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Abstract: Type II diabetes mellitus and its related complications are growing public health prob-
lems. Many natural products present in our diet, including polyphenols, can be used in treating
and managing type II diabetes mellitus and different diseases, owing to their numerous biological
properties. Anthocyanins, flavonols, stilbenes, curcuminoids, hesperidin, hesperetin, naringenin,
and phenolic acids are common polyphenols found in blueberries, chokeberries, sea-buckthorn,
mulberries, turmeric, citrus fruits, and cereals. These compounds exhibit antidiabetic effects through
different pathways. Accordingly, this review presents an overview of the most recent developments
in using food polyphenols for managing and treating type II diabetes mellitus, along with various
mechanisms. In addition, the present work summarizes the literature about the anti-diabetic effect
of food polyphenols and evaluates their potential as complementary or alternative medicines to
treat type II diabetes mellitus. Results obtained from this survey show that anthocyanins, flavonols,
stilbenes, curcuminoids, and phenolic acids can manage diabetes mellitus by protecting pancre-
atic β-cells against glucose toxicity, promoting β-cell proliferation, reducing β-cell apoptosis, and
inhibiting α-glucosidases or α-amylase. In addition, these phenolic compounds exhibit antioxi-
dant anti-inflammatory activities, modulate carbohydrate and lipid metabolism, optimize oxidative
stress, reduce insulin resistance, and stimulate the pancreas to secrete insulin. They also activate
insulin signaling and inhibit digestive enzymes, regulate intestinal microbiota, improve adipose tissue
metabolism, inhibit glucose absorption, and inhibit the formation of advanced glycation end products.
However, insufficient data are available on the effective mechanisms necessary to manage diabetes.

Keywords: type II diabetes mellitus; polyphenols; resveratrol; curcumin; quercetin; catechins;
hydroxycinnamic acids; anthocyanins; kaempferol

1. Introduction

Phytochemicals and polyphenols in fruits and vegetables have antidiabetic effects [1].
Plant-based nutrients such as vegetables (onion, cabbage, and especially broccoli), fruits
(apples, grapes, cherries, pears, and various berries), and grains contain hundreds of dif-
ferent polyphenols [2–4]. In this context, some vegetables such as beans, cabbage, onions,
and cereals also contain anthocyanidins, whereas red fruits are the primary source of these
polyphenols [5]. The plant kingdom contains a large number of polyphenols that fall under
the categories of tannins, lignans, stilbenes, phenolic acids, and flavonoids, among others [6].
On the other hand, fruits, spices, grains, vegetables, and other phenolic-rich plant products
contain phenolic acids (hydroxycinnamic acids and hydroxybenzoic acid), stilbenes, and
lignans [3,4,7]. Phenolics are crucial to fruit quality because they impact the fruit’s taste,
appearance, and nutritional value [8]. For example, flavonoids may lessen the risk of
developing diabetes [6] by maintaining glucose uptake, blood glucose points, and insulin
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secretion, controlling immune function [9,10]. In this respect, dietary flavonoids demon-
strated a significant anti-hyperglycemic-like effect through glucose absorption control [11],
a reserve of digestive enzymes [12,13], regulation of intestinal microbiota [14], inhibition of
the formation of innovative glycation end products [15], and other mechanisms. Polyphe-
nols may also influence the signaling pathways and ensuing alterations in gene expres-
sion [16,17]. By controlling the events of glucose metabolism, hepatic enzymes, and lipid
profiles, flavonoids reduce the pathogenesis of diabetes and its complications [18]. Flavone
C-glycosides, which can also hinder digestive enzymes and activate insulin signaling, can
lessen the production of advanced glycation end products (AGEs) [19]. Accordingly, the
consumption of purple carrots, high in anthocyanins (flavonoids) and low in carotenoids,
was linked to a decrease in impaired glucose tolerance [20]. Quercetin, a flavonoid, has
received the most research attention for its in vivo and cellular anti-diabetic properties
in animal and cell models [21], followed by kaempferol [22], luteolin [23], myricetin [24],
and naringenin [25]. The most well-known sources of the stilbenes class of polyphenols,
including resveratrol, are mulberries, grape skin, and peanuts [26]. The numerous and
diverse phytochemicals known as polyphenols contain phenolic rings [9]. In this regard,
two aromatic rings are joined by a 3-carbon chain to form an oxygenated heterocyclic
ring, and this structure makes up a class of phenolic compounds known as flavonoids [27].
Anthocyanins, flavonols, flavones, isoflavonoids, and syringic acid are flavonoid subclasses
connected to diabetes because the consumption of food that contains these compounds
lowers the risk of type II diabetes [28].

