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Abstract: Myocardial ischemia/reperfusion injury (MIRI) is related to ferroptosis and apoptosis
elicited by reactive oxygen species (ROS). In this research, we investigated the protective effect of
salvianolic acid B (SAB) as a natural antioxidant on ferroptosis and apoptosis in the MIRI process,
and discussed the protective mechanism inhibiting ubiquitin-proteasome degradation of glutathione
peroxidase 4 (GPX4) and the c-Jun N-terminal kinases (JNK) apoptosis signal pathway. We observed
that ferroptosis and apoptosis occurred in the MIRI rat model in vivo and the H9c2 cardiomyocyte
hypoxia/reoxygenation (H/R) damage model in vitro. SAB can alleviate tissue damage related
to ROS, ferroptosis and apoptosis. Ubiquitin-proteasome degradation of GPX4 occurred in H/R
models, and SAB reduced the ubiquitin-proteasome degradation of GPX4. SAB downregulates JNK
phosphorylation and the expression of BCL2-Associated X (Bax)/B-cell lymphoma-2 (Bcl-2) and
Caspase-3 to inhibit apoptosis. The role of GPX4 in the cardioprotection of SAB was further verified
by the elimination effect of the GPX4 inhibitor RAS-selective lethal 3 (RSL3). This research shows that
SAB may be used as a myocardial protective agent against oxidative stress, ferroptosis and apoptosis,
and has potential clinical application prospects.

Keywords: salvianolic acid B; myocardial ischemia/reperfusion injury (MIRI); ferroptosis; apoptosis;
reactive oxygen species (ROS); GPX4

1. Introduction

Although significant progress has been made in reperfusion therapy such as thrombol-
ysis or percutaneous interventions (PCI), the 1-year mortality and heart failure readmission
rate of patients experiencing acute ST-segment elevation myocardial infarction (STEMI)
after PCI are still as high as 7~12% and 22% [1]. The process of reperfusion of the ischemic
myocardium in the infarcted area was done by opening the occluded vessel after STEMI
was accompanied by severe MIRI, which leads to increased myocardial dysfunction and
further myocardial cell death. MIRI is an independent predictor of heart failure and poor
long-term prognosis [2]. Various cardioprotective strategies have attempted to alleviate
reperfusion injury, reduce hospitalization rates for heart failure, and improve prognosis,
but the clinical effects are still controversial [3,4].
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Induction of cardiomyocyte death during MIRI is carried out by a variety of regulated
pathways such as caspase-mediated apoptosis [5], ROS-induced oxeiptosis [6], inflammasome-
activated pyroptosis [7], and iron/lipid dependent ferroptosis [8] pathways. Ferroptosis is a
type of iron-dependent cell death caused by the destructive amassing of lipid peroxide and
ROS [9,10]. According to previous reports, ferroptosis contributes significantly to the process
of MIRI [11]. GPX4 is a critical negative regulator of ferroptosis that is capable of reducing
hydroperoxides [12]. The ubiquitin-proteasome system (UPS) and autophagy are the two
intracellular protein degradation pathways in mammalian cells. Dysfunctional degradation
systems can induce a variety of pathological processes. Depending on the substrate they
degrade, the cell degradation mechanisms have a dual role in regulating ferroptosis. UPS can
degrade key iron death inhibitors, such as the solute carrier family 7 member 11 (SLC7A11)
and GPX4 [13]. Inactivation of GPX4 directly induces ferroptosis [14]. It is unclear whether
UPS is involved in the degradation of GPX4 during MIRI, so it further induces ferroptosis.
At the same time, it is uncertain whether the degradation of GPX4 further induces apoptosis
while increasing ferroptosis and ROS accumulation.

The mitogen-activated protein kinases (MAPKs) signaling pathway is related to cell in-
jury activated by ROS after MIRI [15]. The major MAPKs are extracellular signal-regulated
kinases (ERKs), JNKs, and p38, which govern apoptosis, ferroptosis, and inflammation in
response to stimulation [16]. ERK, JNK, and p38 protein kinases perform different physi-
ological functions in cells. ERK can promote cell survival by inhibiting apoptosis, while
JNK and p38 pathways promote cell apoptosis. While the degradation of GPX4 induces
ferroptosis during MIRI, whether the accumulation of ROS activates MAPKs to induce
apoptosis and aggravate myocardial injury remains to be further clarified.

