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Abstract: Two neutral copper(I) halide complexes ([Cu(BTU),X], X = Cl, Br) were prepared by the
reduction of the corresponding copper(Il) halides (chloride or bromide) with a benzoylthiourea (BTU,
N-(3,4-diheptyloxybenzoyl)-N’-(4-heptadecafluorooctylphenyl)thiourea) ligand in ethanol. The two
copper(I) complexes show a very interesting combination of 2D supramolecular structures, liquid
crystalline, emission, and 1D ionic conduction properties. Their chemical structure was ascribed based
on ESI-MS, elemental analysis, IR, and NMR spectroscopies (1H and 13C), while the mesomorphic
behavior was analyzed through a combination of differential scanning calorimetry (DSC), polarizing
optical microscopy (POM), and powder X-ray diffraction (XRD). These new copper(I) complexes
have mesomorphic properties and exhibit a hexagonal columnar mesophase over a large temperature
range, more than 100 K, as evidenced by DSC studies and POM observations. The thermogravimetric
analysis (TG) indicated a very good thermal stability of these samples up to the isotropization
temperatures and over the whole temperature range of the liquid crystalline phase existence. Both
complexes displayed a solid-state emission with quantum yields up to 8% at ambient temperature.
The electrical properties of the new metallomesogens were investigated by variable temperature
dielectric spectroscopy over the entire temperature range of the liquid crystalline phase. It was found
that the liquid crystal phases favoured anhydrous proton conduction provided by the hydrogen-
bonding networks formed by the NH ... X moieties (X = halide or oxygen) of the benzoylthiourea
ligand in the copper(I) complexes. A proton conductivity of 2.97 x 1077 S-cm™~! was achieved at
430 K for the chloro-complex and 1.37 x 107® S.cm™1 at 440K for the related bromo-complex.

Keywords: liquid crystals; copper(I); luminescence; columnar phase; ionic conductivity; dielectric
spectroscopy; benzoylthiourea

1. Introduction

Over the last few years, we have seen an increase in the development and manufacture
of materials for emission applications (OLEDs, luminescence-based sensors, etc.). In this
respect, the search for new emitting materials have led to low-cost copper(l) complexes,
which can show exceptional luminescent properties, including thermally activated delayed
fluorescence (TADF) and high emission efficiencies of nearly 100%, by using both singlet
and triplet excitons, despite small spin-orbit coupling [1-8]. Copper represents a cheaper
alternative to that offered by platinum or iridium (commonly used in practical lighting ap-
plications) due to its higher natural abundance (27 ppm) as well as lower production costs.
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Most of the luminescent copper(I) complexes developed so far are based on heteroleptic
tetracoordinate cationic copper(l) with phosphine ligands and diimine nitrogen-containing
ligands [9,10]. Moreover, most of the reports on copper(l) complexes with sulfur donor
ligands are limited to their structural aspects and their biological properties, while studies
regarding their photochemical properties are scarce [11-18]. Unlike the cationic analogues,
the photophysical properties of mononuclear neutral copper(l) compounds have not been
well investigated. Current research indicates that the development of neutral copper(I)
complexes is crucial for achieving high phosphorescent radiative rates from these materials
and thus for the realization of highly-efficient emission-based devices [19-21]. On the
other hand, luminescent liquid crystalline compounds (LC) provide anisotropic long-range
order and thus polarized emission that should improve the performance parameters of
electro-optical devices. Although the copper(I) ion can give complexes with low coordi-
nation numbers (2—4) suitable for the stabilization of LC phases, metallomesogens (liquid
crystals based on metal complexes) composed of copper(I) complexes are quite rare, unlike
other d!° metals. The LCs based on copper(I) complexes reported so far are limited to
several classes of ligands related to alkylthiolates [22], isocyanides [23-27], biquinoline [28],
phenantrolines, azamacrocycles, or Schiff bases derived from 2-iminopyridines [29,30], giv-
ing either mono- or dinuclear two- or tetra-coordinate complexes [31]. The cyclic trinuclear
copper(I) complexes with pyrazolate type ligands show interesting emission properties and
highest absolute quantum yields (42%) [32,33]. Several other structural types, including
the ionic columnar metallomesogens formed by three-coordinate copper(I) complexes
with bis(1-pyrazolyl)ethyl ether ligands reported by Lin et al [34]., the first example of a
three-coordinate copper(l) metallomesogen, have been proposed.

In this work, we report a new class of neutral copper(I) halide complexes (chloride or
bromide) with benzoylthiourea (BTU) ligands that combine, in a successfully appealing
manner, the 2D supramolecular structures and the liquid crystalline, emission, and 1D
ionic conduction properties [35]. This is the first example of anhydrous proton conduction
evidenced for a discotic liquid crystal based on a copper(I) metallomesogen provided by
the hydrogen-bonding networks formed by NH ... X moieties (X = halide or oxygen) of
the acylthiourea ligand. Nitrogen-based heterocycles are regarded as some of the best can-
didates for anhydrous proton conduction due to the formation of inter- and intramolecular
hydrogen-bonding. Liquid crystals, both pure organic or Pd(II) and Pt(II) metallomesogens,
based on related motifs (benzimidazole [36,37], triazole [38], or pyrazole [39]) have been
investigated recently. Importantly, the complex nanosegregated organization of colum-
nar liquid crystals can provide 1D nanochannels for ionic transport, in particular proton
conduction with a wide range of attractive applications in proton exchange membranes
(PEM) [40] or other electro-optical and energy-related devices [41-43].

2. Results and Discussions
2.1. Synthesis and Structural Characterization

The synthetic pathway used to prepare the benzoylthiourea ligand 1 (BTU) and its
two copper halide complexes, Cu2a and Cu2b, is depicted in Scheme 1.