According to estimates, there will likely be over 300 million cases of type II diabetes
worldwide by 2030 [29]. Therefore, medical professionals, academics, and policymakers
are taking note of the rising number of fatalities brought on by diabetes, related illnesses,
and physiological disorders to promote healthy eating habits [1]. Currently, preventing
and treating metabolic syndrome and type II diabetes involves increasing physical activity
and decreasing calorie intake [30]. Hyperglycemia is a metabolic disease with multiple
underlying origins that necessitate lifetime medication therapy and dietary adjustments. In
diabetes management and prevention, herbal supplements are now supported by a grow-
ing body of scientific research. Nutritional polyphenols, the most common phytochemical
in human diets, have drawn much interest due to growing evidence of their positive effects
on humans. Dietary polyphenols aid in the management of type II diabetes and lessen the
severity of diabetic complications in animals. The anti-diabetic effects of resveratrol [31,32],
curcumin [33], and anthocyanins [34] have been demonstrated in humans. Studies validate
that these polyphenols conducted in vitro and in vivo compounds have anti-inflammatory,
antioxidant, chemopreventive, and neuroprotective properties. Accordingly, and because
of the wide range of preventive and therapeutic and preventive options of food polyphe-
nols and their involvement in managing and preventing type II diabetes mellitus, this
review discusses the chemopreventive and therapeutic ability of these natural polyphe-
nols in treating and managing type II diabetes mellitus. In addition, the current work
discusses the numerous mechanisms of action through which these polyphenols exert their
antidiabetic effects.

2. Results
2.1. Pathogenesis of Type II Diabetes Mellitus

Over 400 million people worldwide have type II diabetes (T2D), regarded as a multifac-
torial and complex metabolic disorder [35–38]; T2D is a chronic inflammatory disease [37].
Insulin resistance, deficiency of insulin secretion, and reduction of its anabolic activity on
target tissues alter the metabolism, and its reflected chronic metabolic disorder can lead
to death [39]. Through its numerous organ complications, diabetes lowers the quality of
life [40] and affects whole-body physiology [41]. In this regard, hormones such as insulin
and glucagon [42,43], adipokines/lipokines (adiponectin [44], leptin [45], and adipsin [46]),
metabolites (amino acids [42,47], such as alanine [48,49]), lipids, free fatty acids [49–51],
and glucagon-like peptide-1 are known metabolic regulators that disturb metabolism by
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signaling to various nerves and are crucial for T2D [52]. Even though T2D is most fre-
quently passed down through families, it does so because of the interaction between risk
genes primarily expressed in insulin resistance in target organs and β-cells, many other
forms of hyperglycemia have nongenetic causes [53]. Depicted in Figure 1 are the essential
factors attenuating type II diabetes mellitus.
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2.1.1. Adipokine and Pro-Inflammatory Cytokine Roles in Diabetes

