitrin
(maximum: 122.54 mg/100 g DM) among flavonoids. The content of lignans obtained in
in vitro cultures was compared with the content determined in extracts from the leaves
of the parent plant. Their content was found to be 13 times higher. Similarly, for pheno-
lic acids—the content in in vitro cultures was more than six times higher, and one time
higher for flavonoids [32]. Further studies on in vitro cultures of S. henryi are currently
underway. Several experiments have been conducted to determine the biological activity
profile of in vitro cultures. The production of secondary metabolites was also optimized
and determined in microshoot cultures grown in special PlantFormTM (PlantForm, Sweden)
bioreactors (Figure 6), callus cultures, and suspension cultures have been stimulated by the
addition of elicitors and biosynthetic precursors [unpublished].
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8. Conclusions

S. henryi is an endemic species whose medicinal properties are recognized in TCM.
The available scientific literature shows that the chemical composition of S. henryi is partly
similar to that of S. chinensis because of the presence of specific dibenzocyclooctadiene lig-
nans. S. henryi extracts also contain other compounds belonging to the group of terpenoids,
polyphenols, and aryltetralin and dibenzylbutane lignans. Few studies on the biological
activity of S. henryi leaf and shoot extracts have demonstrated their anticancer activity
(against lymphoma, leukemia, and cervical cancer cell lines) as well as neuroprotective,
antioxidant, and anti-inflammatory effects. The high therapeutic potential of this species is
associated with the biological activity of compounds belonging to the group of dibenzocy-
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clooctadiene lignans. Research in the field of plant biotechnology, which indicates a high
biosynthetic potential of in vitro cultures of S. henryi, is also extremely interesting. The
conducted research is based on the cultivation of S. henryi cultures on various types of solid,
the addition of precursor compounds and elicitors, aimed at increasing the accumulation
of secondary metabolites with a wide therapeutic potential.

The main problem related to the breeding of S. henryi is the acquisition of plant
material for research, which, as previously mentioned, is related to the natural occurrence
of S. henryi. Research on this species is most often carried out by Chinese research teams,
due to the ease of obtaining material for research. Cooperation with the company Clematis,
which deals with the cultivation of S. henryi, gives us the opportunity to conduct research
on the species S. henryi in European countries.

In addition, the little knowledge in European countries about S. henryi and other
species of the genus Schisandra is a big problem, which is associated with a small amount
of research on the biological activity of S. henryi.

The research team from the Department of Pharmaceutical Botany of the Jagiellonian
University Medical College focuses on continuing research on the biological activity of
S. henryi extracts, both from the parent plant material and material obtained by biotechnol-
ogy methods. Comparative analyzes are carried out to answer the question of whether
the material obtained from in vitro cultures has a greater therapeutic potential than the
material from the parent plant.

On the basis of this review, S. henryi, as one of the least-known representatives of the
genus Schisandra, certainly deserves greater attention from scientists worldwide to better
understand its chemical composition and pharmacological properties.
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