The novel benzoylthiourea ligand has, at one side, two heptyloxy chains and, at the
other side, a perfluorooctyl group; it was prepared by treating the 3,4-diheptyloxybenzoic
acid with thionyl chloride in freshly distilled dichloromethane to give the correspond-
ing acyl chloride. Without any further purification, the acid chloride was treated with
potassium thiocyanate in dry acetone to provide the isothiocyanate intermediate that was
reacted with 4-perflourooctyloxyaniline to yield the benzoylthiourea compound as a white
crystalline solid. The synthetic protocol is based on the methods already described in the
literature [44—46]. The reaction between metal salts and these versatile N-acylthiourea
derivatives provides a variety of metal complexes, including both homoleptic and het-
eroleptic complexes. These ligands can act as a bidentate ligand in the monoanionic form
through the O and S atoms or as a monodentate ligand via the thione S atom in the neutral
form [47-59].
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Scheme 1. Synthesis of the benzoylthiourea ligand BTU (1) and of the copper(I) complexes (Cu2a
and Cu2b).

It is well documented that the complex redox reaction of N-acylthiourea derivatives
and copper(II) salts produce mono-, di-, or polynuclear species with halide or S-thioureato-
bridges in which the copper(Il) ion is reduced to copper(l). The geometry around the
copper(l) could be either plan-trigonal for three-coordinate species or tetrahedral for tetra-
coordinate species, proving the versatility of these organic compounds and the coordination
flexibility of the copper(l) ion [60-66]. For example, there is a growing number of reported
three-coordinate copper(I) complexes with acylthiourea ligands in which the planar trigonal
geometry with a typical butterfly-like structure is stabilized by hydrogen bonding involving
the halide ligand, the carbonyl, and the NH groups [67-71]. The same stereochemistry was
seen for organosulfur-copper(I) complexes with S5-coordinated thiosemicarbazone [72] or
thione [73]. These three-coordinate copper(I) complexes have two molecules of acylthiourea
ligands, coordinated through the thiocarbonyl sulfur atom and one halide ion, yielding
an approximately overall planar shape which, in principle, could easily lead to columnar
stacking in the liquid crystal phases [74]. However, dimerization with a sulfur-bridged
thiourea ligand can occur, yielding dinuclear tetracoordinated copper(l) complexes [60].
In our case, the results of the elemental analysis gave the CuL,X stoichiometry (L = N-
benzoylthiourea ligand). We sought additional support for the nuclearity of the copper(I)
complexes from mass spectrometry. Indeed, the electrospray ionisation mass spectrometry
(ESI-MS) patterns of the two complexes are similar and show the highest m/z values at
1867.59 for Cu2a and 1867.54 for Cu2b, assigned to [Cu+2L]" (calc. 1867.41) and at 901.39
for [L—HJ* (calc. 901.23) (Figure S10, Supplementary Materials).

The molecular structure of the two copper(l) complexes were further confirmed based
on the elemental analysis results, IR, UV-VIS, and NMR spectroscopy data. The coordina-
tion through the C=0 groups is ruled out as the position and intensity of the corresponding
stretching frequency located at 1678 cm ! in the IR spectrum of free ligand 1 are essentially
unchanged, found at 1674 cm ™!, in the IR spectra of the copper(I) complexes Cu2a and
Cu2b (Figure 1a). The coordination of the copper(I) ion to the sulfur atom of the C=S group
is confirmed by the absence in the IR spectra of complexes [71] of the medium intense band



Molecules 2023, 28, 4196

4 0f 20

assigned to vc=s + vc.N, located at 1330 cm 1 in the IR spectrum of uncoordinated ligand 1,
and by the shift to higher wavenumbers, from 1145 cm ! for 1 to 1152cm ™! for Cu2a
and Cu2b of the vc.N frequency. In addition, the apparently decrease in vc-o frequencies
for the ligand and the two copper(I) complexes, compared with the ordinary carbonyl
absorption (1700 cm™1), could be indicative of the possible formation of intramolecular
hydrogen bonding with the N-H groups [75].
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Figure 1. IR spectra (a) and the low field region of the TH-NMR spectra (b) of the benzoylthiourea
ligand 1 and its copper(I) complexes (Cu2a and Cu2b).

The 'H and '3C-NMR spectra of copper(I) complexes, recorded in CDClj solvent,
support the coordination of the benzoylthiourea ligand to the copper(I) ion. The signals
assigned to the two NH singlets are significantly downfield shifted as a consequence of
the coordination of the ligand to the copper(I) metal center. A more pronounced shift
was observed for the signal assigned to the NH group located between the carbonyl and
thiocarbonyl groups of the BTU ligand that is supposed to be involved in the hydrogen
bonding with the halide ions (Figure 1b).

2.2. Characterization of Liquid Crystalline Properties
2.2.1. DSC and POM Studies

The mesomorphic behaviours of the ligand and the two copper(I) complexes were stud-
ied by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM),
while the mesophase type was assigned based on powder X-ray diffraction (XRD) stud-
ies. The thermal stability of the new compounds was investigated by thermogravimetric
analysis (TG). The resulting thermal parameters are presented in Table 1.

Table 1. Thermal parameters for the BTU ligand and its copper(I) complexes.

Compound Transitions (T/K, AH/kJmol—1) 1,2
1 (BTU) 1st: Cr 386 (45.1) Iso 373 (2.1) SmA 365 (33.2) Cr
2nd: Cr 385 (45.0) Iso 373 (2.0) SmA 364 (32.9) Cr
Cu2a 1st: g 318 Coly, 430 (22.9) Iso 429 (23.0) Col}, 318 g
2nd: g 318 Coly, 429 (22.8) Iso 428 (23.0) Coly, 318 g
Cuzb 1st: Cr 363 (7.9) Cr’ 412 (18.0) Coly, 441 (16.7) Iso 440 (16.9) Coly, 313 g

2nd: g 313 Coly, (17.1) 440 Iso 439 (17.2) Col, 313 g

1 The corresponding transition temperatures and enthalpies are given in parenthesis; Cr and Cr-crystalline phases,
g—glassy state, Iso—isotropic phase, SmA—smectic A phase, Col;, —hexagonal columnar phase; ? Data recorded
in the first and second heating runs.