An adipokine called adiponectin stimulates AMP-activated kinase (AMPK), which
reduces gluconeogenesis and improves insulin sensitivity in the liver [54]. In addition
to the liver, adiponectin also affects the muscles by triggering AMPK, increasing acetyl
CoA carboxylase (ACC) phosphorylation, fatty acid oxidation, and glucose uptake [55,56];
adipokine aids in maintaining the homeostasis of energy [57,58]. In this context, inflam-
matory and metabolic diseases are complicated by the presence of molecules such as
retinol-binding protein 4 (RBP4) [59], TNF-α [60–62], and others that interfere with home-
ostasis [58,59]. By producing myokines, skeletal muscles contribute significantly to the
endocrine response and T2D [63]. The most well-known myokine with various functions
in numerous tissues is IL-6, which is frequently linked to inflammatory processes. In a
murine model, IL-6 enhanced insulin signaling via AKT while inhibiting the expression of
gluconeogenic genes [64]. In addition, IL-6 increased fat oxidation and lipolysis in adipose
tissue by activating AMPK [65]. IL-15 aids in enhancing insulin action and lowering visceral
adipose tissue [66]. TNF-α plays a significant role in this situation because of the buildup
of fat in adipose tissue due to its production and release during inflammation, which pro-
motes insulin resistance and increases lipolysis [67,68]. To further reduce insulin sensitivity,
TNF-α inhibits IRS1 and downregulates PPAR-c in adipose tissues [69,70]. The cytokines
generated by NF-kB activation can stimulate JNK, which causes insulin resistance and
self-activates NF-kB in a feedback loop [37]. The macrophage initiates pro-inflammatory
pathways and releases TNF, IL-1b, and IL-6 [71–75]. The recruitment of macrophages to
tissues is mediated by elevated levels of chemoattractant protein-1 (MCP1), which is part



Molecules 2023, 28, 3996 4 of 43

of the inflammatory response [76]. The production of monocyte chemoattractant protein-1
(MCP1) by pancreatic islets is associated with pathophysiological conditions of pancreatic
dysfunction [77]. Additionally, the inflammatory response is triggered by prostaglandins
and leukotrienes, which are produced from arachidonic acid. Many factors contribute to
inflammation, including pro-inflammatory cytokines, ROS, and environmental factors that
release eicosanoids [78,79].

2.1.2. Insulin and β-Cell Involvement in Diabetes

β-Cells are stimulated to produce and secrete insulin when the plasma glucose lev-
els are physiological, which helps the liver, brain, muscles, and adipocyte tissue absorb
glucose. Insulin prevents the breakdown of fat and promotes the synthesis of proteins,
lipogenesis, and glycogen while inhibiting hepatic gluconeogenesis [80]. This proves that
insulin has generalized hormonal effects in addition to its well-known ability to lower
blood sugar, which explains why diabetes affects various tissues. The hormone’s binding to
the insulin receptor initiates a sequence of phosphorylation events that make up the insulin
signal transduction pathway. Thus, the activation of intracellular protein substrates starts
signaling cascades. Afterward, phosphatidylinositol 3-kinase (PI 3-kinase) activates protein
kinase B (PKB), also known as AKT. GLUT4 is then translocated to the plasma membrane,
except hepatocytes, which primarily express the non-insulin-regulated glucose transporter
2 (GLUT2), where it is activated by insulin in target cells along with several other enzymes,
including glycogen synthase. The mitogen-activated protein kinase pathway is also re-
sponsive to insulin signaling, which controls gene expression, protein translocation, and
cell growth [81]. Because insulin is a central regulator of lipid, protein, and carbohydrate
metabolism regulator, an imbalance in metabolic paths directly affects how insulin behaves.
The liver’s abilities to induce glucose uptake and glycolysis, which produce the building
blocks for fatty acid synthesis, are just two of the numerous mechanisms contributing to
lipogenesis [82]. Production of the pancreatic enzyme is dysregulated in T2D because of
the close functional connections between the endocrine and exocrine pancreas [83]. Insulin
resistance develops before insulin hypersecretion, which is viewed as a step to meet high
insulin requirements [84]. In this respect, insulin resistance would result in hyperinsulinism.
Whatever the underlying cause of hyperinsulinemia, the result is a reduction in glucose
uptake by the muscles and an increase in the production of liver glycogen, which aids in
the progress of T2D [36], [85], [86–89]. Furthermore, high glucose levels can cause β-cells to
express the proapoptotic receptor FAS, which can produce IL-1b [90]. Insulin and glucagon
functions associated with diabetes are shown in Figure 2.