Salvia miltiorrhiza Bunge (Danshen), a well-known Chinese herbal medicine, has been
extensively used in China and different Asian countries [17,18]. Danshen has the ability to
activate blood and eliminate stasis according to Chinese medicine, thus having the ability
to treat cardiovascular, cerebrovascular, hepatic diseases and so on [19–21]. Salvianolic acid
B (SAB) is a water-soluble active component isolated from Danshen [22]. The molecular
formula is C36H30O16 and its structure is shown in Figure 1. Numerous studies have
shown that SAB can protect cardiomyocytes from oxidative stress-induced damage during
MIRI [23–25]. The exact mechanisms of SAB’s protective effect on MIRI, nevertheless, are
not completely grasped.
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In this research, we examined the underlying mechanism of the protective effect of
SAB on MIRI using a rat MIRI model and an H9c2 cardiomyocyte injury model induced by
cellular H/R, demonstrating that SAB inhibits ferroptosis and ROS-activated apoptosis by
regulating the ubiquitination proteasome degradation of GPX4 and the ROS-JNK/MAPK
signaling pathway. This plays a protective effect on ischemia-reperfusion myocardium.
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2. Results
2.1. SAB Protects Hearts from Myocardial I/R Injury in Rats

To assess the effect of SAB on myocardial I/R, an in vivo myocardial I/R model was
established by performing the LAD ligation in SD rats. As indicated in Figure 2A, evident
ST-segment elevation was observed following surgery, which confirmed the successful
establishment of ischemia. Moreover, the I/R group had a larger myocardial infarct
area than the control group (control: 0.9597 ± 0.4908%; I/R: 41.60 ± 4.620%; SAB-L:
23.62 ± 1.990%; SAB-H: 16.67± 3.243%; Dilt: 16.24± 3.472%; Figure 2B). The H&E staining
revealed that the myocardial cells from sham-operation rats were regularly arranged
without necrosis (Figure 2C). In contrast, the I/R group exhibited irregularly arranged
structures and widespread necrosis and inflammatory cell infiltration. However, treatment
with SAB significantly prevented I/R-induced ST-segment elevation, myocardial infarction,
and pathological changes.
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Figure 2. SAB prevents myocardial I/R injury in rats. (A) Representative images of ECG tracings in
different groups at 40 min postischemic. (B) Representative photographs of cardiac sections by Evans
Blue and TTC double staining, and quantitative analysis of the infarct size ratio (n = 3). (C) Hematoxylin
and eosin staining of the myocardial tissues. a. Scale bar, 100 µm; b. enlarged images of black squares.
Data are presented as means ± SD. ## p < 0.01 vs. Control group, ** p < 0.01 vs. I/R group.

2.2. SAB Inhibits I/R-Induced Ferroptosis in the Infarcted Heart

To identify the role of ferroptosis in the therapeutic effect of SAB in myocardial I/R
damage, we assessed indexes of ferroptosis including ferroptosis-related proteins, ROS
generation, and oxidative stress. Transferrin receptor 1 (TfR1) and ferritin heavy chain
1 (FTH1) are well-known regulators of intracellular iron homeostasis by controlling iron
absorption and degradation, respectively [26]. The decrease of GPx4 expression is a key
feature of ferroptosis. As shown in Figure 3A, in comparison with the control group,
the protein expression of TfR1 in the infarcted heart was markedly increased, and the
levels of FTH1 and GXP4 were dramatically decreased in the I/R group. Moreover, I/R
injury resulted in a boost in ROS, MDA, and LDH levels (Figure 3B–E). Nevertheless, these
effects were reversed following the SAB administration. These findings indicate that SAB
ameliorates myocardial I/R-induced ferroptosis in rats.
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Figure 3. SAB reduces myocardial I/R-induced ferroptosis in the infarcted heart. (A) Western blot and
quantitative analysis of TfR1, FTH1, and GPX4 expression in the infarcted heart. (n = 3) (B,C) ROS
production in the infarcted heart was detected using DHE staining. (D,E) MDA and LDH levels in
the infarcted heart were determined by commercial kits. (n = 6) Data are presented as means ± SD.
## p < 0.01 vs. Control group, * p < 0.05, ** p < 0.01 vs. I/R group.

