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Abstract: Mobilization of heavy metals in the environment has been a matter of concern for several
decades due to their toxicity for humans, environments, and other living organisms. In recent years,
use of inexpensive and abundantly available biosorbents generated from fibrous plant-based food-
waste materials to remove heavy metals has garnered considerable research attention. The aim of this
review is to investigate the applicability of using fibrous plant-based food waste, which comprises
different components such as pectin, hemicellulose, cellulose, and lignin, to remove heavy metals
from wastewater. This contribution confirms that plant-fiber-based food waste has the potential
to bind heavy metals from wastewater and aqueous solutions. The binding capacities of these
biosorbents vary depending on the source, chemical structure, type of metal, modification technology
applied, and process conditions used to improve functionalities. This review concludes with a
discussion of arguments and prospects, as well as future research directions, to support valorization
of fibrous plant-based food waste as an efficient and promising strategy for water purification.
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1. Introduction

“Heavy metals” are associated with environmental pollution, food contamination,
and toxicity and have adverse effects on terrestrial and aquatic ecosystems and animal and
human health [1,2]. Hazardous heavy metals and metalloids, such as arsenic (As), cadmium
(Cd), chromium (Cr), lead (Pb), and mercury (Hg), and several essential heavy metals, such
as copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), and zinc (Zn), above threshold
levels, have been identified as priority contaminants and one of the key environmental
issues of global concern over the last several decades due to their mobility in terrestrial and
natural aquatic ecosystems and their carcinogenic nature [3,4]. Municipal and industrial
wastewaters frequently include a variety of heavy-metal ions, posing a serious threat to
the aquatic ecosystem and environment [5]. This is because heavy metals are stable and
persistent environmental pollutants due to their nonbiodegradability and high toxicity [6,7].
Furthermore, they possess a tendency to bioaccumulate and biomagnify through the
food chain, causing serious threats to humans and other living organisms directly and
indirectly [8]. Consequently, metal-polluted wastewater must be treated prior to discharge
into the environment. Table 1 lists several common heavy metals, their sources, and
associated health problems.
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Table 1. Sources of toxic heavy metals, permissible limits (WHO), and their health effects.

Heavy Metal Sources Permissible
Limit (mg/L) *

Adverse Effects on Human
Health at

High Concentrations
References

Arsenic
(As)

Mining, coal combustion, metal
smelting, phosphate fertilizers,

herbicides and insecticides,
semiconductor industries

0.01

Diabetes, cancer (lung, bladder, skin,
liver, kidney), muscular weakness,

nausea, vomiting, diarrhea,
encephalopathy,

neurological disorders

[9,10]

Cadmium
(Cd)

Metal plating/processing, mining,
battery-recycling plants, alloy

industries, cigarette smoke,
pigments, stabilizers

0.003

Bone and kidney damage; cancer of
the skin, lungs, liver, and bladder;

kidney damage; renal
disorder; emphysema

[11]

Chromium (Cr)

Steel fabrication, chemical and
textile industries, paints

and pigments,
ceramics/wood-treatment plants

0.05

Nausea and headache, liver and
kidney damage, vomiting and

diarrhea, skin irritation, circulatory
effects, lung tumors/cancer,

pulmonary fibrosis

[12]

Cobalt
(Co)

Leather, jewelry, children’s toys,
orthopedic and other

implanted devices
0.1

Thyroid and liver damage,
asthma-like allergies, heart

damage, carcinogenesis
[13,14]

Copper
(Cu)

Metal smelting, mining, tanneries,
pigments and paints, fertilizers,

cleaning, plating baths
2.5 Kidney and liver damage, Wilson’s

disease, anemia, insomnia [15]

Iron
(Fe)

Cosmetics, pigments, batteries,
pharmaceuticals and

medical drugs
0.3

Brittle nails, constipation,
depression, gastrointestinal

complaints, headache, tinnitus
[16–20]

Lead
(Pb)

Battery manufacturing, smelting
industries (mining, steel,

automobile, battery, paint, etc.),
ceramic and glass industries,

ammunition, bronze products
and pipe

0.05

Kidney and brain damage, muscles
(ecological balance), anemia,

anorexia, circulatory- and
nervous-system disease

[12,15]

Manganese
(Mn)

Rocks, soil, water, steel and
iron production 0.5 Motor dysfunction syndrome,

Parkinson’s disease, memory loss [21]

Mercury
(Hg)

Cosmetic preparation, oil refining,
paper and pulp industries, rubber

processing, thermometers,
batteries, paints, pharmaceuticals

and medical drugs

0.001

Neurological damage, nausea,
neurasthenia, fever, gastrointestinal

disease (vomiting, diarrhea),
paralysis, rheumatoid arthritis,

blindness, anorexia

[22,23]

Nickel
(Ni)

Chemical and electrochemical
industries, silver refineries,

stainless-steel manufacturing,
electroplating, mining, paints, ink

formulation units

2.0
Lung cancer, dermatitis, skin

irritation, nasopharyngeal tumors,
nausea, chronic asthma, coughing

[24,25]

Zinc
(Zn)

Paints and pigments,
pharmaceuticals, cosmetics,

galvanizing, insecticides
5.0

Dehydration, anemia and increased
thirst, depression, lethargy,

gastrointestinal disease (vomiting,
diarrhea), dizziness, skin irritation,

nausea, osteoporosis,
neurological signs

[24]

* The World Health Organization (WHO) has established guidelines for drinking-water quality, including limits
for heavy metals and metalloids. The WHO limits for heavy metals in drinking water are typically expressed
in units of milligrams per liter (mg/L) or micrograms per liter (µg/L), depending on the specific metal. The
permissible limits for heavy metals in drinking water set by the WHO are generally based on average adult body
weight but are designed to be protective for the general population, including children and vulnerable individuals,
by incorporating safety factors to account for potential variability in individual sensitivity.
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Several technologies have been employed for eliminating heavy metals from wastew-
ater, contaminated aquatic media, and industrial effluents over the last three decades,
including chemical precipitation [26], solvent extraction [27], coagulation–flocculation [28],
advanced oxidation [29], membrane filtration [30], reverse osmosis [31], ion exchange [26],
ozonation [32], photocatalysis [33], adsorption [34,35], biosorption/bioaccumulation [36],
bioleaching [37], phytoextraction using hydroponic systems coupled with bioremedia-
tion [38], phytofiltration [39], electroremediation [34], etc. However, there is no single best
method to provide adequate treatment, as each treatment has its own distinct benefits and
shortcomings, not only in terms of cost but also in terms of consistency, efficacy, practicabil-
ity, viability, and operational difficulties (Table 2) as well as environmental impact [40].