By phosphorylating FOXO1 and SREBP1, AKT2 mediates the transcriptional activation
of lipogenic genes induced by insulin [91]. Nucleotides are cofactors in crucial metabolic
processes in addition to carbohydrates [92], and they may be connected to metabolic
diseases [93]. For example, glyoxylic acid, trimethylamine, and uridine are all upregulated
in T2D [94–96]. Interestingly, IMP, GMP, AMP, GTP, inosine, guanosine, and adenosine
levels were elevated in T2D [97,98].
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2.1.3. Free Fatty Acids and Type II Diabetes

Fatty acids have been linked to the risk of T2D [87]. In the blood, with increased insulin
levels and insulin resistance in the liver and tissues, free fatty acids (FFAs) contribute to
fat buildup, oxidative stress, inflammation, and hyperglycemia [85,86,99]. Furthermore,
increased levels of FFAs prevent the lipolysis of adipose tissue induced by insulin [85].
Abnormal de novo lipogenesis and increased FFA levels are the root causes of several
metabolic diseases [85,100–103]. As T2D progresses, one metabolic change occurs, which
is an increase in FAAs. This change may open additional pathways that could help the
disease progress. For instance, the lipid mediator palmitic acid has toxic effects in the
islets, which activate the toll-like receptor to cause decreased insulin secretion and target
organs’ insulin resistance [104,105]. In the liver and white adipose tissue (WAT), saturated
fatty acids also cause the pro-inflammatory response via TLR4 [105–107]; NF-kB activation
results in inflammation [108] and endoplasmic reticulum (ER) stress in immune cells and
metabolic organs, which leads to insulin resistance [109,110]. Furthermore, there is a strong
correlation between impaired insulin secretion and fatty acids. It has long been thought to
be an aspect of the progress of type II diabetes, even though the molecular mechanisms
relating to insulin resistance and fatty acids are still unknown [31]. FFAs modify islets in
various techniques and accelerate the onset of T2D [36,111].

Phospholipids and triglycerides (TGs) are hydrolyzed to produce FFA and mono- and
diacylglycerols (DAG), and TGs are inhaled as free fatty acids. Short- and medium-chain
FFAs can be seen in the intestines, are carried to the bloodstream by serum albumin, and
are stored in the liver and adipose tissues [112]. Moreover, lipogenesis is an additional
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source of FFAs [113]. FFAs’ high levels activate numerous pathways that may work
together to affect the consequences of T2D and insulin resistance. Elevated palmitate
levels induce a pro-inflammatory response by promoting IL-1 and IL-I8 secretion and
maturation [114]. The serine phosphorylation of the insulin receptor substrate-1 (IRS1) in
an NK/IKK-dependent fashion results in insulin resistance induced by pro-inflammatory
cytokines [115]. Furthermore, high FAA concentration stresses cells because lipotoxicity
causes apoptosis, ROS production, and ER stress [116]. However, sustained high-level
exposure to FFAs causes lipotoxicity, which causes β-cell dysfunction and, ultimately, type II
diabetes (T2D) [117]. Similarly, continual FFAs are due to the reserve of glucose-stimulated
insulin (GSIS) release, changes in gene appearance, and promotion of apoptosis caused by
stimulation of inaccessible pancreatic islets with stimulatory glucose concentrations [118].
ER stress, which can lead to β-cells apoptosis, can be brought on by saturated fatty acids.
In β-cells, the ER stress and unfolded protein response are incredibly sensitive [119]. T2D
is consequently developed in pancreatic islets exposed to FFAs over an extended period.
Adipocytes can store adipose tissue more effectively when high FFA concentrations are
present, but an increase in adipocyte fat content may cause inflammation and hypoxia in
the tissue and cell [120].

Adipocytes develop insulin resistance and chronic low-grade inflammation, which
help in the pathogenesis of T2D [116,121]. According to the most widely accepted theory,
β-cells secrete too much hormone to counteract insulin resistance [117]. In this case,
myocytes frequently take in more FFAs and store them as TGs because T2D increases the
flux of TGs and FFAs. For metabolic energy, skeletal muscles primarily use glucose and
FFAs [120,122]. FFA buildup in myocytes causes the synthesis of toxic ceramides and DAG,
which can cause cell damage, lipotoxicity, inflammation, and insulin resistance [120].

