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Abstract: Cancer is threatening the survival of human beings all over the world. Phototherapy
(including photothermal therapy (PTT) and photodynamic therapy (PDT)) and bioimaging are impor-
tant tools for imaging–mediated cancer theranostics. Diketopyrrolopyrrole (DPP) dyes have received
more attention due to their high thermal and photochemical stability, efficient reactive oxygen species
(ROS) generation and thermal effects, easy functionalization, and tunable photophysical properties. In
this review, we outline the latest achievements of DPP derivatives in cancer therapy and imaging over
the past three years. DPP-based conjugated polymers and small molecules for detection, bioimaging,
PTT, photoacoustic imaging (PAI)-guided PTT, and PDT/PTT combination therapy are summarized.
Their design principles and chemical structures are highlighted. The outlook, challenges, and future
opportunities for the development of DPP derivatives are also presented, which will give a future
perspective for cancer treatment.

Keywords: synthesis; functionalization; diketopyrrolopyrrole (DPP); bioimaging; phototherapy;
detection

1. Introduction

Diketopyrrolopyrrole (DPP) is readily synthesized through the reaction of an aromatic
nitrile with dialkyl succinate. DPP and its derivatives were originally developed as organic
pigments. Due to their advantages, such as easy synthesis and excellent stability, they have
been widely used in paints, inks, organic solar cells [1], fluorescent sensors [2], and so
on. As a kind of functional material, DPP possesses distinct characteristics such as facile
structural modifications, efficient reactive oxygen species (ROS) generation and thermal
effects, tunable absorption and emission properties, and high thermal stability. DPP-based
fluorescent probes for various analytes have been developed [3]. Because of their easy
internalization into mammalian cells, DPP dyes also exhibit outstanding advantages for
imaging applications such as molecular probes. Moreover, due to their different properties,
DPP derivatives have shown excellent PDT and PTT performance in cancer treatment
(Figure 1).

Cancer has threatened human health in the world. The current cancer treatment
methods mainly include radiotherapy, chemotherapy, and surgical resection. However,
such traditional treatment methods often cause a series of side effects. Therefore, a safe and
effective new tumor treatment has become an urgent problem to be solved. Phototherapy,
mainly including photothermal therapy (PTT) and photodynamic therapy (PDT), shows
promising anti-tumor performance. PTT works primarily by converting light into heat,
causing local high temperatures in diseased tissues, and ablating tumors through apoptosis
and necrosis or protein degeneration of tumor cells. In addition, PDT exerts its action
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primarily by irradiating the tumor site with a specific wavelength, which can activate the
photochemical reaction to destroy tumor cells. Photosensitizing drugs transfer energy to
surrounding oxygen, producing highly active singlet oxygen (1O2). Singlet oxygen can
oxidize nearby biological macromolecules, produce cytotoxicity, and kill tumor cells [4–7].
Phototherapy is a potential therapeutic modality for cancer treatment because of its non-
invasiveness, reduced damage to normal tissues, fewer side effects, and high selectivity
compared with surgery, chemotherapy, and radiotherapy. Extensive research is being car-
ried out to develop DPP-based photosensitizers for malignant tumor treatment [8–11]. As
we know, the PDT effect is weakened due to hypoxia in cancer treatment. PTT is an effective
therapy that can overcome hypoxia in tumors, as it is oxygen-independent and has high
spatiotemporal accuracy. Moreover, for PDT, the traditional photosensitizers are limited in
clinical use due to photobleaching, photodegradation, and dark toxicity. Imaging-guided
combination therapy would be an effective strategy for cancer treatment to overcome these
shortcomings. In this review, we outline the latest achievements of DPP derivatives in
cancer therapy and imaging over the past three years. DPP-based conjugated polymers and
small molecules for detection, bioimaging, PTT, photoacoustic imaging (PAI)-guided PTT,
and PDT/PTT combination therapy are summarized. We believe that this review will give
a future perspective for the development of high-performance DPP dyes for bioimaging
and phototherapeutic applications.