In the first heating run, the DSC thermogram of the ligand shows only one ther-
mal event corresponding to the melting process, from a crystalline phase straight to the
isotropic state. However, during the cooling run, the two exothermic peaks indicate two
different transitions: at a higher temperature, the isotropic to liquid crystal phase tran-
sition, followed by a second one, at 365 K, corresponding to the crystallization process
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(Figure 2). These two transitions are reproducible at further heating—cooling cycles. The
POM observations suggested that the monotropic liquid crystalline phase of the ligand
could easily be assigned to an SmA phase based on the characteristic fan shape texture ac-
companied by the homeotropic regions (Figure 2). The related N-acyl thiourea compounds
functionalized with terminal alkoxy groups on both sides display interesting liquid crystals
properties, where the position and length of the alkyl chains have a significant impact on the
mesophase type (either nematic or smectic A and C phases) and the corresponding thermal
range. The previous studies on related partially fluorinated N-acyl thiourea compounds
indicated a similar mesomorphic behavior, with an increased stability of lamellar phases
and higher transition temperatures, a typical feature of liquid crystals possessing semi- or
perfluoro-alkylated chains [76,77], explained by the incompatibility between the aliphatic
and perfluoro-alkylated chains, as well as the rigidity of the latter [28,78-85].

—Heating \
-~ Cooling Iso-SmA

i
SmA-Cr

28l0 360 350 330 3&0 38'0
Temperature (K)

Figure 2. First DSC heating—cooling cycle for ligand 1 (inset: the polarized optical micrograph taken
at 370 K on cooling from the isotropic liquid).

The thermal behaviors of the two copper(I) complexes are very different in the first
heating run. The DSC thermogram of the chloro-complex Cu2a shows a glass transition at
318 K followed by a clearing transition at 430 K during the first heating run (Figure 3a). On
the contrary, the bromo-complex Cu2b is a crystalline solid that, during the first heating
run, displays one phase transition between two different crystalline states at 363 K, and
the melting to liquid crystal phase at 412 K, followed by the isotropization process at 441
K (Figure 3b). The clearing temperatures are related to the size of the halide ion and,
obviously, the clearing temperature of the bromo-complex is slightly higher than the one
of the chloro-complex, as expected. The DSC thermograms of both copper(l) complexes
show that, on cooling the isotropic liquid, a strong phase transition to the liquid crystal
phase occurs, as indicated by the birefringent texture observed by POM. Further cooling
did not indicate any crystallization transformations and only a glass transition could be
detected at 318 K for Cu2a and 313 K for Cu2b (temperature recorded at half inflexion
point). The following heating—cooling cycles displayed the same two-phase transitions, one
corresponding to the isotropic to Col, phase and the glass transition in the same interval
found in the first cooling run, meaning that the two copper(l) complexes remain in glassy
states at an ambient temperature.

The POM observations support this behavior as the texture developed from the
isotropic state remains virtually the same after cooling to room temperature when the
compounds solidify as a glass (Figure 4).
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Figure 3. DSC thermograms of the first and second heating—cooling cycles for complex Cu2a (a) and
for complex Cu2b (b) (10 K-min~1).
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Figure 4. POM micrographs for complex Cu2a at 425K (a) and 405K (b); textures of complex Cu2b at
435K (c) and 415K (d).

2.2.2. Thermal Decomposition

The thermal stability of the BTU ligand and the new copper(I) complexes was checked
by thermogravimetric analysis. The samples were heated in a nitrogen flow with a heating
rate of 10 Kmin~! in the 298-823 K temperature range. The TG curves are shown in
Figure 5.

There is no weight loss recorded in the 300—400 K thermal range of the TG curves,
confirming that the copper(I) complexes do not have crystallization water or other solvent
molecules. The comparison of the amount of the solid residue, estimated from the TG
curves shown in Figure 5 (found to be 7.59% for the chloro-complex Cu2a and 9.77% for the
bromo-complex Cu2b), with the calculated value for Cu,S (4.17% for Cu2a and 4.08% for
Cu2b) or for CuX (5.20% for Cu2a and 7.36% for Cu2b), and metallic copper (3.34% for Cu2a
and 3.26% for Cu2b) denotes that the decomposition of these compounds at 825 K is almost
completed and the residue is predominantly formed by CuX. The decomposition at high
temperatures (above 1100 K) in the nitrogen atmosphere of the copper(I) complexes with
sulfur containing ligands can lead to residues consisting of Cu,S, CuX, Cu, or a mixture of
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these products, as shown by XRD investigations [86,87]. Both copper(I) complexes showed
an improved thermal stability in comparison with the uncoordinated ligand 1, with higher
decomposition temperatures, 458 K for Cu2a and 460 K for Cu2b, respectively (Figure 5),
that can be accounted to the intramolecular hydrogen bonding involving Cu-X ... H-N
interactions [88]. The relatively high decomposition temperatures recorded for the two
copper(I) complexes have made accessible the variable-temperature XRD measurements
that can be used to confirm the nature of the mesophase.

T T
1004 458K 1 |
—Cu2a

. 804 —Cu2b |

°\° Weight loss,
:: 604 90.23% |
S Residue: 9.77% |
Q 40 A
; Welight loss: Residue: 7.59%
92.41% N
20+ 4

0

300 400 500 600 700 800
Temperature (K)

Figure 5. The TG curves for the benzoylthiourea ligand and its copper(I) complexes.

2.2.3. X-ray Diffraction Investigation

In order to avoid the partial decomposition of the copper(I) complexes during the
XRD measurements, the samples were cast on a glass slide as dichloromethane solutions
and heated with 10K-min—! to the temperature of the mesophase existence, but below
isotropization temperatures. The XRD diffractograms of Cu2a and Cu2b recorded at 388K
are presented in Figure 6. Clear typical patterns that are characteristic of a hexagonal
packing were measured for both complexes. On cooling the samples from the isotropic
phase down to the mesomorphic domain, the diffractograms of Cu2a and Cu2b displayed
a strong diffraction peak from the (100) reflection, followed by a series of four weaker
sharp peaks with a d-spacing ratio of d/ V3,d/+V4,d/\/7, and d/+/9, attributed to (110),
(200), (210), and (300) reflections, respectively, as depicted in Figure 6 and Figure 513
(Supplementary Materials). The XRD data are indicated in Table 2. In addition to these
reflections, another broad and asymmetric peak was observed in the wide-angle region
(20-25 degree) in the XRD patterns of the two copper(l) complexes; this could be assigned
to the combined lateral interactions of the alkyl chains and 7—m stacking interactions. As
a consequence of the coordination of the N-acylthiourea ligand to the metal center, the
fluorophobic effect was reduced, thus preventing the segregation of the fluorocarbon and
hydrocarbon chains. The XRD diffractograms of the two copper(I) complexes did not have
any broad signal around 5.5 A that could be assigned to the lateral interactions of the
fluorocarbon chains [89,90].