Table 2. Advantages and limitations of common technologies used for the removal of heavy metal
from wastewater.

Technology Mechanisms of
Action Advantages Limitations References

Adsorption
(Commercial

Activated Carbon)

Formation of Van der
Waals forces

Electrostatic attraction
Covalent bonds

Precipitation

Easy process
Broad range of

metal-binding capacity
Suitable for a wide pH range

Low cost
Available

Can be regenerated

Chemicals for desorption
are needed

Production of waste products
Rapid saturation

Not selective

[41]
[42]

Biological Methods

Heavy metals binding to
the surfaces of cells

Translocation of heavy
metals into cells

Heavy-metal reduction

Process can be aerobic
and/or anaerobic

Easy process
Cost-effective

High efficiency
High removal of biochemical

oxygen demand and
suspended solids

A large number of species
can be used in mixed or

pure cultures
Efficiently eliminates organic
matter: NH3, NH4, iron, etc.

Favorable environment
is required

Complex mechanisms
Slow process

Low biodegradability of
specific molecules

Sludge foaming and bulking
Microbial culture

composition may change
Knowledge of enzymatic

processes is required

[3]

Chemical Coagulation

Coagulants form
multicharged polynuclear

complexes
Produces quick-forming,
dense, and rapid-settling

flocs to remove suspended
solid pollutants

Coagulation occurs when
particles in colloidal

suspension in
water/wastewater

are destabilized

Cost-effective
Produces sludge with good

settling and dewatering
characteristics

Suitable for large-scale waste
Easy process

Mixed
physicochemical process

Should be combined with
other methods

Large consumption of
chemicals

Disposal problems
Low removal of arsenic

pH dependency
Requires adjunction of

non-reusable chemicals such
as coagulants or

aid chemicals

[40]
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Table 2. Cont.

Technology Mechanisms of
Action Advantages Limitations References

Chemical Precipitation

Reaction between
chemical reagents (such as

iron salt, lime, and
limestone) and metal ions

to form
insoluble precipitates

Easy process
Inexpensive

Most metals can be removed
Adopted to

high-pollutant loads

Sludge dewatering and
disposal remain problems

and lead to extra costs
pH dependency

If the metals are complexed,
an oxidation step is required

Ineffective in heavy-metal
treatment at

low concentrations

[43]

Electrocoagulation

The electric current
destabilizes suspended

particles and neutralizes
the electric charge of the
pollutants to coagulate

them together

Easy process
Can even settle small

colloidal particles
Efficiency is around three

times higher than
chemical coagulation
Low chemical usage

Pure metals can be obtained
Rapid and

well-controlled process
Less sludge

Effective for certain metal
ions (such as Cu2+ and Cr6+)

Suitable for medium- and
small-sized communities for

water remediation

High capital and a
running investment

Requires an expensive
electrical supply and some

chemicals such as salt
and coagulant

Anode passivation and
sludge deposition on

the electrode
Post-treatment may

be required
Requires regular
replacement and

maintenance of electrodes
Initial pH should

be considered

[24]
[3]

[40]
[42]

Fenton-Like Oxidation

The hydroxyl radicals
(.OH) generated from

Fenton oxidation (Fe2+ +
H2O2) can remove

heavy metals

High activity
Fast reaction and

rapid process
Mild reaction conditions

Rusting
Functions with a narrow

pH range
High operational costs

Low
water-treatment capacity
Secondary pollution from

additional chemicals

[41]

Flotation

A gravity-based
separation process:

metal-ion separation
forms a liquid phase by

bubble attachment

High metal selectivity
High removal efficiency

High overflow rates
Low detention periods

Production of
concentrated sludge

Suitable for primary cleaning
Mixed physicochemical

process
Wide range of collectors

(ionic or not ionic)

High initial capital cost
High maintenance and

operation costs
Formation of byproducts

pH dependency
High energy requirement

Chemicals required to
control the relative

hydrophobicity between
particles and to reach proper

froth characteristics

[40]



Molecules 2023, 28, 4205 5 of 21

Table 2. Cont.

Technology Mechanisms of
Action Advantages Limitations References

Ion Exchange

Reversible interchange of
ions between the solid

and liquid phases
Ion exchange occurs

between divalent metal
cations (M2+) and
functional groups
(−COOH, −OH)

Fast kinetics
High removal ability

Selective removal of metal
High quality of
metal removal
Easy process

Can be applied to both
continuous and batch flow

Can be combined with other
techniques, such as

precipitation and filtration

Only appropriate for
low concentrations

Highly sensitive to pH
Adsorbents require

regeneration or disposal
Secondary pollution

Synthetic resins
are expensive
Fouling on ion

exchange media
Low binding affinity
Rapid saturation and
clogging of reactors

Saturation of the cationic
exchanger before ionic resin

Beads easily fouled by
particulates and organic

matter; requires
physicochemical

pretreatment (carbon
adsorption and sand

filtration) to
remove contaminants

[34]

Membrane Filtration

Based on the particle sizes
of the pores of the

membranes and the size
of the heavy metal to

be removed

Space-saving
Less sludge production

Requires a lower amount
of chemicals

Wide range of membranes
Simple and rapid process

High energy consumption
Membrane restoration

is required
High investment cost

Less output
Membrane is

application-dependent
Not effective at low
feed concentrations

[40]
[44]