2.3. SAB Decreases I/R-Induced Apoptosis in the Infarcted Heart

As apoptosis contributes significantly to cardiomyocyte loss and cardiac dysfunction
post I/R, we investigated the in vivo effect of SAB on JNK/MAPK-mediated apoptosis [27].
As shown in Figure 4A, the number of TUNEL-positive cells (control: 1.473 ± 0.3395%;
I/R: 42.93 ± 6.885%; SAB-L: 32.45 ± 6.455%; SAB-H: 26.96 ± 3.921%; Dilt: 16.57 ± 2.575%)
was remarkably elevated in the I/R group relative to the controls, which was decreased
by the SAB administration. The collapse of the ∆ψm function is known as a hallmark of
apoptosis [28]. In the JC-1 staining, the loss of ∆Ψm was detected in the I/R group, while
SAB treatment greatly enhanced ∆ψm (control: 1.000 ± 0.07129; I/R: 0.3364 ± 0.03483;
SAB-L: 0.4829 ± 0.05918; SAB-H: 0.7962 ± 0.08073; Dilt: 0.9055 ± 0.04494; Figure 4B). The
preventive effects of SAB on apoptosis were further verified using the western blot assay.
As depicted in Figure 4C, SAB downregulated cleaved Caspase 3 and Bax levels, while it
upregulated Bcl2 expression by inhibiting the JNK/MAPK signaling. This confirms the
involvement of JNK/MAPK-mediated apoptosis in SAB rescue of myocardial I/R damage.

2.4. SAB Prevents H/R Injury in H9c2 Cells through Regulating Ferroptosis and Apoptosis

To investigate whether SAB confers a protective effect in H/R injury in vitro, H9c2 cells
were pretreated with SAB for 24 h, and then stimulated by H/R stimulation. The MTT
assay was used to detect cell survival. A dose-dependent increase in cell survival (control:
100.0 ± 3.933%; H/R: 69.12 ± 3.541%; SAB-10: 78.13 ± 4.023%; SAB-20: 83.01 ± 2.824%;
SAB-40: 89.19 ± 1.836%) was observed in H9c2 cells upon treatment with SAB, suggesting
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the protective role of SAB in H/R injury (Figure 5A). The mechanism study revealed that,
consistent with the in vivo results, SAB improved H/R-caused abnormalities in ferroptosis-
related protein levels (TfR1, FTH1, and GPX4) and the GPX4 fluorescent signal, while it
lowered the generation of ROS, MDA and LDH in H9c2 cardiomyocytes, reflecting its effect on
decreasing H/R-triggered ferroptosis (Figure 5B–G). Meanwhile, the weakened ∆ψm (control:
1.000± 0.03606; H/R: 0.3333 ± 0.04041; SAB-10: 0.6467± 0.04041; SAB-20: 0.7333 ± 0.02309;
SAB-40: 0.8400 ± 0.04359) and apoptosis-related protein expression (cleaved Caspase 3, Bax
and Bcl2) were reversed by SAB intervention through deactivating the JNK/MAPK pathway,
suggesting the inhibitory role of SAB in preventing apoptosis in H/R-exposed H9c2 cells
(Figure 6). We also found SAB could prevent ferroptosis and apoptosis in H/R-treated isolated
adult rat cardiomyocytes (Figure S1).Molecules 2023, 28, x FOR PEER REVIEW 6 of 19 
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Figure 4. SAB suppresses myocardial I/R-induced apoptosis in the infarcted heart. (A) Representative
images and quantitative analysis of TUNEL staining. Scale bar, 100 µm. (n = 3) (B) Representative
images of JC-1 staining and quantitative analysis of the JC-1 aggregate/monomer fluorescence ratio.
Scale bar, 100 µm. (n = 3) (C) Western blot and quantitative analysis of cleaved Caspase 3, Bax, Bcl2,
p-MAPK, and p-JNK expression in the infarcted heart. (n = 3) Data are presented as means ± SD.
## p < 0.01 vs. Control group, * p < 0.05, ** p < 0.01 vs. I/R group 3.4. SAB prevents H/R injury in H9c2
cells by regulating ferroptosis and apoptosis.
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Figure 5. SAB improves cell survival and suppresses ferroptosis in H/R-treated H9c2 cells. (A) Cell
survival of different groups measured by the MTT assay. (n = 6) (B) Western blot and quantitative
analysis of TfR1, FTH1, and GPX4 expression in H/R-injured H9c2 cells. (n = 3) (C) Immunofluores-
cence staining for GPX4 in H9c2 cells. (n = 3) The nuclei were stained by DAPI. Scale bar, 100 µm.
(D,E) ROS generation in H/R-induced H9c2 cells was detected using the DCF-DA staining. (n = 3)
(F,G) MDA and LDH levels in H/R-exposed H9c2 cells were determined by commercial kits. (n = 6)
Data are presented as means ± SD. ## p < 0.01 vs. Control group, * p < 0.05, ** p < 0.01 vs. H/R group.
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Figure 6. SAB prevents apoptosis in H/R-treated H9c2 cells. (A) Representative images of JC-1 staining
and quantitative analysis of the JC-1 aggregate/monomer fluorescence ratio in H9c2 cells. (n = 3) Scale
bar, 100 µm. (B) Western blots and quantitative analysis of cleaved Caspase 3, Bax, Bcl2, p-MAPK, and
p-JNK expression in the infarcted heart. (n = 3) Data are presented as means± SD. ## p < 0.01 vs. Control
group, * p < 0.05, ** p < 0.01 vs. H/R group.
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2.5. SAB Decreases the Ubiquitin-Proteasome Degradation of GPX4 in H/R-Stimulated H9c2 Cells