From the two-dimensional hexagonal parameters (d100) calculated as 24.94 A for Cu2a
and 25.52 A for Cu2b, the distance between the neighbouring columns were evaluated as
28.80 A for Cu2a and 29.48 A for Cu2b. These two hexagonal lattice parameters are very
similar for the two copper(I) complexes, providing the conclusion of an identical packing
model in the mesophase. In order to propose a self-assembled packing model, the number
of molecules (N) within a volume fraction of thickness h of a column can be calculated with
the following relation: hS = NVy,,o, where S is the columnar cross-section, h is the stacking
periodicity along the columns of the hexagonal lattice, and V) is the molecular volume.
The Vo1 can be estimated with the formula Vo1 = M/ p-0.6022, where M is the molecular
weight and p is the density and can be approximated as 1g-cm 3. These relationships give
N values of 0.82 and 0.84 for Cu2a and Cu2b, respectively, when h = 3.6 A (the typical
distance for 7 interactions), but 1.02 and 1.04, respectively, when h = 4.5 A. The stacking
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distance of 4.5 A points to the formation of a similar molecular arrangement for the two
copper(l) complexes where one molecule is found in the slice of the columns.

OC7Hss

100,000 100,000 H--Q
’ cga,A@fN/ A 0C7Hss
N
- '
P~ 7 —BF
) Cu=BL
g 10,000 & 10,0004 Sg 2
- ~ N
2 2 Cs‘w@“\ /
g g H--0
k] 1000 9 1000
£ £
100 100 . y ; ; ; y
5 10 15 20 25 30
20 (deg) 20 (deg)
(a) (b)

Figure 6. Powder XRD pattern for complex Cu2a (a) and Cu2b (b) in the hexagonal columnar
mesophase (Coly,) at 388 K.

Table 2. XRD data for copper(I) complexes.

Compound Mesophase T(K) Indexation d-Spacing d-Spacing Lattice
exp.(A) calc. (A) parameter (A)a
Cu2a Coly, 388 100 24.94 2494 a=28.80
110 14.24 14.40
200 12.34 12.47
210 9.28 9.43
300 8.22 8.31
Cu2b Coly, 388 100 25.52 25.52 a=2948
110 14.67 14.73
200 12.62 12.76
210 9.52 9.64
300 8.42 8.51

2 the Coly, lattice parameter a = 2<dgp>/ V3.

2.3. UV-VIS and Emission Properties

The photophysical properties of copper(l) complexes have been investigated both in
solution and in a solid state at an ambient temperature and the results are summarized in
Table 3 [91,92].

Table 3. Absorption data in dichloromethane solution and emission data in solid state for the BTU
ligand and copper(I) complexes.

Compound Absorpfion, z\maxl nm (e x Emission
10-3/M-1em—1) .
Solid Aem/nm s ® (%)
(Aexc = 365 nm) M °
1 290 (20.4), 313 (26.4) - - _
Cu2a 291 (45.7), 317 (54.9) 545, 580 (sh) 11,172 25
Cu2b 290 (sh, 34.4), 316 (41.4) 546, 580 (sh) 9,176 8.0

The absorption spectra of copper(I) complexes in dichloromethane (Figure 7a) display
one highly intense absorption band at ~315 nm with a shoulder at ~290 nm
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(e = 34,400-54,900 M1 cm’l) that was assigned to the m—m* ligand-centred (LC) tran-
sition of the coordinated BTU ligand, based on a similarity with the absorption spectrum of
the uncoordinated ligand. This absorption band is slightly red-shifted compared with their
position in the electronic spectrum of the free ligand as a consequence of the rigidity of the
molecule, resulting from the coordination of the N-acylthiourea compound to the metal
center. No additional distinct absorption bands have been detected in the electronic spectra
of these two complexes but the long tail of the absorption at ~350 nm could be attributed to
the characteristic metal to ligand charge transfer (MLCT) and intraligand charge transfer
(ILCT) transitions specific to the copper(I) complexes [93,94].

10004 Excitation Emission

800 - —Cu2a
——Cu2b
600

400

Intensity (a.u.)

200 +

300 400 500 600 700 800 300 400 500 600 700 800
Wavelength (nm) Wavelength (nm)

(a) (b)

Figure 7. The UV-VIS spectra recorded in dichloromethane solution of ligand 1 (4 x 107% M), and
copper (I) complexes Cu2a and Cu2b (2 x 10~ M) at ambient temperature (a); the excitation and
emission spectra of copper(I) complexes Cu2a and Cu2b recorded in solid state at room temperature (b).

The ligand and the two copper complexes were almost non-emissive in dichloromethane
solution. In addition, the emission of the ligand was not detected in a solid state. The
solid-state emission spectra recorded at room temperature for the copper(l) complexes
Cu2a and Cu2b are shown in Figure 7b. The emission spectra in a solid state of the
two copper(I) complexes are similar and show one maxima at Apmax around 545 nm with
a shoulder around 580 nm when the samples are irradiated with Aexe = 365 nm; the
color impression analysis for the green—yellow luminescence indicated that x = 0.42 and
y = 0.58 (Figure 8b). The green—yellow emission was also visually detected by the optical
microscope when the samples were irradiated in the 320-360 nm region (Figure 8a). The
photoluminescence at 545 nm and the corresponding excitation peaks above 300 nm (lo-
cated at 350 and 450 nm) were due to the electronic transitions of the copper(I) complexes’
excited state MLCT (low energy LE emission) [95]. By heating the two complexes, the
photoluminescence intensity was dramatically reduced upon heating from the crystalline
state to the mesophase due to the inherent aggregation—caused quenching (ACQ) effect
often seen in common luminescent metallomesogens [96]. The highest quantum yield was
measured for Cu2b and its value of 8% is comparable to other copper(I) complexes with
related acyl-thiourea ligands [16].