Inflammation and metabolic disorders are frequently associated with metabolic dys-
regulation in the liver and muscles [123,124] because the accumulation of DAG promotes
PKC activation while inhibiting insulin receptor activation, resulting in muscle and liver
insulin resistance [125–128]. Insulin resistance positively correlates with irregular lipid
buildup in the muscle and liver [129]. In this regard, elevated plasma FFA levels cause fat
to build up in the WAT, liver, and muscle by regulating long-chain acyl-CoA, TGs, and
DAG [128]. However, insulin resistance appears to lead to augmented lipid accumulation
in these tissues [130]. Activating PKC isoforms, DAG, a precursor to TGs, regulates the
phosphorylation of molecules in the insulin pathway [131]. In the development of T2D,
DAG buildup appears to be a significant lipid mediator, inhibiting insulin sensitivity in
the liver and muscle [130,132,133]. Furthermore, the activation of phosphatase 2A, which
dephosphorylates AKT, reduces the translocation of the PIP3–PDK1 complex and inhibits
insulin-stimulated AKT at the plasma membrane of target cells [134–138]. In addition to
these mechanisms, ceramide buildup in membrane domains activates caspase, releasing
pro-inflammatory cytokines, generating ROS, and leading to cell death [139].

There has been evidence linking higher levels of FFAs in people with high plasma-free
radical levels to the production of ROS by NADPH oxidase in adipocytes, which led to
the release of pro-inflammatory cytokines from WAT [140,141]. ROS are essential for in-
flammation and signaling [142]. Two tissues where pro-inflammatory cytokines may be
produced and released are adipose tissue and the liver. These cytokines may affect other
tissues due to blood circulation, resulting in tissue damage, cell death, and an intensified
pro-inflammatory response [37]. IRS1 in the liver and adipose tissue is inhibited by lipid
mediators, TNF-α, ROS, hypoxia-activated IKKb, and JNK [143–145]. IKK and JNK1 phos-
phorylate IRS1 and IRS2 on the serine residue, which causes activation of the gene linked
to insulin resistance and inflammation [146,147]. On the other hand, pro-inflammatory
cytokines such as IL1b, MCP1, TNF-a, and IL-6 can be produced and released when the
NF-kB pathway is stimulated by high FFA concentrations [147]. Free fatty acids can bring
on insulin resistance in several different ways; increased lipid metabolism caused by FFAs
is linked to insulin resistance [148,149] because it inhibits the insulin receptor [150,151].
Additionally, high FFA levels cause ER stress in β-cells and the liver [152,153], as well as in
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adipocytes [154,155], which activates JNK and results in insulin resistance [155]. In T2D
and obesity, FFAs are also necessary for the activation of the NLRP3 and the production
of IL-1b [120]. IL-1 and IL-18 are released by the NLRP3 inflammasome, which promotes
inflammation [154–156].

2.2. Polyphenols

A growing body of evidence from in vivo and in vitro studies points to a substantial
role for dietetic polyphenols in treating type II diabetes (T2D) through insulin-dependent
tactics, such as protecting pancreatic islet cells, reducing cell apoptosis, promoting islet
cell proliferation, attenuating oxidative stress, activating insulin signaling, and stimulating
insulin secretion [33]. This can also be achieved through insulin-independent approaches
including the modification of the inflammatory response, inhibition of digestive enzymes,
regulation of intestinal microbiota, and prevention of advanced glycation end products
from forming [120]. Plant-based foods are increasingly used in dietary guidelines for people
at the hazard of T2D. These may affect glucose breakdown through several mechanisms,
including carbohydrate digestion inhibition and intestinal glucose absorption, stimulation
of pancreatic β-cells insulin secretion, glucose release from the liver, initiation of insulin
receptors and glucose acceptance in the insulin-sensitive tissues, and modification of
hepatic glucose output [2,5]. Below are details about the role of documented polyphenols
in T2D. The chemical structures of some important polyphenols are shown in Figure 3.
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2.2.1. Resveratrol