Ubiquitination is a key determinator of protein stability by tagging proteins for protea-
somal degradation [29]. Herein, the role of SAB in the ubiquitin-proteasome degradation of
GPX4 was investigated. As shown in Figure 7A, H/R stimulation promoted the ubiquitina-
tion of GPX4, which was significantly reversed by treatment with SAB. The cycloheximide
chase assay showed that the half-life of GPX4 was much longer in the H/R + CHX + SAB
group relative to the H/R + CHX cells (Figure 7B). Combined, our data indicate that SAB
prevented the ubiquitin-proteasome degradation of GPX4 in H/R-treated H9c2 cells.
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(A) The expression levels of ubiquitinated GPX4 were determined by co-immunoprecipitation analysis.
(n = 3) (B) H9c2 cells were treated with cycloheximide for the indicated periods. GPX4 expressions were
detected by the western blot assay. (n = 3) Data are presented as means ± SD. ## p < 0.01, ** p < 0.01.

2.6. GXP4 Inhibition Abolishes the Protective Effect of SAB in H9c2 Cells Stimulated with H/R

Given GPX4 is crucial for the occurrence of ferroptosis and apoptosis by influencing
ROS generation, the role of GPX4 in SAB-exerted cardioprotection was verified by using
RSL3, a GPX4 inhibitor [16,30]. As indicated in Figure 8, SAB greatly improved cell
survival and reversed the expression levels of ferroptosis- and apoptosis-associated proteins.
However, RSL3 completely abrogated the aforementioned effect. These results suggested
that GPX4 is a primary factor involved in SAB-exerted cardioprotective effects.
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Figure 8. GPX4 inhibition abolished SAB-induced protective effects in H9c2 cells exposed to H/R
injury. (A) Cell survival of different groups measured by the MTT assay. (n = 6) (B) Protein expression
levels of FTH1, GPX4, cleaved Caspase 3, p-MAPK, and p-JNK were determined by western blot
analysis. (n = 6) Data are presented as means ± SD. * p < 0.05, ** p < 0.01; ns, not significant.

3. Discussion

The mechanism by which MIRI-induced cellular injury further leads to myocardial
dysfunction is complex, involving reperfusion-induced cellular ROS generation, increased
oxidative stress, and activation of various downstream transcription factors [31]. Therefore,
inhibition of oxidative stress-related cardiomyocyte injury holds great promise for the
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prevention and treatment of MIRI. There is increasing evidence that SAB is a potent antiox-
idant, which has been demonstrated to significantly alleviate MIRI in a dose-dependent
manner [23]. This study is the first to demonstrate that SAB can play a protective role
for the cardiovascular system by inhibiting ferroptosis and apoptosis of cardiomyocytes
during MIRI by reducing the ubiquitin-proteasome degradation of the GPX4 pathway and
revealing the GPX4/ROS/JNK-mediated mechanism of crosstalk.