2.4. Dielectric Spectroscopy
2.4.1. Electrical Conductivity

The electrical conductivity temperature dependencies, o = ¢(T), for the two copper(I)
complexes, Cu2a and Cu2b, recorded for a fixed frequency, f = 10 Hz, are presented in
Figure 9.

While the values of the electrical conductivity recorded for the bromo-complex Cu2b
are slightly higher in comparison with the values recorded for the chloro-complex Cu2a,
over almost the entire temperature range, the electrical conductivity temperature variation
of the two complexes has some similarities. Firstly, it is important to remark on the very
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large variation of conductivity with temperature, from 10712S.cm~ 1 t0 107 S.cm ™!, which
is seven orders of magnitude (Table 4).
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Figure 8. The optical microscopy images of Cu2b in normal light and under UV irradiation in
320-360 nm region (a) and CIE 1931 (x,y) chromaticity diagram for copper (I) complexes derived

from the solid-state emission spectra (b).
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Figure 9. Variation of the electrical conductivity with temperature for the copper(I) complexes Cu2a
(black squares) and Cu2b (red squares), o = ¢(T), f = 10 Hz.

Table 4. Ionic conductivities and activation energies in the solid state (glassy state, 320 K) mesophase
(370 and 400 K), and isotropic liquids (450 K) for complexes Cu2a and Cu2b. The calculation of the
activation energy E, is presented in SI.

Compound C((:;g l:::f;:y Eap (Mesophase)
Glass Mesophase Isotropic
320K 370 K 400 K 450 K (eV)
Cu2a 5.05 x 10712 1.32 x 107° 1.12 x 1078 1.88 x 107 1.2
Cu2b 2.64 x 10712 1.86 x 1077 498 x 1078 3.03 x 107° 1.5

Then, the growth rate has a “tortuous” variation, up to the temperature 428 K. The
electrical conductivity of Cu2a presents a jump (a sudden variation) when the temperature
rises from 428 K to 432 K, which is the temperature range corresponding to the isotropization
process. Furthermore, both conductivities show a stagnation on the ranges 432443 K and
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425 K-443 K, respectively, and higher rates at temperatures above T = 443 K, in the isotropic
state, were observed (Figure 9). Because of the different conductivity variation rates with
temperature, we conclude the presence of several thermally activated conduction mechanisms.

The variation of conductivity with the temperature should be correlated with the
conductivity spectra of the two copper complexes presented in Figure 10, which were
recorded at different temperatures. As can be seen in Figure 10, the plateau region, where
the conductivity is approximately constant as the frequency increases, extends to higher
frequencies in the case of higher temperature values. The plateau region can be attributed to
the DC conductivity due to the movement of charge carriers by diffusion, and the ascending
part to the AC conductivity or/and some dielectric relaxation processes. As a consequence,
in the two temperature ranges, the electrical behaviour of the studied complexes has
different features: (a) the interval of relatively low temperatures, T = 313-358 K, where the
electrical properties are predominantly determined by the dielectric relaxation processes;
(b) the interval of relatively high temperatures, 358-453 K, where the electrical properties
are predominantly influenced by the electrical conduction.

u Cu2a
..-'q 0 313K

= o0

E ] R

5 - = 448K

ety !l

) - Cu2b

2 e —=- 313K

T 12 et ~—368K
= —0- 448K

-2 —“I 0 1I 2 :Ii 4 5 6I 7 8I
log (f[Hz])
Figure 10. Conductivity spectra versus frequency for copper(l) complexes recorded at different
temperatures (313, 368, and 448 K): Cu2a (open symbols) and Cu2b (solid symbols).

The important question arises: what type of conduction characterizes these samples? To
answer this question, we noticed that the presence of free charge carriers has an effect on
the permittivity spectra in the low frequency region. Experimentally, it is known that, for a
purely ohmic (electronic) conduction, the dielectric losses have a linear increase with the
decrease in frequency, but no contribution to the permittivity value appears. At the same
time, the real part of conductivity is constant [97]. On the other hand, in the case of ionic
conductivity, it is known that the dielectric losses, but also the dielectric constant, increase
with the decrease in frequency. In the sense of increasing the frequency from low to high
values, the conductivity first presents a flat region followed by an ascending branch where
the conductivity increases proportionally to the frequency at a certain power o/ ~ w?,
0<s< L

In the present study, the electrical conductivity spectra, represented in a double
logarithmic scale, contains a part with an almost constant value, in the region of low
and medium frequencies, continued with a proportional increase with log (w), at higher
frequencies; the slope of the line has a sub-unit value (Figure 10). The flat region of
the conductivity extends to the higher frequencies as the temperature increases. In the
limit f — 0(w — 0), the DC value of electrical conductivity is obtained, opc [97,98]. To
analyze these spectra, Joncher proposes the following equation regarding the real part
of electrical conductivity, 0/(w) = Re(c * (w)) = opc + dac(w), where the alternative
current component of the conductivity, c4c(w) = Aw®, complies with a power law in
relation to frequency [98], called the ‘universal dielectric response’. It should be noted that
a wide variety of homogeneous or heterogeneous samples with a disordered structure,
in solid, liquid, or composite states, show the same kind of dependence of electrical
conductivity depending on frequency. Electrical relaxation measurements are commonly
used to characterize the dynamics of ionic transport in ionically conducting materials.
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The experimental data were fitted with a simple, three-parameter expression for the
“universal dielectric response”, as follows [99,100]:

ol(w) = opc {1 + (w/wp)N} 1)

where the exponent N has a subunitary value, 0 < N < 1. Typically, for the ionic conduc-
tion, N has values in the range 0.6 < N < 0.9. The characteristic frequency (studied in terms
of angular valocity), wy, is the frequency from which the alternative current conduction
begins to activate, coc = opc or o/ (wp) = 20pc. Equation (1) allows the establishment of a
correlation between the relaxation (dispersion) of macroscopic electrical conduction and the
microscopic movement of ions in materials with ion conduction. DC electrical conductivity,
0pc, and the characteristic frequency, wy,, are related by the Barton—Nakajima—Namikawa
(BNN) equation [101], 0pc = €0¢r,cowp, Where g7, = lim er(w) is the relative permittivity

in the w — co limit. All parameters are temperature dependent: opc(T), wp(T), N(T).
The temperature dependence of the exponent N provides information about the mechanism
involved in the AC electrical conductivity. In most situations, DC electrical conduction com-
plies with the Arrhenius law, but there are also exceptions when temperature dependence
complies with the empirical law of Vogel-Fulcher-Tamman.