Molecules 2023, 28, x FOR PEER REVIEW 2 of 16 
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Figure 1. The structure of DPP and its derivatizable sites and their applications.

2. Application
2.1. Imaging and Detection

Fluorescence imaging is an effective approach for tracking the biological processes of
cancer and disease due to its high sensitivity, high signal-to-noise ratio, real-time moni-
toring, and no sample damage. The development of DPP-based biomaterials is of great
significance for the real-time monitoring of disease development [12–14]. For example,
bis-phosphonate functionalized DPP was used as a fluorescent probe for in vitro bone
imaging [13]. DPP-based fluorescence probes for the imaging of lysosomal Zn2+ and identi-
fication of prostate cancer in human tissue were reported [15]. Most mitochondria-targeting
fluorescent molecules have triphenylphosphonium and pyridinium cations. Recently, a
neutral phosphine oxide DPP compound (PhODPP), which can preferentially aggregate
at the mitochondria at nanomolar concentrations, was developed [16]. PhODPP showed
comparable performance to the commercially available Mitotracker Red staining agent
(Figure 2a). Its fluorescence quantum yield significantly increased by 7 times. PhODPP
was the first uncharged DPP for the selective imaging of mitochondria. Another DPP
derivative (T25) based on nanoparticles with NIR-IIa emission was utilized for fluorescence
angiography and cerebral vascular microscopic imaging (Figure 2b) [17]. An 800 µm pene-
trating depth and excellent signal–background ratios of 4.07 and 2.26 (at 250 and 400 µm,
respectively) were achieved. Because it produced a high quantum yield of 1.84% in the
range 800–1400 nm and a high-spatial-resolution of 3.84, accurate observation of small
metastatic tumors (0.3 mm × 1.0 mm) could be achieved through NIR-IIa fluorescence
imaging with high spatial resolution and position.
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A mannose-substituted AIE-active DPP probe was developed for lectin detection [18].
This was the first fluorogenic AIE-based probe that could sense lectins in the NIR region, but
it suffered from poor water solubility and failure in the fluorescence imaging of cancer cells.
Recently, another AIE-active mannosylated-DPP (DPPS-M) containing six mannose groups
was synthesized to expand the application in the imaging of cancer cells [19]. Through
sugar–lectin interactions to form aggregates, the fluorescence of DPPS-M increased after
the addition of lectin. DPPS-M selectively recognized concanavalin A (Con A) with fluo-
rescence enhancement and nanomolar limits of detection (Figure 2c). Due to its improved
water solubility, DPPS-M could be used for the fluorescence imaging of cancer cells. In
addition, through the use of an electrostatic-interaction-driven assembly, a cationic DPP
amphiphile was applied as a turn-on fluorescent probe for bovine serum albumin, with
a limit of detection of 0.08 µmol/L [20]. The excellent cell compatibility was successfully
applied to light up BSA-rich HeLa cells.
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Figure 2. The structure of (a) PhDPP and (b) T25. (c) DPPS-M for Con A detection based on the AIE
mechanism [19] {Adapted with permission from Ref. [19]. 2019, Wang, J et al.}.