Photocatalysis

An oxidation process
Having strong oxidizing

power, photocatalysts can
destroy heavy-metal

complexes and free them
from the metal ions, and

are simultaneously
capable of oxidizing and

degrading organic
complexes

Waste is less harmful
Removes metals and organic

pollutants simultaneously
Little or no consumption

of chemicals
Rapid degradation

Pollutant mineralization

Still limited to
laboratory scale
Long duration

Technical constraints
Economically unfriendly

Byproduct formation
Less output

[24]

Among them, sorption of heavy metals from aqueous media is hailed as a promising
and frequently employed technique due to its high removal efficiency for metal ions, even
at trace concentrations, and ease of operation compared to conventional techniques [45].
However, use of sorption is limited due to the high cost and insufficient regeneration of
frequently used adsorbents such as commercial activated carbon [34,35]. Both non-plant-
and plant-based materials are employed as low-cost adsorbents. Zeolites, clay, chitosan,
red mud, dairy sludge, and metal oxides are all used as adsorbents in non-plant-based
materials [46]. Prospects for using plant-based waste as adsorbents, including industrial
byproducts and agricultural waste, are deemed highly promising [47]. On the basis of the
theories of a “circular bioeconomy” and “green chemistry”, transformation of agricultural
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waste and residues into products with added value is viewed as a cheap, renewable,
abundantly accessible, and ecologically beneficial process [47].

Various fibrous plant-based food biomasses have been employed as precursors for
production of adsorbents, such as plant leaves [48], lentil husks [49], agricultural peels [50],
coconut biomass [51], etc. However, they need to be treated or modified before being used
as adsorbents for metal ions. This is due to the fact that application of untreated plant
waste may result in a number of problems, such as decreased sorption capacity, increased
biological and chemical oxygen demand, and an increase in total organic carbon due to
the discharge of soluble organic carbon remaining in the plant materials [52]. Thus, while
application of biosorption for removal of hazardous metals using inexpensive raw materials
has attracted substantial interest, various obstacles must be solved before these materials
can be employed commercially. On the other hand, various food and agricultural waste
are created globally and could be used as soil supplements to improve soil health and crop
yield [53]. However, direct application of such waste may endanger soil health, particularly
soil chemical and microbiological characteristics [54]. Bioconversion of agricultural and
food waste into nonhazardous and stable soil additives is therefore a potential option.
This would not only decrease the dangers connected with environmental burdens but also
assure safe disposal and use of the end product as sustainable soil additives [55].

Food waste results in roughly 20 million tons (Mt) of CO2-equivalent GHG emissions
annually [56]. According to a recent estimate by the Food and Agricultural Organization
(FAO), the worldwide food-waste market is valued at over 750 billion USD annually [57].
Forty percent of domestic food output is wasted annually in the United States and Canada,
amounting to 165 billion and 27 billion USD, respectively [58]. In this context, recycling or
reusing fibrous plant-based food waste for developing affordable purification technology
in the water, soil, and food industries could be an attractive component of circular bioe-
conomies as well as provide greater environmental benefits. Recently, plant fibers produced
from agricultural waste have been characterized as excellent adsorbents for environmental
remediation of effluents [59–61].

Plant fibers are found as structural elements in all higher plants [62]. Examples of
plant fibers mainly include lignocellulose-based materials made of lignin, hemicellulose,
and cellulose; when mixed with polyphenols, pectin, and proteins, they are utilized for
sorption of trace metal ions [63] and dyes [64] as well as oil removal [65] from water. The
components of fibers vary not only in physiological activity and chemical structure from
one source to another but also in their capacity to bind essential elements such as Ca, Cu, Fe,
and Zn [66] and heavy metals such as As, Cd, Hg, and Pb [67]. The performance of fibers
depends on several factors: physicochemical parameters, functionality, and modification
technology to improve functionality [68,69]. Fibers are found in plant-based foods such as
nuts and seeds (beans, split peas, soybeans, corn, sunflowers, barley, oats, wheat, almonds,
pumpkins, lentils, etc.), legumes or vegetables (cauliflower, carrots, broccoli, celery, cab-
bage, turnip greens, brussels sprouts, potatoes, artichokes, eggplants, beets, cauliflower,
endives, turnips, fennel, onions, leeks, rutabagas, etc.), and fruits (guavas, mangoes, straw-
berries, pomegranates, bananas, prunes, apples, raspberries, pears, avocados, blackberries,
oranges, pineapples, etc.). Thereby, plant-based food wastes contain plant fibers. Fiber is
a blanket term that applies to any type of carbohydrate that humans cannot digest. In a
characterization study of dietary fiber lignins from 11 fruits and vegetables using the DFRC
method, Bunzel and Seiler [70] found that apples, kiwis, pears, asparagus, carrots, curly
kale, kohlrabi, radishes, small radishes, rhubarb, and spinach contained 9.8, 11.9, 12.9, 18.0,
10.3, 33,4, 6.2, 12.6, 18.3, 26.7, and 28.5% insoluble fiber, respectively. Natural fibers of plant
origin (plant fibers) can come from different parts of a plant.

The purpose of this review is to highlight potential applications and research in
the field of biosorption, utilizing a variety of low-cost materials, most notably fibrous
plant-based food waste, including their biomass parts and fiber components, for heavy-
metal remediation from wastewater. Nevertheless, the influences of fiber structures and
properties on the sorption process, the mechanisms of their actions, and the regeneration
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capabilities of fibrous plant-based food waste are reviewed. Finally, the main challenges
and prospects for heavy-metal sorption using fibrous plant-based food waste in water or
soil are highlighted for future research directions. This review specifies that it encompasses
research published between 1997 and 2022 and that the search criteria included “fibrous
plant-based food waste”, “biosorbent”, “plant fibers”, “heavy metal”, and “wastewater”.