The frequency (pulsation), wy(T), depends on the temperature in a similar way, as
does the DC conductivity, opc, which supports the BNB equation [101].

The variation of the exponent, N, with temperature depends on the materials. Thus, for
some types of samples, N decreases with temperature [102], while for others, N increases
with temperature [102,103], or it can display a non-monotonous variation, presenting a
maximum [104]. By performing the fitting of the experimental conductivity spectra with
Equation (3), the calculated values of the N parameter were found to be between 0.610 and
0.915 for Cu2a, and between 0.536 and 0.862 for Cu2b, reinforcing the assignment of the
ionic conduction [99]. Additionally, for both complexes, N shows a tendency to increase
with temperature.

For the two copper(l) complexes, the charge carriers are highly mobile ions (e.g.,
protons, or other small ions). Based on these arguments and considering that the copper(I)
complexes have no other possible diffusible ions, the measured electrical conductivity
can be assigned to proton conductivity. The hydrogen-bonding networks formed in the
copper(l) complexes provide continuous pathways for 1D proton conduction based on the
proton transfer in the N-H ... X moieties (X = halide or oxygen) of the acylthiourea ligand.
It is easily observed that the liquid crystal phases favored anhydrous proton conduction in
these copper(I) complexes and a proton conductivity of 2.97 x 1077 S.cm ™! was achieved
at 430K for Cu2a and 1.37 x 107° for Cu2b S.cm~! at 440K (Table 4). For example, similar
maximum values of the proton conductivity, in the 107°-10~° S.cm~! range, were reported
for palladium(Il) complexes with pyridyl or isoquinoline-functionalized pyrazolate ligands
in the temperature range of the existence of columnar mesophase [39].

2.4.2. Dielectric Properties

The ionic conduction mechanism assigned, based on the variation of electrical con-
ductivity as a function of temperature and frequency, is also supported by the dielectric
properties of the two copper(I) complexes. The temperature variation curves of the dielec-
tric constant are presented in Figure 11a and the variation of dielectric loss as a function
of temperature, for both copper(I) compounds, at a constant frequency of f = 10 Hz, are
presented in Figure 11b.

A similar trend in the variation rate was observed in the case of the dielectric constant
and dielectric loss (Figure 11), as found for the electrical conductivity (Figure 9) in the high
temperatures domain, over 420 K, where a slight stagnation followed by a faster growth
was measured. However, it is worth mentioning here that both the dielectric constant and
the dielectric losses have high and very high values up to 5 - 10% and 1 - 10%, respectively,
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which supports the conclusion of the existence of an important electrical conductivity,
characteristic of these copper(I) complexes.

6
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Figure 11. Variation of dielectric constant as a function of temperature (a) and the dielectric loss
versus temperature (b), ¢’ = ¢/ (T), f = 10 Hz.

In order to highlight the specific mechanisms of electrical conductivity and those of
dielectric relaxation, the Cole-Cole representation was chosen: dielectric losses as a function
of dielectric constant, ¢’ = ¢”(e/), in a double logarithmic scale, loge” = f(log(e/)).

The overviews of the dielectric losses versus the dielectric constant for the two copper
complexes at different temperatures, presented in Figure 511 (Supplementary Materials),
show the whole range of values for the two components of the dielectric permittivity. In
order to be able to get further insights, the ranges of values were narrowed, and these
enlarged regions are depicted in Figure 12.
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Figure 12. Dielectric losses versus dielectric constant for the two copper(I) complexes at fixed
temperatures: T = 313 K, T, = 368 K, and T3 = 448 K: Cu2a (a) and Cu2b (b).

At 313 K (solid black squares), an incomplete semicircle is observed, indicating a single
dielectric relaxation process, which was assigned to the “alpha” relaxation process. This
semicircle shows a pronounced deformation due to the use of the logarithmic scale. At
368 K (solid green squares), two incomplete semicircles were evidenced. The small one
corresponds to the dielectric “alpha” relaxation process while the big one corresponds to a
dielectric relaxation at a lower frequency, assigned to the “beta” relaxation process. The
latter semicircle is extended by an ascending line. Importantly, the rising branch, on the
right side of the figure, can be ascribed to the electrical conductivity [97,98]. Finally, at
448.15 K (solid red squares), the “alpha” relaxation process is no longer visible as the “beta”
relaxation process predominates. Similar to the results recorded at 368 K, the ascending
branch is naturally attributed to electrical conductivity. An important increase, by a few
orders of magnitude, of the dielectric constant and of the dielectric losses at low frequencies
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was evidenced. For temperatures higher than 348 K, the “intensity” of the dielectric
relaxation process is artificially amplified by the logarithmic scale used. On a linear scale,
these processes would not have been observed. Therefore, the electrical conductivity is the
main mechanism that manifests itself at medium and high temperatures. Moreover, the
movement of the charge carriers under the effect of the sinusoidal electric field also has a
great effect on the values of losses and on the values of the dielectric constant (as can be
seen on the rising part of the curve on the right side, Figure 12).

3. Conclusions

New three-coordinate copper(I) complexes with a combination of emission properties in a
solid state, 1D ionic conduction properties, and liquid crystalline properties on a long thermal
range, from 313 up to 440 K, are reported. The mesophase thermal range can be controlled by
the exchange of the halide ion coordinated to a metal center. The complexes lack emission
in air-equilibrated solution and in the hexagonal columnar phase at elevated temperatures
but show luminescence quantum yields up to 8% in a crystalline state. Considering the very
high values of the dielectric constant and of the dielectric losses, up to 5 x 10* and 1 x 10°,
respectively, the existence of an important electrical conductivity has been attributed to the
anhydrous proton conduction supported by the hexagonal columnar organization at higher
temperatures of the copper(I) complexes and provided by the hydrogen-bonding networks
formed by NH ... X moieties (X = halide or oxygen) of the N-acylthiourea ligand. The
highest value of proton conductivity, 2.97 x 10~7 S.cm ™!, was achieved at 430K for Cu2a and
1.37 x 1076 S.em ™! for Cu2b S-em ™! at 440 K.