Excessive superoxide anions can stimulate autophagy or apoptosis signals in cells,
leading to cell death and causing various diseases. When DPP was linked with diphenyl
phosphinate at the side chain as a reaction site of superoxide anions, the resulting DPP-
S showed high sensitivity to superoxide anions, yielding an emission shift from 652 to
545 nm and a low limit of detection of 20.5 nM (Figure 3a) [21]. Due to the presence of
pyridine cations, DPP-S could target mitochondria and could be employed as a ratiometric
fluorescent probe for endogenous superoxide anion detection in MCF-7 and RAW264.7 cells
and in vivo experiments. In addition, the up-regulation of peroxynitrite (ONOO−) levels
in the liver are relative to acetaminophen (APAP)-induced liver injury. Two DPP-based
ratiometric fluorescent probes (DPP-DH-P and DPP-DEG-P) for detecting and imaging
peroxynitrite were reported (Figure 3b) [22]. DPP-DH-P exhibited a higher signal-to-noise
ratio (2750-fold) and a lower detection limit (3.5 nM) for tracking ONOO− in solution than
DPP-DEG-P. However, DPP-DEG-P with a hydrophilic chain showed better biocompati-
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bility, and could monitor the fluctuation of ONOO− in APAP-treated hepatocytes with a
high signal-to-noise ratio (20-fold) via ratiometric fluorescence imaging.
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Figure 3. (a) The proposed mechanism between DPP-S and superoxide anion. (b) The proposed
mechanism between DPP-DH-P, DPP-DEG-P, and ONOO−.

Using the fluorescence resonance energy transfer (FRET) and the aggregation-induced
emission (AIE) strategies, Nie et al. developed an organic micellar nanoprobe via the
co-assembly of phenyl-diketopyrrolopyrrole (PDPP1) and amphiphilic tetraphenylethene
(TPE1) in aqueous solution for the ratiometric detection of hypochlorite (Figure 4) [23].
Upon addition of hypochlorite, C=C bonds in the DPP core were oxidized and the FRET
process between PDPP1/TPE1 was broken, resulting in the enhanced emission of TPE1 and
decayed emission of PDPP1. The low sensitivity with LOD (32 nM) in a ratiometric manner
and the imaging of exogenous and endogenous hypochlorite in live cells were achieved.
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2.2. Detection and PDT

Typical photosensitizers can cause phototoxicity in both normal cells and cancer
tissue. The activatable photosensitizers (aPSs) in PDT exhibit improved selectivity and
sensitivity towards cancer cells. Hua’s group developed some aPSs for imaging-guided
PDT. For instance, DPP-GGT showed highly selective and obvious fluorescent changes
from red to yellow for γ-glutamyltranspeptidase (γ-GT, tumor-related biomarker) detection
(Figure 5a) [24]. More importantly, the photosensitizing ability of DPP-GGT was triggered
in the presence of γ-GT. Based on this process, DPP-GGT not only specifically detected
endogenous γ-GT in liver tumors, but was also used as a γ-GT triggered photosensitizer.
The resulting product exhibited photodynamic killing effects on human hepatic cancer cells
(HepG2) via overexpressed γ-GT in tumors. DPP-BPYS showed a redshifted spectrum
and AIE activity at the same time. Based on the AIE mechanism, the H2O2-activated DPP-
BPYS showed “turn on” near-infrared fluorescence emission, high singlet oxygen (1O2)-
generating capacity, and targeting of lipid droplets (LDs) in tumor cells (Figure 5b) [25]. The
rapid imaging of endogenous H2O2 in vivo was demonstrated. Phototoxicity experiments
have shown that DPP-BPYS effectively ablates tumor cells by inducing cell apoptosis under
H2O2 and white-light irradiation. In another case, DPP-Leu was developed for leucine
aminopeptidase (LAP) detection based on the specific enzymatic cleavage of the N-terminal
leucine residue, leading to distinguishing tumor cells with a high LAP content from normal
cells (Figure 5c) [26]. A detection limit of 0.011 U·L−1 was obtained, which could effectively
quantitatively detect LAP in fetal bovine serum (FBS) and artificial urine. Cell-imaging
experiments have shown that DPP-Leu can target mitochondria and distinguish tumor
cells with different LAP levels. At the same time, activatable DPP-Leu can generate ROS to
kill tumor cells under light irradiation without damaging normal cells. Thienyl-substituted
diketopyrrolopyrrole (SDPP-DM) with an α, β-unsaturated double-bond as a recognition
site for the detection of endogenous bisulfite was reported, yielding obvious color changes
from green to pink and fluorescence enhancement due to the reduced conjugated length
(Figure 5d) [27]. In addition, SDPP-DM has been successfully applied to imaging and
distinguishing different endogenous bisulfite levels in normal liver cells and cancer cells.
SDPP-DM has shown ROS generation and phototoxicity triggered by endogenous bisulfite,
resulting in a potential application for liver-cancer diagnosis and HepG2 cell killing.