2. Fibrous Plant-Based Food Waste for Sorbing Heavy Metals
2.1. Plant-Fiber Components

Plant fibers are found as structural elements in agricultural crops and in their botan-
ical parts, such as nuts, grains, or seeds (beans, split peas, soybeans, corn, sunflowers,
barley, oats, wheat, almonds, pumpkins, etc.); lentils, legumes, or vegetables (cauliflower,
carrots, broccoli, celery, cabbage, turnip greens, brussels sprouts, potatoes, artichokes, egg-
plants, beets, cauliflower, endives, turnips, fennel, onions, leeks, rutabagas, etc.); and fruits
(guavas, mangoes, strawberries, pomegranates, bananas, prunes, apples, raspberries, pears,
avocados, blackberries, oranges, pineapples, etc.). Plant fibers have a complex structure
that is really made up of a cell wall and a central lumen channel. The middle lamella,
the primary wall, and the secondary wall are the three components that make up a cell
wall [71]. The primary wall is made up of disorganized cellulose in a pectin, hemicellulose,
and lignin matrix. The secondary wall is composed of crystalline cellulose and is separated
into three sections: the exterior, middle, and interior secondary walls [72]. The chemical
components of plant fibers, including cellulose, lignin, hemicellulose, pectin, and wax, can
be different depending on their sources and origins [71]. In food science, cellulose, lignin,
pectin, and hemicellulose derived or extracted from fibrous plant foods or contained in
plant foods or plant-fiber matrices are designated as cellulose fiber, lignin fiber, pectin fiber,
and hemicellulose fiber, respectively.

The main component of plant cells is generally cellulose, which is arranged in microfibrils
and surrounded by hemicellulose, which includes xylans, mannans, glucomannans, galactans,
and arabinogalactans as well as lignin, pectin, and trace amounts of protein [59,73]. Fibers
include functional groups such as carboxyl, phenolic, lactonic, and hydroxyl groups that bind
to metals and remove them from aqueous environments. These functional groups interact with
metal ions and act as hydrogen-ion replacements. Over a wide pH range, the process includes
electrostatic and dispersive interactions between cations and the acidic surface area [66]. Feng
and Guo [74] showed how Pb2+, Cd2+, and Ni2+ ions were attached to modified orange peel
by inclusion of carboxyl and hydroxyl groups. The constancy of metal-fiber complexes varies
with the type of metal, the experimental settings, the fiber sources, and other factors, according
to published studies [59,66]. Al-Ghouti and Li [75] revealed that raw date pits may be utilized
to remove Cu2+ and Cd2+ through the processes of complexation, coordination, chelation, ion
exchange, and adsorption.

2.2. Fibrous Plant-Based Biomass Parts

The different parts of fibrous plant-based biomasses, considered low-cost potential
metal biosorbents, are leaves, stems, stalks, roots, bagasse, seeds, shells, peels, husks, bark,
and fibers [46,76,77]. Various plant fiber-based biomasses have been widely used as natural
materials, pretreated or chemically modified, for heavy-metal removal from aqueous media,
including wastewater and aqueous solutions. These are carrot residue [78]; potato peel [79];
sunflower stalks and leaves [80]; coconut shells [81]; seed shells [82]; coffee husks [83]; sugar-
beet pulp [84,85]; crude olive stones [86]; olive-oil waste and hydrolyzed olive cake [87,88];
apple peel beads [89]; citrus peels [90], the shells of hazelnuts and almonds [91]; physic
seed hulls [92]; rice husks [93]; neem bark [94]; tea waste [95]; sunflower, potato, canola and
walnut shells [80]; sugarcane bagasse [96]; bamboo charcoal [97]; pistachio-hull waste [98];
cashew-nut shells [99]; agave bagasse [100]; Rosa damascena leaf powder [101]; ajwa date
pits [102]; chemically modified orange peel [74]; banana peel and chemically modified
banana peel [103]; orange and potato immobilized on sodium alginate beads [104]; olive-oil
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waste and hydrolyzed olive cake [87,88]; banana thrunk fibers [105]; and cellulose fibers
extracted from pineapple leaves [106] (Table 3).

Table 3. Commonly used fibrous plant-based food waste for heavy-metal removal from wastewater
and aqueous solutions.

Sorbents Heavy Metals
Removed

Sorption
Conditions

Modification
Method

Mechanisms
of Action

Sorption
Capacity (mg/g) References

Artocarpus
nobilis (Peel) Ni2+

pH of 4
90 min
175 ◦C

HNO3 Ion exchange Ni2+: 0.012 [107]

Black Oak
(Bark) Hg2+

pH of 2–10
20–150 min

Adsorption dose
of 20–60 mg/L

None

Complexation,
adsorption on

surface, diffusion,
and ion exchange

Hg2+: 400 [81]

Coconut (Shell) Cd2+, Pb2+

pH of 2–10
20–150 min

Adsorption dose
of 20–60 mg/L

None

Complexation,
adsorption on

surface, diffusion,
and ion exchange

Cd2+: 285
Pb2+: 263

[81]

Cantaloupe
(Peel)

Cd2+, Cu2+,
Pb2+ pH of 5–7 Acrylic acid Ion exchange and

complexation

Cd2+: 45.4
Cu2+: 33.1
Pb2+: 143.3

[108]

Carrot
(Residue)

Cr3+, Cu2+,
Zn2+

pH of 4
Initial ion

concentration of
20 to 500 mg/L

None Ion exchange
Cr3+: 1.65
Cu2+: 1.82
Zn2+: 1.45

[78]

Lemon (Peel) Cd2+

pH of 5
45 min

Initial ion
concentration of

45 mg/L
Particle size of
0.24–0.42 mm

Protonation
and HNO3

Ion exchange Cd2+: 32.5 [109]

Potato (Peel) Cu2+

pH of 6
20 min
30 ◦C

Initial ion
concentration of

150 mg/L
Particle size of 0.2

mm

None
Surface

complexation and
ion exchange

Cu2+: 0.15 [110]

Potato (Shell) Cu2+, Cd2+
pH of 6.8

200 min (Cd)
50 min (Cu)

None Electrostatic
interaction

Cd2+: 90
Cu2+: 41.7

[80]

Soybean
(Straw) Cu2+ pH of 6

60 min Citric acid Ion exchange Cu2+: 48.2–48.8 [111]

Sunflower
(Stalk and

Leaves)
Cd2+, Cu2+

pH of 6
120 min (Cd)
50 min (Cu)

None Electrostatic
interaction

Cd2+: 63.3
Cu2+: 30.3

[80]
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Table 3. Cont.