The design of these copper(I) complexes represents a totally new approach to the
feasible preparation of luminescent liquid crystals showing anhydrous proton conduction
that opens the way for the development of such materials by grafting different mesogenic
groups on related N-acylthiourea neutral ligands.

4. Experimental Section
4.1. Characterization Methods

The chemicals employed in this study were used without further purification as re-
ceived from the suppliers. The elemental analyses were performed with EuroEA 3300
instrument. The purity of the new compounds was checked by 'H-NMR and 3C-NMR
spectroscopy using a Bruker spectrometer operating at 500 MHz and CDCl; as solvent. 'H
chemical shifts were referenced to the solvent peak position, 6 7.26 ppm. Fourier trans-
formed infrared (FTIR) spectra were measured at room temperature from 4000 to 400 cm !
on a Bruker spectrophotometer in KBr discs and the UV-VIS spectra were recorded in
dichloromethane solution on a Jasco V650 spectrophotometer. For electrospray ionisation
mass spectrometry (ESI-MS) analysis, approximately 10 mg of each complex was dissolved
in a mixture of dichloromethane and methanol (8:2) and directly injected into a Velos Pro
ion trap mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) at a flow rate
of 5 uL/min running in ESI + Full MS mode, Spray Voltage: 3 kV, Capillary Temperature:
375 °C, m/z ranges from 100 to 2000 and 1000 to 2000.

The optical textures of the benzoylthiourea ligand and its two copper(I) complexes
were observed by polarizing optical light microscopy (POM) using a Nikon 50iPol micro-
scope equipped with a Linkam THMS600 hot stage and TMS94 control processor. The
samples were sandwiched between two untreated glass slides. The DSC (differential
scanning calorimetry) experiments were carried out with a Diamond DSC Perkin Elmer
instrument at 10°/min scanning rate after being encapsulated in aluminium pans. At least
two heating/cooling cycles were performed for each sample. Thermogravimetric analyses
for all samples were performed on a TA Q50 TGA instrument using alumina crucibles
and nitrogen as purging gas. The samples were heated with 10 °C min~! rate from room
temperature to 550 °C.

The nature of the mesophase was analysed by X-ray diffraction technique. The powder
X-ray diffraction measurements were made on a D8 Advance diffractometer (Bruker AXS
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GmbH, Karlsruhe, Germany) in parallel beam setting, with a monochromatized Cu-Ku«1
radiation (A = 1.5406 A), a scintillation detector, and a horizontal sample stage. The
measurements were performed in symmetric (6—6) geometry in the 26 range from 1.5° to
30° in steps of 0.02°, with measuring times per step in the 540 s range. The temperature
control of the samples during measurements was achieved by adapting a home-made
heating stage to the sample stage of the diffractometer.

The photoluminescence (PL) spectra were recorded at room temperature in solid state
and the samples deposited on a glass slide, with an OceanOptics QE65PRO spectrometer
attached to the polarizing optical microscope and using a Nikon Intensilight excitation
source or a LED light source (LLS-LED, OceanOptics, A = 365 nm). The photoluminescence,
excitation spectra, and photoluminescence decay curves were recorded at room temperature
by using a FluoroMax 4P spectrophotometer; for the quantum efficiency, we have used the
Quanta—Phi accessory.

The dielectric spectroscopy (DS) measurements were performed using a Broadband
Dielectric Spectrometer, Novocontrol, consisting of the Alpha-A High Performance Fre-
quency Analyzer in the LF domain 0.1-10 MHz equipped with WinDETA software. The
spectra have been registered in the (313—458) K temperature domain. Temperatures were
controlled within 0.2 K. Alternative voltage was set to 0.5 V.

4.2. Preparation of N-(4-Perfluorooctylphenylcarbamothioyl)-3,4-Diheptyloxybenzamide (1)

The preparation of the benzoylthiourea (BTU) ligand 1 is based on the method de-
scribed earlier [45,46,74]. The 3,4-diheptyloxybenzoic acid (6 mmol) was treated with an
excess of thionyl chloride (25 mmol) in freshly distilled dichloromethane (30 mL) for 3 h
and heating under reflux. After this period, the excess of thionyl chloride and the solvent
were removed under reduced pressure using a rotary evaporator. The corresponding
acid chloride was not purified further and it was used as isolated in the next step. Dry
acetone (10 mL) was poured over the acid chloride followed by the dropwise addition of
a solution of ammonium thiocyanate (6 mmol) in acetone (15 mL), under nitrogen. The
resulting mixture was heated under reflux for a period of 30 min. Addition of the NH;SCN
solution produced a cloudy white precipitate. Further, the mixture was cooled down to
room temperature, after which a solution of p-perfluoroctylaniline (5.6 mmol) in acetone
(15 mL) was added dropwise for a period of 30 min. The reaction mixture was stirred for
2 h and then it was poured in 100 mL of deionized water. The precipitate was filtered off
and washed several times with water and ethanol and then recrystallized two times from a
mixture of dichloromethane/ethanol to yield a white crystalline solid.

Compound 1. White crystalline solid. Yield: 78%. Anal. Calcd. For C3sH39F17N»O3S
(%): C, 47.89; H. 4.32; N, 3.10; Found (%): C, 48.52; H, 4.41; N, 3.44.

'H-NMR (500 MHz, ppm, CDCl3) § 13.00 (s, 1H), 9.03 (s, 1H), 7.99 (d, ] = 8.4 Hz, 2H),
7.64 (d, ] =83 Hz, 2H),7.43 (d, ] =8.7 Hz, 2H), 6.93 (d, ] = 8.2 Hz, 1H), 4.08 (q, ] = 6.6 Hz,
4H), 1.92-1.80 (m, 4H), 1.54-1.44 (m, 4H), 1.43-1.26 (m, 12H), 0.90 (t, ] = 6.5 Hz, 6H).