Dong’s group synthesized glutathione (GSH)-responsive DPP derivatives (DPPBPh
and DPPTPh) (Figure 6) [28]. High concentrations of GSH could reduce the damage of
ROS to cancer cells, severely diminishing the efficacy of PDT in cancer treatment. In two
cases, the thiol group in GSH reacted with the –CN group to form thiazole through the
Michael addition reaction and recovered the quenched fluorescence. DPPTPh NPs possess
higher 1O2 efficiency and photothermal conversion efficiency than DPPBPh NPs. In vitro
and in vivo experiments have shown that DPPTPh can accumulate at tumor sites. Under
laser irradiation, tumor growth was significantly inhibited, while other normal tissues were
not damaged.

2.3. PTT and Photoacoustic Imaging (PAI)-Guided PTT

A conjugated polymer based on porphyrin and DPP (Ppordpp) showed efficient
absorption extending in NIR-II and high photothermal conservation efficiency (PCE) of
86.21% (Figure 7a) [29]. Under radiation, Ppordpp NPs transferred energy in the form of
heat to kill cancer cells. Similarly, another DPP-based conjugated polymer (PDPP-TP) had
a PCE of 52.8%, leading to efficient photothermal antibacterial treatment with almost 100%
efficiency against Gram-negative E. coli and Gram-positive S. aureus (Figure 7b) [30]. Zheng
et al. developed three amphiphilic DPP derivatives (TPADPP, DTPADPP, and TPADDPP)
with different poly-(ethylene glycol) side chains (Figure 7c). The corresponding nanoparti-
cles (NPs) were obtained via self-assembly. The photothermal conversion efficiencies of
DTPADPP NPs and TPADDPP NPs were 48.1% and 41.7%, respectively. DTPADPP NPs
and TPADDPP NPs can significantly accumulate in tumor tissue for real-time in vivo fluo-
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rescence imaging. In vivo experiments have shown that DTPADPP NPs and TPADDPP
NPs have photothermal effects and efficient tumor ablation ability [31].
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As we know, nanoagents with efficient NIR-absorbing capacity are ideal probes for
photoacoustic imaging (PAI). PAI-guided PTT shows promising applications in the biomed-
ical field [32,33]. For example, porphyrin derivatives have advantages such as high ex-
tinction coefficients, good biocompatibility, and low side effects, but they always lack
photostability in the NIR region. Due to their good photostability and other characteristics,
DPP derivatives can serve as electron acceptors to form D-A structures with porphyrins,
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making up for their shortcomings. Based on this mechanism, the porphyrin-DPP conjugate
(Por-DPP) exhibited a PCE of 62.5% and a distinct PTT effect under 808 nm laser irradiation
(Figure 8a) [34]. The PAI signal intensity of the tumor region was 13 at 8 h, which was
4.3-fold higher than that of the background of the tumor, indicating that Por-DPP NPs
could passively target tumor tissue due to their efficient EPR effect. The significant thera-
peutic effect of Por-DPP NPs under laser irradiation was further confirmed by evaluating
the PTT effect in vivo through using a HeLa tumor-bearing mouse model. An IC50 value of
11.6 µg/mL with no significant side effects after phototherapy was achieved.