According to the present research, we first evaluated the effect of SAB on the I/R rat
model and the H/R cell model. Diltiazem is a representative non-dihydropyridine calcium
antagonist which has been widely used in the treatment of ischemic heart disease and
hypertension [32]. It has an anti-myocardial ischemia-reperfusion injury effect [33–35], and
this study was used to compare efficacies. The results showed that SAB treatment had
cardioprotective effects on both in vivo model rats and in vitro model cells. In vivo, the
results of TTC staining, HE staining, and the myocardial enzyme assay showed that SAB
could eliminate the increase in infarct size, structural abnormalities, myocardial enzyme
(LDH) elevation, and the enhanced antioxidant capacity. There was no significant difference
in the infarct size ratio, the number of TUNEL-positive cells, ∆ψm, or the level of MDH and
ROS production between the SAB-H group and the Dilt group. This means that high doses
of SAB can show similar efficacy as diltiazem. Similar results were obtained in in vitro cell
models. These results suggest that SAB increases myocardial viability and preserves cardiac
structure after MIRI. Therefore, we further investigated and dissected the mechanisms
around ROS-related ferroptosis and apoptosis to reveal the potential beneficial clinical
applications of SAB.

During ferroptosis, iron accumulation and lipid peroxidation are two essential signals
that activate membrane oxidative damage. TFR1 and ferritin are key regulatory points in
the iron metabolism pathway. The transferrin receptor TFR1, which is located on the plasma
membrane, takes up the transporter transferrin by endocytosis, so TfR1 is considered a
marker protein for the occurrence of ferroptosis [36]. Enhanced expression of TFR1 increases
cellular iron uptake, thereby enhancing cellular sensitivity to ferroptosis. Inhibition of
TFR1 expression reduces intracellular iron content, which is beneficial to cell tolerance to
ferroptosis. Ferritin is composed of FTH1, FTL, and Fe3+, and inhibiting the expression
of FTH1 can increase the sensitivity of cells to ferroptosis. Both our in vivo and in vitro
experiments indicate that I/R increased the expression of ferroptosis in cardiomyocytes,
manifested as low expressions of GPX4 and FTH1, and high expression of TfR1. After the
intervention of SAB, the expressions of GPX4, ROS, TfR1, and FTH1 were improved in
I/R rats in vivo and in H/R cardiomyocytes in vitro, indicating that SAB can regulate the
ferroptosis marker gene GPX4 and iron homeostasis regulator genes TfR1 and FTH1. These
results suggest that SAB protects I/R myocardium from ferroptosis and reduces ferroptosis
sensitivity by regulating GPX4, TfR1, and FTH1.

Previous studies [37] have shown that mitochondrial homeostasis is a key target of
cardiac I/R injury. The mitochondrial fission and the opening of the mitochondrial perme-
ability transition pore cause an overproduction of ROS. GPX4 inhibition was shown to lead
to increased mitochondrial ROS production [38]. The present study shows that the MMP of
cardiomyocytes decreased significantly after I/R injury. In contrast, SAB intervention can
reduce ROS production during I/R injury and increase MMP. Accumulation of ROS can
initiate apoptotic signals and aggravate myocardial injury. The intensity and balance of
MAPKs activity are significant determinants of cardiac cell fate when I/R injury occurs.
ERKs are activated by various growth factors which regulate cell growth and promote cell
survival in I/R injury [39].We also investigated how SAB treatment affected ERK1/2 activa-
tion (Figure S2). On the contrary, p38 MAPK and JNK are activated by stress conditions and
promote apoptosis by regulating the transcription of downstream factors and up-regulating
the expression of apoptotic proteins or affecting mitochondrial apoptosis [40]. We further
investigated the possible regulatory role of SAB in inhibiting the pro-apoptotic function
of JNK under the stimulation of I/R injury. We observed that MIRI caused substantial
growth in the number of TUNEL-positive cells in vitro and in vivo, and up-regulation of
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Bax (pro-apoptotic factor)/Bcl-2 (anti-apoptotic factor) and Caspase-3 expression increased
cardiomyocyte apoptosis. SAB inhibited I/R-induced apoptosis by down-regulating the
expressions of Bax/Bcl-2 and Caspase-3. Our study found that SAB inhibited the pro-
apoptotic signaling pathway of JNK/MAPK activated by ROS accumulation after I/R
mitochondrial injury, down-regulated JNK phosphorylation, and inhibited I/R-induced
cardiomyocyte apoptosis.