I3C-NMR (125 MHz, ppm, CDCl3) § 178.39(s), 166.64(s), 154.31(s), 149.47(s), 141.09(s),
127.67(t, 3Jc.r = 6.5Hz), 126.52(t, ?Jc.r = 24.5Hz), 123.23(s), 122.98(s), 120.97(s), 112.52(s),
112.07(s), 69.51(s), 69.22(s), 31.79(s), 31.77(s), 29.13(s), 29.05(s), 29.01(s), 28.99(s), 25.94(s),
25.90(s), 22.60(s), 22.58(s), 14.08(s), 14.07(s).

IR (KBr, cm~1) 3266 (vnm), 2961, 2930, 2859 (vc.g), 1678 (ve=0); 1509 (ven), 1330
(Ve=s+ veN), 1276 (var-0) 1249 (ven), 1145 (ven)-

4.3. Preparation of Copper(l) Complexes (Cu2a and Cu2b)

The corresponding BTU ligand (1 mmol) was dissolved in hot ethanol (10 mL). Sepa-
rately, a solution of the corresponding halide copper(Il) salt (CuXj, X = Cl, or Br, 0.5 mmol)
in hot ethanol (5 mL) was prepared. The two solutions were slowly mixed together over a
period of 10 min. The reaction mixture was stirred and heated under reflux for 1.5 h when
a green-yellow precipitate was formed in each case. The resulting precipitate was filtered
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off while the mixture was hot and then washed several times with ethanol and dried in
vacuum. The yields were calculated based on copper salts.

Compound Cu2a. Yellow-green solid. Yield: 78%. Anal. Calcd. For CypH7gF34N4OgS;
CuCl (%): C,45.41; H,4.13; N, 2.94; Found (%): C, 44.57; H, 4.61; N, 3.14.

1H NMR (500 MHz, ppm, CDCl3) 6 13.34 (s, 1H), 11.04 (s, 1H), 8.00 (d, ] = 8.4 Hz, 1H),
7.75-7.58 (m, 5H), 6.90 (d, | = 8.5 Hz, 1H), 4.09 (t, ] = 6.5 Hz, 2H), 4.04 (t, ] = 6.5 Hz, 2H),
1.89-1.81 (m, 2H), 1.80-1.71 (m, 2H), 1.52-1.20 (m, 16H), 0.95-0.84 (m, | = 15.7, 7.0 Hz, 6H).

13C NMR (126 MHz, ppm, CDCl3) 6 179.23(s), 168.99(s), 154.60(s), 148.95(s), 139.94(s),
127.86(m, Yc.p = 24.5, 3Jcr = 6.5Hz), 125.36(s), 123.88(s), 122.24(s), 113.43(s), 111.72(s),
69.49(s), 69.06(s), 31.93(s), 31.81(s), 31.79(s), 29.70(s), 29.67(s), 29.37(s), 29.18(s), 29.11(s),
29.07(s), 25.98(s), 25.94(s), 22.62(s), 22.60(s), 14.09(s), 14.07(s).

IR (KBr, cm™1) 3274 (vnH), 2960, 2932, 2859 (vcq), 1674 (ve=o); 1512(ven), 1275
(VAr-O) 1244 (VC-N)/ 1152 (VC-N)-

Compound Cu2b. Yellow-green solid. Yield: 97%. Anal. Calcd. For C7,H7gF34N4O6S;2
CuBr (%): C,44.37; H, 4.03; N, 2.87; Found (%): C, 44.45; H, 3.48; N, 3.04.

H NMR (500 MHz, ppm, CDCl3) § 13.29 (s, 1H), 10.61 (s, 1H), 7.97 (d, ] = 8.4 Hz, 1H),
7.67 (m, ] = 8.3 Hz, 2H), 7.61-7.55 (m, 3H), 6.89 (d, ] = 8.5 Hz, 1H), 4.09 (t, ] = 6.4 Hz, 2H), 3.99
(t, ] = 6.4 Hz, 2H), 1.93-1.68 (m, 4H), 1.50-1.16 (m, 16H), 0.98-0.78 (m, | = 15.2, 7.0 Hz, 6H).

13C NMR (126 MHz, ppm, CDCl3) 6 178.04(s), 168.65(s), 154.69(s), 148.99(s), 139.79(s),
127.84(m, ?Jc.p = 24.5, 3Jcp = 6.5Hz), 125.15(s), 123.89(s), 121.93(s), 113.26(s), 111.69(s),
69.54(s), 69.04(s), 31.80(s), 31.77(s), 29.70(s), 29.19(s), 29.11(s), 29.05(s), 29.02(s), 25.99(s),
25.92(s), 22.60(s), 22.58(s), 14.06(s), 14.04(s).

IR (KBr, cm™1) 3271 (vNH), 2960, 2931, 2860 (vc.n), 1674 (vc=0); 1506(ven), 1276
(var-0) 1244 (veN), 1152 (ven)-

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390 /molecules28104196/s1, Figure S1: IR spectrum of compound
1; Figure S2. IR spectrum of compound Cu2a; Figure S3: IR spectrum of compound Cu2b; Figure
S4. TH-NMR spectrum of ligand 1; Figure S5: 13C-NMR spectrum of ligand 1; Figure Sé: TH-NMR
spectrum of complex Cu2a; Figure S7: BBC-NMR spectrum of complex Cu2a; Figure S8: TH-NMR
spectrum of complex Cu2b; Figure S9: 3C-NMR spectrum of complex Cu2b; Figure S10: Mass
spectrometry identification of [Cu+2L]" and [L-H]" ions of Cu2a (A) and Cu2b (B) corresponding
to calculated m/z; Figure S11: DC conductivity (natural logarithm) versus 1000/ T and the linear
fitting function for Cu2b; Figure S12: Overviews: dielectric losses versus dielectric constant for the
coppper(I) complexes at different temperatures (T1 = 313.15 K, T2 = 368.15 K and T3 = 448 K): Cu2a (a)
and Cu2b (b); Figure S13: Powder XRD pattern for complex Cu2a (a) and Cu2b (b) in the hexagonal
columnar mesophase (Coly) at 388 K recorded on heating; Figure S14. Photoluminescence decay
profiles for Cula (a) and Cu2b (b) represented in the log scale, showing the two exponential decays.
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