Jin et al. investigated the effects of heteroatom substitution in DPP polymers for
PAI/PTT cancer ablation (Figure 8b) [35]. The substitution of heteroatoms and changes
from O to S and then to Se of DPP conjugated polymers could significantly regulate the
absorption spectra and energy gap. The PCE value and absorption coefficient of DPP-SO
NPs were much higher than those of DPP-SS and DPP-SSe NPs under 808 nm irradiation,
and DPP-SO NPs exhibited significant PA signals. Remarkably, the IC50 value of DPP-SO
for killing A549 cells was half that of DPP-SS and DPP-SSe NPs. Moreover, due to the EPR
effect, DPP-SO NPs could accumulate at the tumor site. An in vivo experiment indicated
that cancer cells could be killed by necrosis and apoptosis under laser irradiation without
causing damage to other parts.

Intra- and intermolecular interactions were studied with DPP derivatives contain-
ing chalcogen and fluorine atoms (Figure 8c) [36]. The synergistic π–π and F–H interac-
tions facilitated fluorine- and selenium-substituted DPP-SeF with the highest PCE of 62%
(32% for DPP-SS). The IC50 value of ∼8.36 µg·mL−1 for DPP-SeF was lower than that of
15.14 µg·mL−1 for DPP-SS on A549 cells under 808 nm light irradiation.
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2.4. PDT/PTT Combination Therapy

DPP-based conjugated polymers have good photostability and large molar extinction
coefficients [37–39]. Polyphenylenevinylene (PPV) and DPP-conjugated polymers were
developed to construct PTT and PDT dual-mode NPs for antibacterial application [40].
Liu et al. synthesized the DPP-based conjugated polymer DBT for PDT/PTT combina-
tion therapy (Figure 9a) [41]. DBT NPs showed a high mass-extinction coefficient of
5.407 cm−1 mg−1 mL at 808 nm, moderate singlet oxygen yield, photothermal conversion
efficiency (41.5%), and second near-infrared window (NIR-II) emission at 1056 nm with
a quantum yield (QY) of 0.16%. In vitro and in vivo experiments indicated that DBT
NPs show high-performance PTT/PDT combination therapy. In order to increase the
light absorption coefficient, a D-A-D-type conjugated polymer (PBDPP) was synthesized
(Figure 9b) [42]. PBDPP NPs showed PCE up to 60% due to the low energy loss of radia-
tive transitions generated by the D-A-D structure and aggregation-induced quenching in
nanoparticles. More importantly, PBDPP NPs have exhibited precise glioblastoma-specific
capability and can effectively kill glioblastoma cells both in vitro and in vivo. Under 808 nm
irradiation, PBDPP NPs induced remarkable cell death with an IC50 of 0.15 µg·mL−1 and
complete tumor elimination using a 0.35 mg.mL−1 dosage in an in vivo mouse experiment
without any side effects.
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Hyaluronic acid (HA)-functionalized DPP (HA-Cys-TTDTT) and chlorin e6 (Ce6)
were encapsulated by self-assembly for tumor-targeting and multimodal imaging-guided
PDT/PTT synergistic therapy (Figure 9c) [43]. The resulting NPs showed 1O2 quantum
yields (53.0%), enhanced fluorescence intensity due to an efficient energy transfer from
DPP dye to Ce6, and a moderate PCE (η = 37.7%) under laser irradiation at 635 nm. NIR
fluorescence and thermal imaging indicated that HA-Cys-TTDTT NPs were located at the
tumor sites by the HA active targeting, producing enhanced cytotoxicity to tumor cells.
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In addition, Ce6@HA-Cys-TTDTT NPs could degrade gradually in tumor cells through
excessive expression of HA.