Baur and coworkers reported that resveratrol increases the lifespan in high-caloric
diet mice by reducing glucose and improving insulin levels. It increased insulin sensitivity
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in diabetic mice and homeostatic model assessment during glucose tolerance tests [157].
Research findings showed that resveratrol lowers blood insulin levels in animals with
hyperinsulinemia and insulin resistance. Rodents with diet-induced hyperinsulinemia
were used to demonstrate this effect [51–54,86]. On the other hand, resveratrol seems to
raise blood insulin levels in rodent models of type II diabetes with reduced-cell mass and
hypoinsulinemia, as demonstrated in db/db mice [57,61]. The improvement in insulin
action lowers blood glucose levels, which prevents glucotoxicity, the harmful effects of
hyperglycemia on β-cells [120]. In addition, resveratrol alleviates steatosis and lowers
hepatic lipid buildup. Decreased expression of acetyl-CoA carboxylase (ACC) and fatty acid
synthase (FAS) is linked to these effects [37,53,54,61,92–95]. It also reduces the expression
of fatty acid synthase [156]. According to some published research, resveratrol’s effects on
FAS and ACC may be mediated by the AMPK/SIRT1 axis [97,98]. It also decreases plasma
amylase levels, which increases pancreatic damage. Thus, it prevents pancreatic damage.

In addition, resveratrol increases mitochondrial numbers and citrate synthase activ-
ity [158] with reduced caloric and exercise [158,159]. Furthermore, in liver tissue, resveratrol
decreases the appearance of pro-inflammatory cytokines [83,94] and increases glutathione
peroxidase activity, which decreases oxidative liver damage [96]. Furthermore, resveratrol
decreases inflammatory markers, which protect pancreatic β-cells [103]. Findings also
demonstrated that resveratrol lessens oxidative stress; reduces islet fibrosis and destruction;
restores islet architecture; enhances islet structure and function; and attenuates other wors-
ening changes in db/db mice, a type II diabetes animal model with diminished β-cell mass.
Moreover, resveratrol increases the β-cell mass and partially stops β-cell failure [57,61].
Parametric analysis of gene set enrichment (PAGE) showed that resveratrol alters glycol-
ysis, TCA cycle, classic and alternative complement pathways, butanoate, propanoate
metabolism, and sterol biosynthesis [157]. In insulin-resistant rodents, resveratrol promotes
intracellular glucose transport in rats fed a high-cholesterol and high-fructose diet and
given resveratrol larger than those animals not given this supplement [160]. Resveratrol
enhances skeletal muscle’s ability to absorb insulin-stimulated glucose [161,162].

Resveratrol Effect on Diabetes via GLUT4 Elevation

In insulin-resistant rodents, intracellular glucose transport increases by resveratrol.
Within this context, Deng and colleagues indicated that when rats fed on a high-fructose
and high-cholesterol diet are given resveratrol in the initial animal studies, they show
greater soleus muscle glucose uptake than animals not given this supplement [160]. Sim-
ilar results were obtained and showed that resveratrol increases skeletal muscle glucose
uptake in rats nourished on a high-fat diet [161,163]. Resveratrol increases intracellular
glucose transportation in insulin-resistant animals via two GLUT4-related mechanisms. It
is well recognized that resveratrol expedites the translocation of GLUT4 to the muscle cells’
plasma membranes [160,161], and GLUT4 expression is also increased in animals with
insulin resistance in their skeletal muscle [164] and in db/db mice [165]. Moreover, research
findings showed improved insulin action by increased intracellular glucose transportation
in resveratrol-consuming insulin-resistant animals. In skeletal muscle, resveratrol reduces
insulin resistance through various mechanisms, including alterations in metabolism and
lipid buildup. In addition, resveratrol encourages mitochondrial biogenesis in rats with
diet-induced insulin resistance in their skeletal muscles [166] and improves mitochondrial
β-oxidation [162]. Coen and Goodpaster reported that type II diabetes and insulin resis-
tance are exacerbated by increased intramyocellular lipid accumulation, affecting how well
insulin works [167].