Because ferroptosis can be induced by triggering GPX4 degradation or by treatment
with small molecules such as RSL3 that covalently inhibit GPX4 function [41], we further
investigated the protection of GPX4 by SAB from the perspective of the GPX4 ubiquitinated
proteasomal degradation mechanism. The UPS is an evolutionarily conserved protein degrada-
tion and turnover mechanism. This pathway typically consists of three components including
the ubiquitin-binding system, deubiquitinases, and the proteasome. Our study found that SAB
significantly reversed the ubiquitination of GPX4 induced by H/R stimulation and prolonged
the half-life of GPX4 induced by H/R + CHX, thus demonstrating that SAB reduced myocar-
dial cellular susceptibility to MIRI ferroptosis by reducing the ubiquitination-proteasomal
degradation of GPX4. Further, pretreatment with the GPX4 inhibitor RSL3 confirmed the
protective role of SAB on H/R cardiomyocytes. As expected, the presence of RSL3 essentially
abolished the protective role of SAB on H/R cardiomyocytes.

4. Materials and Methods
4.1. Animals and Grouping

Male Sprague-Dawley rats weighing 200–250 g were obtained from the Laboratory
Animal Center of Nanjing Qinglongshan (Nanjing, China). Animals were kept in a tem-
perature and light-controlled room with unlimited water and food. The research was
conducted in accordance with the internationally accepted principles for laboratory animal
use and care as found in the US guidelines (NIH publication #85–23, revised in 1985). The
animal protocol was approved by the Experimental Animal Center of Nanjing University
of Chinese Medicine (ACU210706).

The rats were classified into five groups at random (n = 12 per group): (1) sham
animals treated with saline (control), (2) I/R rats treated with saline (I/R), (3) I/R rats
treated with SAB 10 mg/kg (SAB-L), (4) I/R rats treated with SAB 20 mg/kg (SAB-H), and
(5) I/R rats treated with diltiazem (Dilt) 20 mg/kg. SAB and diltiazem were administered
intraperitoneally at 25 and 1 h before the I/R surgery [42]. SAB (purity ≥ 98%) was
purchased from Chengdu Must Bio-technology Co., Ltd. (Chengdu, China). Diltiazem was
obtained from Tianjin Tianyu Pharmaceutical Co., Ltd. (Tianjin, China).

4.2. Myocardial I/R Surgery

The myocardial I/R process was carried out exactly as mentioned before [43]. Briefly,
rats were given 5% isoflurane (pre-anesthesia) to induce anesthesia by inhalation before
being maintained on 1.5–2% isoflurane. After tracheotomy, the tracheal cannula was
connected to a positive pressure respirator (ALC-V8, Shanghai Alcott Biotech Co., Shanghai,
China). The ventilation rate was adjusted to 60–80 breaths/min, with a tidal volume of
2–3 mL/100 g body weight and inspiratory/expiratory ratio of 1:1. Electrocardiogram
(ECG) leads were placed on the right foreleg, as well as the right and left hindlegs, to
monitor changes in the ST segments throughout the surgery. The left anterior descending
coronary artery (LAD) was ligated with a 7–0 silk suture following thoracotomy. After
occlusion for 45 min, the coronary suture was released for 2 h to induce reperfusion. The
ST-segment elevation on the electrocardiogram was taken as the verification of ischemia.
Sham-operated animals underwent the same surgical procedures but did not have their
hearts ligated.

4.3. The Culture of Cells and the Establishment of H/R Model

The cell bank of the Chinese Academy of Sciences provided the rat cardiomyocyte
cell line H9c2. H9c2 cells were grown in a Dulbecco’s modified eagle medium (DMEM)
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medium with 10% fatal bovine serum (FBS), 100 µg/mL streptomycin, and 100 U/mL
penicillin in a humidified incubator (5% CO2, 95% air) at 37 ◦C for normal cell growth.

The H/R cell model was established to imitate the heart ischemia/reperfusion injury
in vitro as mentioned before [44,45]. Briefly, the culture medium was changed to a low glucose
DMEM medium without FBS, and the cells were cultured in a hypoxic chamber (5% CO2,
95% N2, 37 ◦C) for 24 h. Then, cells were reoxygenated for 4 h by utilizing the standard
culture method. The oxygen level before and after hypoxia in H9c2 cells were assessed as
shown in Figure S3. The H9c2 cells in SAB groups were subjected to SAB pretreatment (10, 20,
40 µg/mL) with or without RSL3((1S,3R)-RSL3) for 24 h before H/R injury.