Mao’s group developed a hybrid platform based on Ir nanoparticles and a DPP-
conjugated polymer [44]. Hybrid nanoparticles produced oxygen in the presence of en-
dogenous H2O2 for down-regulation of hypoxia-inducible factor 1 subunit α (HIF-1α)
protein, thereby reversing the tumor hypoxia microenvironment. In this case, Ir nanoparti-
cles were used as PTT agents and nanocatalysts to generate oxygen, resulting in enhanced
PTT effects in the hybrid platform. The PCE value under 808 nm irradiation was up to
67.0%. By using the 4T1 tumor-bearing mouse model to investigate the anticancer activity
of DPP-Ir NPs, excellent PTT anti-tumor efficacy, low biological dark toxicity, compatibility,
and blood compatibility were achieved. Tang’s group proposed a strategy based on to fabri-
cate NIR-II dyes with both high absorbance and excellent signal outputs (fluorescence and
heat). Conjugated fluorophores TADAT and TDADT with one and two DPP units, respec-
tively, were synthesized (Figure 10b,c) [45]. Two highly twisted triphenylamine (TPA) and
alkylthiophene–benzobisthiadiazole–alkylthiophene moieties were introduced to prevent
intermolecular π–π interactions. TADAT and TDADT exhibited fluorescence quantum
yields of 0.2% and 0.1% and PCE values of 64.3% and 60.4%, respectively. TDADA NPs
provided excellent high-resolution imaging to improve the accuracy of cancer surgery.

In recent years, semiconductor materials have been widely used in biomedical ap-
plications, including imaging and treatment. The 2-pyridone group is able to react with
singlet oxygen to form endoperoxides of 2-pyridone, which can undergo thermal cyclore-
version to release singlet oxygen in vivo, re-producing the 2-pyridone [46,47]. In order to
continuously deliver singlet oxygen in the dark and hypoxic tumor microenvironment,
an amphiphilic polymer containing a 2-pyridone unit (PEG-Py) was used to encapsulate
DPPTPE to produce smart phototheranostics (Figure 10e) [48]. DPPTPE@PEG-Py NPs
kept producing 1O2 under laser irradiation even when the O2 supply was stopped. The
singlet oxygen yield of the NPs was 69% and the PCE was 30.6%. Moreover, due to the
large Stokes shift of DPPTPE, in vivo fluorescence-imaging-guided PTT/PDT combination
therapy was obtained by inhibiting tumor growth without side effects on major organs.

Li et al. designed and synthesized a mitochondria-targeting DPP2+ by introducing
imidazole groups (Figure 10d) for synergistic PDT/PTT, which could produce PCE of 35%
and singlet oxygen under 635 nm laser irradiation [49]. Importantly, DPP2+ NPs exhibited
enhanced cell uptake, specific mitochondria-targeting ability, significant inhibitory effects,
and low side effects on tumors through PTT/PDT synergistic effects.

Through the use of an acceptor planarization and donor rotation strategy, 3,6-
divinylsubstituted diketopyrrolopyrrole (DPP) derivatives (2TPEVDPP with four rotors) as
type-I PSs were synthesized (Figure 10h) [50]. By introducing a vinyl linker, the flatness and
the π-conjugation of the compound were improved. This helped to enhance the intersystem
crossing (ISC) and the production capacity of ROS, further promoting the redshift of the ab-
sorption wavelength. 2TPEVDPP NPs keep a good balance between ROS generation and the
heat dissipation pathway (PCE = 66%). Under irradiation, 2TPEVDPP NPs could effectively
inhibit tumor growth without side effects. 2TPEVDPP NPs showed potential application
for in vivo NIR fluorescence-imaging-guided synergistic PDT/PTT therapy. For a donor–
acceptor compound, PDBr NPs (Figure 10f) with a high singlet oxygen (1O2) quantum yield
of 67%, PCE of 35.7%, and excellent fluorescence/infrared-thermal imaging performance
were developed [51]. PDBr could significantly inhibit the growth of living mouse tumors
by combining PDT/PTT with the help of imaging guidance. Recently, through the use of
extended conjugation and enhanced TICT effects, TPA-TDPP NPs for NIR fluorescence-
image-guided PDT/PTT were reported (Figure 10g) [52]. A 1O2 production capacity of 50%
and PCE of 38.7% were shown. TPA-TDPP NPs can accumulate at tumor sites through the
EPR effect, and inhibit tumor growth through the synergistic effect of PTT/PDT.