Resveratrol Effect on Diabetes via SIRT1 Involvement

Kitada et al. [168] reported that variations in the expression and activities of two intra-
cellular controllers are closely related to the beneficial effects of resveratrol on the muscle
tissue of insulin-resistant rodents, i.e., SIRT1 and AMPK. The NAD+-dependent histone
deacetylase SIRT1 (silent information regulator 1) involves several processes, including
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inflammation, mitochondrial biogenesis, stress resistance, intracellular metabolism, glucose
homeostasis, apoptosis, and others. Since type II diabetic patients have decreased SIRT1
activity and expression, SIRT1 is considered a target for anti-diabetic medications [168,169].
In addition, scientists showed that resveratrol triggers SIRT1 in mammalian tissues [170]
and triggers muscle SIRT1 in animals with diet-induced insulin resistance [162]. An in-
crease in the NAD+/NADH ratio is related to this enzyme’s activation [166]. Findings
also revealed that resveratrol raises the SIRT1 level in the muscle in rodents with ge-
netically stimulated insulin resistance [56]. Deacetylation and activation of PGC-1α are
linked to resveratrol-induced upregulation of AMPK in skeletal muscle, possibly via SIRT1-
dependent mechanisms [164,168].

Resveratrol Effect on Diabetes via AMPK Activation

Another enzyme involved in the action of resveratrol, besides SIRT1, is AMP-activated
protein kinase (AMPK). AMPK controls various physiological functions, such as mito-
chondrial function, energy metabolism, insulin secretion, and biogenesis [171]. In this
regard, McCart reported that AMPK promotes insulin sensitivity and fatty acid oxida-
tion [172]. Furthermore, resveratrol activates AMPK by phosphorylation and acetyl-coA
carboxylase [158]. Insulin resistance induced by the diet in animal models is preceded by
decreased AMPK activity [82], and insulin resistance is genetically determined [54]. The
insulin-sensitizing medicines thiazolidinediones and metformin usually stimulate AMPK
in various tissues, even though a direct connection between AMPK initiation and the reduc-
tion of insulin resistance in humans has not been established [171]. Resveratrol activates
AMPK to these drugs in insulin-resistant animals. Resveratrol also reverses diet-induced
insulin resistance in rodents by restoring AMPK phosphorylation [51] and makes AMPK
active in skeletal muscle [165].

Resveratrol Effect on Diabetes Involving Mitochondria

Resveratrol reduced the acetylation status of PGC-1α [157], a transcriptional co-activator
that regulates the mitochondrial biogenesis mediated by SIRT1 deacetylation [173,174]. In
addition, it is believed that in humans, mitochondrial muscle dysfunction speeds up
intramuscular lipid deposition and reduces insulin action [64]. Therefore, resveratrol action
in muscle tissues appears to depend on the rise in mitochondrial biogenesis caused by a
concurrent reduction in intramuscular lipid level [168,169].

Resveratrol Effect on Diabetes via FFA Reduction

Increased release of free fatty acids is identified as a significant factor in the emergence
of insulin resistance [100,101] in rodents [50,54,83] with diet-induced insulin resistance. In
this respect, resveratrol has been shown to lower pancreatic triglyceride levels in animals
fed with high-fat diets [52]. The anti-obesity properties of resveratrol may be connected to
its anti-diabetic properties [13,14], with decreased action of lipogenic enzymes (acetyl-CoA
carboxylase, glucose-6-P-dehydrogenase, and lipoprotein liPase) [92]. It is well known
that having more body fat reduces the effectiveness of insulin and increases the risk of
developing type II diabetes in humans [2,44]. Without causing appreciable changes in
adiposity, resveratrol may enhance insulin action [55] or decrease body weight [56,83]. By
increasing insulin receptor phosphorylation, resveratrol may also enhance insulin signaling
in animals with insulin resistance in their skeletal muscles [39] and increased protein
levels of IRS-1 [56]. Table 1 shows the antidiabetic activity of resveratrol from molecular
mechanisms to in vivo studies.
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Table 1. Antidiabetic activity of resveratrol in in vivo studies with its molecular mechanisms.

Resveratrol Dose Duration Modal Mechanism of Action Ref.