Sorbents Heavy Metals
Removed

Sorption
Conditions

Modification
Method

Mechanisms
of Action

Sorption
Capacity (mg/g) References

Tangerine (Peel)

Cd2+, Co2+,

Cr3+, Cu2+,
Mn2+, Ni2+,
Pb2+, Zn2+

pH of 5
20 min
Room

temperature
Adsorbent dose

of 1–4 g/L

Nitric acid Ion exchange

Cd2+: 0.003
Co2+: 0.01
Cr3+: 0.01

Cu2+: 0.002
Mn2+: 0.01
Ni2+: 0.01

Pb2+: 0.002
Zn2+: 0.003

[61]

Wheat (Bran) Cr6+

pH of 2–10
20–150 min

Adsorption dose
of 20–60 mg/L

None

Complexation,
adsorption on

surface, diffusion,
and ion exchange

Cr6+: 310 [81]

Wheat (Bran) As3+, Cd2+,
Hg2+, Pb2+

pH of 7
37 °C None Ion exchange

As3+: 0.98
Cd2+: 36.1
Hg2+: 39.6
Pb2+: 58.2

[112]

2.3. Factors Influencing the Sorption Efficiencies of Fibrous Plants

The capacities of biowaste-derived sorbents for metal-ion sorption are, however,
dependent on the physicochemical properties of the prepared sorbents. The most important
properties of these sorbents are cation exchange capacity (CEC), pore distribution, porosity,
specific surface area, surface functional groups, etc. [113,114]. Lyu and Wang [115] stated
that larger specific surface areas led to higher metal (Cd2+, Cu2+, Pb2+, and Zn2+) sorption
from their aqueous solutions using insoluble fiber from soybean dregs (okara). They
described that the smaller particle size of insoluble okara fiber demonstrated a higher
oil-holding capacity (OHC), CEC, and sorption capacity of heavy metals. In another
study, ultramicro-grinding of insoluble fiber from carrot pomace decreased the particle
size of the total fiber and increased its Brunauer–Emmett–Teller surface area from 0.374 to
1.835 m2/g, leading to an increase in the water-holding capacity (WHC), swelling capacity
(SC), and OHC, as well as the nitrite- and Pb2+-ion-adsorbing capacities [116]. Furthermore,
Al-Ghouti and Li [75] discovered that the volume of solute (Cu2+ and Cd2+) adsorbed
increases as the particle size of the adsorbents decreases. The crystallinity of the cellulosic
structure also affects sorption kinetics [117]. Amorphous regions have a positive correlation,
while crystalline structures have a negative correlation with heavy-metal sorption [118].
With a rise in pH, the negative charge density of a fiber surface improves, which leads to an
increase in sorption of heavy metals [119]. Higher Cd2+, Cu2+, and Pb2+ bind to biosorbents
by having more acidic functional groups and negative zeta potential [120]. Similarly, Wang
and Yang [121] observed that there is a positive correlation between efficiency of removing
heavy metals and pH, and that removal efficiency improved when the pH was increased
to 7.

Nevertheless, the biological origins of plants and types of processing have a consid-
erable influence on sorption properties. For instance, beet pectin demonstrated a higher
affinity for Pb2+ and Cu2+, while citrus pectin did so for Ni2+ and apple pectin did so for
Co2+ [122]. Requena and González [123] showed that CEC significantly varies depending
on the source of fiber; for example, CEC values of 3.5, 4.1, 2.6, 2.7, 2.6, and 1.3 meq/g
were reported for ashen agave bagasse, green agave bagasse, cabuche, prickly pear peel,
palm flowers, and the leaves of smooth amaranth, respectively. Nevertheless, sorption
capacity largely depends on solution ion strength [124]. The higher charge density of Cu2+

(116 C mm−3) results in increased ion sorption compared to Pb2+ (32 C mm−3) and Cd2+

(59 C mm−3) [120]. Several critical factors affecting sorption efficiency of heavy metals are
presented in Figure 1.
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Fiber concentration also possesses substantial effects on sorption efficiency; efficiency
of ion sorption increases linearly with increasing concentrations of fiber due to concurrent
production of more active sites (OH and COOH) on macromolecules. Sorption efficacy
may decrease beyond the optimal sorbent dose due to increased aggregation of adsorbent
molecules [120]. Pb2+ sorption increased for 21.78, 23.41, and 26.98 mg/L at various
polymer concentrations, of 1, 2, and 3%, respectively, and at a pH of 5.0, according to
Basiri and Shekarforoush [125]. Additionally, it was discovered that sorption effectiveness
changes with temperature; it increases with rising temperatures before dropping after a
period of time. Guiza [126] studied Cu-ion sorption from aqueous solutions by cellulose
from waste orange peel. That team observed that sorption was dependent on solution pH,
adsorbent dosage, contact time, metal-ion concentration, and agitation speed. According
to Pal and Giri [127], the sorption efficiency of guar gum increased at up to a temperature
of 40 ◦C and then decreased at 40 ◦C. The efficiency increased due to the possibility that a
temperature increase would enhance the ions’ mobility and mobilize more Pb2+ towards
the giant adsorbent molecules, which would then increase their contact with the surfaces of
the adsorbents. However, the efficiency dropped beyond 40 ◦C due to dominant desorption
of Pb2+ because of the increased Brownian movement [128].