Black phosphorus nanosheets (BPNs) largely possess a specific surface area, excellent
photothermal conversion efficacy (28.7%), and negligible dark toxicity. Recently, Li et al.
reported an A-D-A-type DPP photosensitizer (AN(DPP)2) (Figure 10a), which was loaded
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onto PEGylated BPNs [53]. The resulting NPs showed a two-dimensional planar morphol-
ogy with lateral sizes of 190 nm and an average thickness of 3.3 nm. The loading and
encapsulation efficiency of AN(DPP)2 were 5.8% and 96.7%, respectively. Moreover, a PCE
of 29.1% and 1O2 generation capacity of 89.8% were found. As a result, a remarkable antitu-
mor effect toward 4T1 cells and metastatic breast cancer was shown upon light irradiation.
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3. Conclusions

In this review, we summarized the recent progress of DPP dyes and their applica-
tions in cancer diagnosis and treatment [54–59]. Their applications, including bioimaging,
detection, PDT, PTT, and PAI, have shown enormous potential due to their superior photo-
physical properties and phototheranostics character.

Phototherapy has great advantages in increasing the effect of tumor treatment and
reducing side effects. Efforts have been made to design a series of clinical applications of
cancer therapy. However, some limitations cannot be ignored. Firstly, traditional PDT is
highly dependent on oxygen, but the tumor microenvironment is highly hypoxic. Most
DPP derivatives are highly O2-dependent type II PSs (generation of singlet oxygen), which
greatly diminishes the anticancer outcomes. Second, many DPP-based phototheranostics
are passively accumulated in the tumor tissues through the EPR effect, leading to harm
to normal tissue and long post-treatment darkroom processing time. Third, DPP-based
fluorescent materials mainly work in the NIR-I biological window for bioimaging, which
limits application in deep tissues and tumors. Moreover, weak emission signals have
been shown due to the aggregation-caused quenching (ACQ) effect. Fourth, the structural
properties and applications of DPP derivatives should be clarified, which is important to
understand and address the limiting factors for DPP-based phototheranostics. Fifth, the
drawbacks of phototherapy agents include poor water solubility due to hydrophobicity. For
biological application, the in vivo degradation of DPP derivatives should also be considered
and evaluated.

From our perspective, the following suggestions should be considered in the future in
the development of DPP derivatives in biological applications.

1. Both efficient ROS production efficiency and good photothermal conversion effi-
ciency can be achieved via collaborative processing of PDT/PTT. Moreover, since
immunotherapy is a promising cancer treatment approach, DPP-based dyes for com-
binational phototherapy and immunotherapy have been developed [60]. Moreover,
multifunctional DPP materials created by combining optical/acoustic/magnetic imag-
ing modes with other therapeutic modes (chemodynamic therapy or gene therapy,
etc.) are promising in practical applications.

2. NIR-II fluorescence imaging, as a non-invasive imaging technology that provides
centimeter-level depth and micron-level resolution, has been investigated. In order to
further broaden the application of DPP derivatives, it is necessary to further develop
DPP derivatives that can be applied to NIR-II fluorescence bioimaging.

3. The practical clinical application is limited by issues such as biocompatibility, cyto-
toxicity, targeting specificity, and biodegradability. For example, the mitochondria
of normal cells and cancer cells are different, which has led to the development of
DPP derivatives that can target mitochondria to improve the effectiveness of treat-
ment. The targeting ability and response to external stimuli are also important during
molecular design.

4. NIR-II image-guided synergistic enhancement for the in vivo chemo-photodynamic
therapy of osteosarcoma has been developed [61]. DPP was used as a fluorescent
and gene-loading capacity vector for drug delivery and tumor imaging in vitro and
in vivo [62].

5. Cancer cell membranes can be penetrated by nanomaterials, allowing accumulation
in diseased areas and improvement of treatment effectiveness. Converting DPP
derivatives into nanoreagents should be considered.

6. A simpler synthesis route of DPP derivatives should be designed to achieve maximum
effects at the lowest cost.
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