4.4. Measurement of Infarct Size

Evans Blue/TTC dual staining was used to determine the size of the myocardial
infarct, as previously reported [46]. To delineate the area at risk, 1 mL of 2% Evans Blue dye
was systemically injected into the rat’s circulation system via the femoral vein. Then the
rats were sacrificed, and the heart was rapidly removed and kept at −20 ◦C for 30 min. To
visualize the infarct regions, the frozen heart was cut into 2-mm-thick slices and incubated
in 1% TTC solution for 20 min at 37 ◦C. A digital camera was used to photograph the heart
slices. The infarct size was determined using the ImageJ software (Version 1.8.0, National
Institutes of Health, Bethesda, MD, USA) and presented as a percentage of the area at risk
(Inf/AAR%).

4.5. Histopathological Examination

The heart was fixed with 4% paraformaldehyde overnight and then embedded in paraffin.
Subsequently, 5-µm-thick sections were prepared and stained with H&E (hematoxylin and
eosin). A light microscope was used to examine the cardiac histopathological changes.

4.6. Western Blot Analysis

The western blot assay was performed as mentioned in previous studies [47]. The
cells were seeded into 60 mm dishes at 2 × 106 cells/dish. Protein extracted from cardiac
tissues and cells was analyzed by the BCA Protein Assay Kit. SDS-PAGE (Sodium Dode-
cyl Sulfate—Polyacrylamide Gel Electrophoresis) was used to separate equal amounts of
protein, which were then transferred to PVDF membranes. Membranes were incubated
with primary antibodies overnight at 4 ◦C after being blocked with 5% milk. The primary
antibodies used included TfR1 (A5865; ABclonal Technology, Woburn, MA, USA), ferritin
heavy chain1 (FTH1, 3998; CST, Danvers, MA, USA), GPX4 (ab125066; Abcam, Cambridge,
UK), Grsf1(ab205531; Abcam), cleaved Caspase 3 (AF7022; Affinity, West Bridgford, UK),
Caspase 3 (AF6311; Affinity), Bax (14796; CST), Bcl2 (ab196495; Abcam), p38 MAPK (14451;
CST), phosphop p38 MAPK (p-p38 MAPK;4631; CST), JNK (9252; CST), and phosphop
JNK (p-JNK; 4668; CST). The blots were then incubated for 1.5 h with the corresponding
secondary antibodies (ab7097; Abcam) and visualized using enhanced chemilumines-
cence (ECL) and the Bio-Rad imaging system. The protein signals were normalized to
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (ab181602; Abcam). The intensity
of protein expression was quantified using ImageJ software.

4.7. Co-Immunoprecipitation

The co-immunoprecipitation was performed as mentioned in previous studies [9].
The cells were seeded into 60 mm dishes at 2 × 106 cells/dish. The cells were lysed and
incubated with anti-GPX4 overnight at 4 ◦C. Protein A/protein G-coated agarose beads
were then added and incubated for another 4 h at 4 ◦C. Afterwards, the beads were washed
4 times, boiled for 5 min, and analyzed by immunoblot as above.

4.8. Detection of ROS Production

The cells were seeded into 6-well plates at 5 × 105 cells/well. ROS production in heart
tissues was detected by dihydroethidium (DHE, Invitrogen, Waltham, MA, USA) staining



Molecules 2023, 28, 4117 13 of 17

as previously described [48]. In brief, tissue sections were incubated with 10 µM DHE for
30 min in a light-protected humidified chamber at 37 ◦C. The fluorescence intensity of DHE
was determined using a flow cytometer.

According to the manufacturer’s protocol, a probe 2′,7′-dichlorofluorescein-diacetate
(DCF-DA, Sigma, St. Louis, MO, USA) was used to measure the intracellular ROS generation.
After treatment with SAB, cells were incubated with 10µM DCF-DA for 30 min at 37 ◦C in the
dark, and then the fluorescence intensity for DCF-DA was analyzed by a flow cytometer.

4.9. Measurements of Malondialdehyde (MDA) and Lactate Dehydrogenase (LDH) Levels

The cells were seeded into 6-well plates at 5× 105 cells/well. Commercial kits (Nanjing
Jiancheng, Nanjing, China) were used to detect the levels of MDA and LDH as directed by
the manufacturer.

4.10. TUNEL Assay

After the rats were sacrificed, ischemic heart tissue samples were collected, fixed in 10%
formalin for 24 h, embedded in paraffin, and cut into 5-µm-thick sections. Assessment for
apoptosis was conducted using a commercial apoptosis detection kit (Roche, Basel, Switzer-
land) according to the protocol described by the manufacturer. Nuclei were stained with
DAPI. A fluorescence microscope was used to view the fluorescence staining. The percentage
of TUNEL-positive cells in the total cell nuclei was used to calculate the apoptotic index.