2.4. Different Modification Technologies for Enhancing Sorption Efficiency

The ability of fibrous plants and their components, such as cellulose, hemicellulose,
and lignin, to remove heavy metals from effluents has been intensively studied. Cellu-
lose, as a plant-fiber component, works as a skeleton of natural plant-cell walls, whereas
lignin and hemicellulose are distributed in the fibrous plant matrix, resulting in poor
functionalities of fibers [129]. Subsequently, it is imperative to develop a suitable method
for increasing the functionalities of fibers to enhance usage of plant byproducts, such as
biosorbents [130]. The effectiveness of these materials can be enhanced through various
types of modification techniques. Several technical approaches, including mechanical,
chemical, enzymatic, and/or biological technologies, have been developed to disrupt plant
cellular integrity and isolate fibers with altered structural, physicochemical, and functional
characteristics to enhance sorption efficiency [68,69].
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Physical modification involves altering the physical structures of fibrous plant materi-
als, such as pore size and surface area, to increase their sorption capacities. Methods such as
grinding, milling, and sieving can be used to affect physical changes. Huang and Liao [131]
demonstrated that homogenization via mechanical shearing resulted in damage to the
cellulose and crystallization regions of citrus peels, as well as an increase in the specific
surface area and the total number of charged ions. Similarly, the molecules of cellulose
and lignin were destroyed and transformed into tiny molecules during a steam explosion,
increasing the sorption capacities for heavy metals [118]. Xu and Wang [132] showed
that high hydrostatic pressure may significantly enhance the ability of insoluble fibers for
water retention and swelling, oil holding and cation exchange, and glucose adsorption.
Meanwhile, the twin-screw extrusion treatment has been shown to reduce the OHC of
orange-peel fiber and increase the lead-binding ability of garlic-skin fiber [133].

Chemical modification involves treating fibrous plants with chemical reagents to
introduce functional groups to their surfaces, thereby enhancing their sorption capacities.
Using oxidizing compounds such as sodium chlorite and sodium periodate, for example, it
is possible to introduce carboxylic and hydroxyl groups. Following a chemical treatment,
Wang and Li [134] found that kiwifruit fiber treated with NaOH has greater thermal stability,
but kiwifruit fiber treated with citric acid delivers higher sorption capacities for water, oil,
bile acid, nitrite ions, and glucose. In this regard, Adegoke and Akinnawo [135] employed
numerous surface-modification treatments, such as acid, alkaline, magnetic, and grafting
modifications, for improving sorption of heavy metals, including As, Cd, Cr, Cu, Co, Fe,
Hg, Mn, Ni, Pb, and Zn. They revealed that acidic treatment mostly favors the sorption
process. It has been proven that some pretreatments, such as hydrochloric acid, tartaric acid,
sodium carbonate, and sodium hydroxide, can effectively increase the rate of heavy-metal
sorption by rice husks [136,137].

Biological modification entails treating fibrous plant materials with microorganisms
or enzymes to alter their surface properties, such as charge and hydrophobicity, thereby
increasing their sorption capacities. As a biological surface functionalization, cationic
surfactant can be applied to remediate heavy metals in wastewater, in which case, a
cationic surfactant could change the negative surface charge of a biosorbent to a positive
surface charge and would have the profound ability to uptake metal anions rather than
cations. Rastogi and Tiwari [138] used agroindustrial waste to synthesize a biosurfactant
via submerged fermentation using Bacillus haynesii, and the biosurfactant could significantly
remediate Pb2+. In addition, Dong and Du [139] implied that modified wheat straw with
polyethylenimine (a highly branched molecule containing amine groups) has a paramount
impact on Cu2+ purification from aqueous solutions. Furthermore, Chu and Zhao [140]
used Bacillus natto to ferment millet bran. As a result of degradation of cellulose and
hemicellulose by fermentation, the modified millet bran fiber developed more porous and
loose structures, which increased its sorption capacity.

In conclusion, the relationship between various types of modification techniques
and the respective components of the plant-fiber sorbent materials used for heavy-metal
sorption is complex and dependent on the specific modification technique employed, the
type of plant fiber used, and the degree of modification. The selection of an effective
modification technique for fibrous plant-based sorbent materials used for heavy-metal
sorption requires careful consideration of these factors.

3. Industrial Applications of Fibrous Plant-Based Materials and Plant-Fiber
Components for Environmental Remediation of Aqueous Solutions and Wastewater

The ability of plant-fiber components, such as pectin, to bind metals is advantageous
for removing heavy metals from aqueous systems, as reported in many studies [141,142].
Kumar and Kumar [143] produced ferrous ion-loaded pectin hydrogels for removal of
arsenic (As) from aqueous solutions. They proposed that their compound can be used as a
vehicle for water purification because of its high yield, biodegradability, and low cost [143].
Jakóbik-Kolon and Bok-Badura [144] developed calcium-crosslinked pectin (30.2% DE,
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degree of esterification) beads in combination with various biopolymers, karaya gum,
arabic gum, and xanthan for Zn removal from water; it demonstrated the best swelling
and Zn sorption at a pH of 4. In addition, Zn removal was also facilitated by physical
sorption of Zn2+ into the complex [144]. Hastuti and Hadi [145] successfully removed ~44%
of Pb from water using pectin derived from carrot peel at a pH of 6. Metal removal from
water was accomplished using a high concentration of methoxylated nopal pectin (65%
DE). After pectin treatment, more than 90% of Ca, Cu, Zn, Cr, and Ni; 67% of Pb; and 44%
of Cd were eliminated by ionic contact and polar covalent bond formation [142]. Tarmizi
and Ismail [146] performed another investigation on use of apple pectin (DE: 70–75%,
5 mg/L) and magnesium chloride (15 mg/L) at an alkaline pH (10). This mixture reduced
the turbidity of a water supply by up to 97.71% and the iron content by 92.23% but did
not significantly reduce the concentrations of other cations, such as Cd, As, Cr, and Cu.
This result is most likely due to the high esterification degree of pectin, which has a limited
number of accessible sites for cations. This is also attributed to the high content of Fe in the
untreated sample, which favored Fe removal more than would other electrolytes [146].

In another study, Shukla and Pai [147] evaluated the potential of coir, a low-cost
lignocellulosic fiber, for removal of heavy-metal ions such as Ni2+, Zn2+, and Fe2+ from
aqueous solutions. Additionally, the fiber was chemically changed by oxidization with
hydrogen peroxide before use as an adsorbent. Coir fibers were used to perform Langmuir-
type adsorption. Modified coir fibers adsorbed 4.33, 7.88, and 7.49 mg/g of Ni2+, Zn2+, and
Fe2+, respectively, compared to the 2.51, 1.83, and 2.84 mg/g by unmodified coir fibers [147].
The adsorption ability was retained only when an intermediary stage of regeneration with
a diluted NaOH solution was performed following desorption. The higher metal-ion
uptake in modified coir has been attributed to an ion-exchange process [147]. Notably,
fibers could be regenerated with alkali and reused three times with maximum efficiency,
boosting their reusability and function as a reversible ion exchanger [147]. Feng and
Guo [74] demonstrated that the adsorption capacity of modified orange peel increased
4.2, 4.6, and 16.5-fold for Pb2+, Cd2+, and Ni2+ from wastewater, respectively, compared
to that of unmodified orange peel. Furthermore, the adsorbed Pb2+, Cd2+, and Ni2+ ions
could be recovered using a 0.05 mol/L HCl solution, and the wasted sorbent could be
regenerated and reused due to immobilized behavior, which makes the biosorption process
more cost-effective. Tangtubtim and Saikrasun [148] reported that alkali-treated pineapple
fiber immobilized with polyethyleneimine could be used as a potential adsorbent to remove
Cu2+ and Pb2+ from aqueous solutions. Hu and Huang [149] investigated Pb2+, Cd2+, Zn2+,
and Cu2+ adsorption by cellulose, lignin, and hemicellulose. The results demonstrated that
the highest percentage of heavy-metal removal was achieved by hemicellulose, followed
by cellulose and lignin.

Pejic and Vukcevic [150] investigated the sorption capacity of short-hemp-fiber waste
for Pb2+, Cd2+, and Zn2+ ions in aqueous media. They demonstrated that the sorption
characteristics of hemp fibers improved by gradual reduction of the amount of lignin or
hemicelluloses in the hemp fibers via chemical treatment. Short hemp fibers can bind metal
ions (Pb2+, Cd2+, and Zn2+) from both single and ternary metal-ion solutions. The maximal
total sorption capabilities of Pb2+, Cd2+, and Zn2+ ions were the same in single solutions,
i.e., 0.078 mmol/g, while in ternary mixtures, they were 0.074, 0.035, and 0.035 mmol/g,
respectively [150]. Mongioví and Morin-Crini [151] used plant fibers of hemp and flax in the
form of felt as biosorbents to remove Al, Cd, Co, Cu, Mn, Ni, and Zn from aqueous solutions.
The flax-based felt had higher biosorption capacities with respect to the studied metals
than did the hemp-based felt. The highest removal efficiency was always obtained for Cu
ions, and the following order of Cu > Cd > Zn > Ni > Co > Al > Mn was found for both
examined biosorbents. In another study, Demirbas [152] studied adsorption of heavy-metal
ions (Co2+ and Hg2+) by modified lignin from Ailanthus altissima wood using alkali glycerol
delignification. Imran-Shaukat and Wahi [153] used various agricultural waste biomasses
to adsorb metal ions for their cellulosic constituents, such as lignin, hemicellulose, lipids,
extractives, sugars, proteins, and starch, which contain functional groups to participate in
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heavy-metal complexation. A study by Agarwal and Upadhyay [154] demonstrated that
the olive stone is capable of removing Cu2+ from effluents.

Reshmy and Philip [155] reviewed the most practical and recent information on apply-
ing nanocellulose in heavy-metal remediation from wastewater. Faster kinetics, efficiency
across a wide pH and temperature range, and low cost are the most important features of
nanocellulose. Cheng and Chen [156] stated recent developments for sugarcane bagasse
fiber and sugarcane-bagasse-fiber cellulose nanocrystals (SBFCNCs) as green materials
in manufacturing of composites and heavy-metal sorbents. They mentioned that SBFC-
NCs have a high specific surface area, chemical accessibility, hydrophilic properties, and
functionalization flexibility to enhance their sorption capacity towards heavy metals. Nev-
ertheless, cellulose, pectin, starch, guar, and xanthan gums have been used for sustainable
water treatment [157].

4. Challenges and Future Perspectives of Using Plant Fiber-Based Materials as
Heavy-Metal Biosorbents
4.1. Effects of Process Conditions on Fibrous Plant-Based Food Waste

Recent years have witnessed a boom in biosorption-related research. It is unclear, how-
ever, whether such a substantial increase in published output has appreciably increased our
understanding of the process or facilitated economic exploitation, which is so frequently the
primary motivation for such studies. Most of that research focused on characterization of
selected biomass types in adsorbing particular substances from solutions and the influences
of physicochemical factors on biosorption. Most studies focused on metals, although a
rising number also examined organic contaminants [158]. Despite the tremendous rise
in creation of various biosorbents, there are still several issues related to these materials,
including pH stability, sorption capacity, and durability, that must be addressed for future
applications [159]. Further studies could be performed to focus on the sorption mechanism
at the biosorbent–water interface.

4.2. Modification of Fibrous Plant-Based Food Waste and Process Intensification

It has been observed that modified fibers extracted from plant-based food yield better
outcomes than unmodified fibers. Different modifications, such as physical, enzymatic,
bacterial, and chemical treatments, can be used to increase fiber porosity and surface
area, thereby increasing the number of sorption sites and binding functional groups on
biosorbent surfaces [69]. A combination of multiple methods in the context of process in-
tensification should be explored for increasing heavy-metal removal efficiency and possibly
reducing costs.