4.11. Mitochondrial Membrane Potential (MMP, ∆Ψm) Detection

The cells were seeded into 24-well plates at 2.5 × 104 cells/well. A JC-1 detection
kit (Beyotime, Hong Kong, China) was used according to the manufacturer’s protocol to
monitor the change in mitochondrial membrane potential. Red fluorescence indicates JC-1
aggregates in intact mitochondria, whereas green fluorescence indicates JC-1 monomer in
apoptotic cells with depolarized mitochondria. A fluorescence microscope was used to
examine cells labeled with JC-1.

4.12. The MTT Assay

The cells were seeded into 96-well plates at 5 × 103 cells/well and incubated for 24 h.
The MTT assay was used to determine cell viability. Then, various concentrations of SAB
were added and incubated for 24 h. Afterwards, 10 µL of MTT solution (5 mg/mL) was
added and further incubated for 4 h. After removal of the MTT medium, 150 µL of DMSO
was added to dissolve the precipitate. The optical density at 570 nm was used to determine
cell viability.

4.13. Immunofluorescence

The cells were seeded into 48-well plates at 1 × 104 cells/well. The immunofluo-
rescence was performed as previously described [49]. Samples were fixed for 15 min at
room temperature in 4% paraformaldehyde and then permeabilized in 0.1% Triton-X for
10 min. Afterwards, 1% bovine serum albumin was used to block the nonspecific sites
for 20 min, followed by incubation with anti-GPX4 (DF6701; Affinity) overnight at 4 ◦C.
After washing in PBS, secondary antibodies (ab169346; Affinity) were added to the samples
at room temperature for 1 h. Nuclei were stained with DAPI for 5 min in the dark. A
fluorescence microscope was used to capture the images.

4.14. Cycloheximide Chase Assay

To evaluate whether SAB stabilized the GPX4 protein, cells were treated with 40 µM
SAB for 24 h before being exposed to H/R. Then, 50 µg/mL Cycloheximide (CHX) was
added and incubated for the indicated time. The half-life of the GPX4 protein was observed
by western blot analysis.
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4.15. Statistical Analysis

All values are expressed as the means ± SD (Standard Deviation). To assess the
differences between the groups, data were analyzed using one-way analysis of variance
(ANOVA) followed by Dunnett’s or Sidak post hoc tests (GraphPad Software Inc., San
Diego, CA, USA). A p-value (p) < 0.05 was deemed statistically significant.

5. Conclusions

In conclusion, our study revealed that SAB is an effective antioxidant and exerts
cardioprotective effects during I/R by anti-oxidative, anti-ferroptotic, and anti-apoptotic
effects by reducing ubiquitinated proteasomal degradation of GPX4 and inhibiting ROS-
JNK/MAPK signaling (Figure 9). Administration of SAB during I/R may be a potentially
effective treatment for clinical acute myocardial infarction.
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SAB was found to decrease the ubiquitin-proteasome degradation of GPX4 and forma-
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pathway, and cause caspase-associated apoptosis to protect cardiomyocytes from death.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules28104117/s1, Figure S1: SAB prevents ferroptosis and apoptosis in
H/R-treated isolated adult rat cardiomyocytes. (A) Immunofluorescence staining for GPX4 in isolated
adult rat cardiomyocytes. (B) Representative images of JC-1 staining and quantitative analysis of the JC-1
aggregate/monomer fluorescence ratio in isolated adult rat cardiomyocytes. (n = 3) Data are presented
as means ± SD. ## p < 0.01 vs. Control group, ** p < 0.01 vs. H/R group; Figure S2: SAB prevents
apoptosis in H/R-treated isolated adult rat cardiomyocytes. Western blots and quantitative analysis of
p-ERK expression. (n = 3) Data are presented as means± SD. ## p < 0.01 vs. Control group, ** p < 0.01 vs.
H/R group; Figure S3: The oxygen concentration in the cells in hypoxic culture group decreased after
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24 h of culture. Intracellular Oxygen Concentration Assay (abcam, ab197245) was to analyse oxygen
concentration in the cells. (n = 3) Data are presented as means ± SD. ** p < 0.01 vs. Control group.
Reference [50] is cited in the Supplementary Materials.
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