4.3. Regeneration and Reusability of Fibrous Plant-Based Food Waste

Biosorption studies have been conducted for many years, but commercial use has yet
to be achieved. The lack of studies on regeneration of adsorbents and their sustainable
disposal is one of the major challenges to scaling up. Biosorption, on the other hand, may
entail many functional groups on the surface of biomasses and is frequently nonselective,
suggesting that its application to metal combinations (a frequent occurrence in waste
streams) would be troublesome. As ion-exchange resins may be produced to include a
single metal-binding functional group with a high affinity, they are more ideal for selective
recovery of target chemicals and are more predictable for particular metal ions. The lack of
selectivity and reduced resilience of plant biomass-based systems compared to ion exchange
resins are frequently highlighted as key obstacles to commercialization of biosorption [160].
Suspended biomass is ineffective and unreliable in repeated, long-term applications, and
its subsequent separation from treated effluents is problematic. Immobilized and/or
granular biomass preparation may address the robustness and separation issues, but not the
specificity issue. In addition, it should be highlighted that (bio)sorption technology moves
sorbate from one medium to another, which poses concerns regarding safe disposal of
loaded biosorbents, sorbate recovery, and regeneration or replacement of biosorbents [158].
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The creation of particular metal-binding molecules and/or tailored highly specific fibrous
plant-based biosorbents is hailed as a promising research direction; however, practical
application appears to have made little progress.

4.4. Effects of Possible Competition between Heavy Metals on Their Sorption

Most studies were conducted using one model heavy metal at a time; however, the
presence of a single heavy metal in nature, such as wastewater or polluted water, is a rare
situation. For an effective ion-exchange process, it is essential to comprehend the mecha-
nism of competitive sorption of coexisting metals on biosorbents [161]. Additionally, use of
deionized water as an experimental solution for sorption of heavy-metal ions rather than
the more-complex river water or wastewater is another limitation in sorption studies [162].
The effect of multiple metals in real wastewater and polluted soil on the kinetic rate of
sorption can be further investigated using plant fibers.

4.5. Possible Practical Applications of Fibrous Plant-Based Food Waste in Water Purification

Considering the sorption capacity of fibrous plant-based food waste, use of those
fibers for water remediation, such as removal of chemical residues, oil spills, and organic
wastewater, could be a substantial and cost-effective technique to minimize pollution of
aquifers with metal ions, marine ecosystems with oil spills, and water bodies with organic
dyes. Moreover, plant-fiber components, such as the pectin derived from apples, could be
used to lower turbidity of water supplies or to reduce iron and arsenic ions [146]. Therefore,
further studies could be performed on sorption of Fe or As using fiber-based sorbents in
the potable water of Asia, such as in Cambodia, Afghanistan, China, Japan [163], Nepal
or Bangladesh [164], and India [165]; in the surface water and groundwater of Australia,
Brazil, and Mexico for gold mining [163,165]; to minimize deposition of As in the sediments
of natural reservoirs, such as the Haiwee Reservoir (Olancha, CA) [166]; etc.

4.6. Possible Practical Applications of Fibrous Plant-Based Food Waste in Remediation of
Heavy-Metal-Polluted Soil

Sorption of metal ions by fibrous plant-based food waste could be an interesting
option for treatment of metal-polluted soil, soil leachates, or groundwater. In a study,
cocoa shells, a byproduct of the chocolate industry and rich in fibers, proteins, polyphenols,
methylxanthines, etc., were used as an efficient natural adsorbent to remove Pb and other
metals (Cu and Zn) from acid soil leachates [167]. The fibers of cocoa shells are mainly
composed of pectin and cellulose [168]. Those results showed that around 1060–2730 mg
Pb/kg could be removed from contaminated soil leachates [167]. This demonstrated that
the uptake of ions in cocoa shells is dominated by ion-exchange reactions with Ca, Mg, and
K ions and protons. The carboxyl and amine functional groups played a key role in the Pb
uptake process. Derakhshan-Nejad and Jung [169] used raw rice husks and maple leaves
for agricultural soil purification from Pb, Cu, Cd, and Zn using immobilization techniques.

Yang and Li [170] used extracts from food wastes (pineapple peel, lemon peel, grape-
fruit peel, and gardening crab-apple fruit) to develop a two-stage sequential washing
method (extracts and/or citric acid coupled with extracts) for facile remediation of metal-
contaminated agricultural soil. The removal mechanisms of Cd and Cu in soil and eluents
by pineapple-peel washing agents and residues are attributed to acid activation, cation
exchange, and complexation between metal ions and carboxyl groups.

5. Conclusions

Heavy-metal sorption is a promising approach due to its ease of use and excellent
removal efficacy over a wide pH range. However, preparing suitable sorbent materials can
be expensive, and some, such as commercially activated carbons, cannot be regenerated
after use, making large-scale applications unsustainable. Conversion of fibrous plant-based
food waste into low-cost sorbents is a renewable and ecologically benign strategy based
on a “circular bioeconomy” and “green chemistry”. However, untreated plant waste can
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reduce sorption capacity, increase biological and chemical oxygen demand, and increase
total organic carbon due to release of soluble organic carbon from plant materials. Fibrous
plant-based food wastes and fibers extracted from nuts, cereals, fruits, and vegetable waste
materials could be excellent sorbents for eliminating several detrimental and poisonous
compounds, such as heavy metals, from wastewater and aqueous solutions. Thus, the
use of fibrous plant-based food waste as biosorbents for heavy-metal remediation shows
tremendous promise as a cost-effective and environmentally friendly water purification
solution. To investigate biosorption technology on an industrial scale, however, several
challenges, including pH stability, sorption capacity, durability, and regeneration of ad-
sorbents, must be overcome. Further study should focus on optimizing binding capacity
and process conditions to maximize efficacy. Certainly, this review article contributes to
the field by providing an insight of the potential of using fibrous plant-based food waste
as biosorbents for removal of heavy metals from effluents. It confirms that this waste can
bind heavy metals and provides valuable insights into the factors that influence its binding
capacity, such as the waste’s source, its chemical structure, and the type of metal.
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