5 mg Twice a day
4 weeks T2D patients Decreased insulin resistance [175]

10 mg/day 4 weeks RCT double-blind
19 men with T2DM 55 ± 9 years

No changes in insulin levels,
Tendency to decrease HOMA-IR [175]

50 mg Twice a day
60 days T2D patients

No change in insulin resistance
Decreased blood glucose levels
Decreased diabetic ulcer size

[112,176]

75 mg/day 12 weeks Nonobese women (with normal
glucose tolerance)

Does not cause any changes in insulin sensitivity,
plasma inflammation markers, and systolic
blood pressure

[177]

100 mg/day 8 weeks
RCT parallel-blind
24 subjects with diabetic food
Age: 56 ± 9 years old

Non-significant decrease in glucose in both study
groups; no changes in HOMA-IR and insulin [178]

150 mg 30 days Obese men
Decreased systolic blood pressure, insulin
resistance, plasma inflammation markers, and
blood glucose levels

[179]

150 mg/day 30 days Obese men Decrease postprandial glucagon responses [32]

150 mg/day 4 weeks 16 subjects with T2DM
RCT double-blind cross-over

Non-significant changes in
glucose and insulin levels,
HbA1c level

[180]

200 mg/day 24 weeks 110 subjects with T2DM
RCT double-blind

Significant decrease in
glucose and HbA1c (p = 0.005), and significantly
reduced insulin and HOMA-IR levels (p = 0.001)

[176]

250 mg/day 3 months 57 subjects with T2DM
RCT open-label Significant decrease in HbA1c (p < 0.05) [181]

250 mg/day 6 months 57 subjects with T2DM
RCT open-label

Nonsignificant decrease in HbA1c and
glucose levels [182]

250 mg 3 months T2DP Decreased blood glucose levels and systolic
blood pressures [181]

250 mg per day 8 weeks Healthy aged men No changes in metabolic and inflammatory status
in skeletal muscle [183]

500 mg/day 3 months
60 subjects with T2DM and
albuminuria
RCT double-blind

Improvement in HOMA-IR and a significant
decrease in insulin, glucose, and HbA1c levels
(p < 0.05)

[184]

500 mg Twice a day
45 days T2DP Decreased insulin resistance, blood glucose levels,

HOMA-β, and systolic blood pressure [185]

500 mg 3 times a day 4 weeks Obese men
No changes in insulin resistance, plasma
inflammation markers, and systolic
blood pressure

[186]

500 mg 3 times a day 90 days Patients with metabolic
syndrome

Decreased insulin resistance, but did not cause
changes in systolic blood pressure [31]

1 g/day 45 days 64 subjects with T2DM
RCT double-blind

Caused a significant decrease in glucose, insulin,
and HbA1c levels (p < 0.05), and improvement in
HOMA-IR after RV administration

[185]

First week 1 g/day
second
week 2 g/day

2 weeks Obese men

No change in insulin resistance and blood
glucose levels
Caused a decrease in the production of intestinal
and hepatic lipoprotein

[111]

1, 1.5, 2 g/day 4 weeks Older adults Decreased insulin resistance [110]

3 g/day 8 weeks
Overweight or obese men with
nonalcoholic fatty liver disease
and IR

No change in insulin resistance [113]

3 g/day 3 months 10 subjects with TD2M
RCT double-blind

Caused a decrease in HbA1c
No significant changes in HOMA-IR
No changes in glucose and insulin levels

[187]
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2.2.2. Curcumin

Curcumin (Figure 3) exhibits anti-inflammatory properties that may aid in controlling
diabetes. Curcumin analogs have been identified and are currently the subject of extensive
research for their potential roles in diabetes. In this regard, numerous studies on the ef-
fectiveness of curcumin in regulating blood glucose in various rodent models have been
published. According to Arun and Nalini, curcumin lowers blood sugar, hemoglobin (Hb),
and glycosylated hemoglobin levels (HbA1C) [188] and recovers insulin sensitivity [189].
Similarly, Abu-Taweel and coworkers reported that curcumin improves diabetes pathology
through various mechanisms, including the control of lipid metabolism; antioxidant activ-
ity; and other activities such as antiapoptotic, anti-inflammatory, and antihyperglycemic
activities [190]. Research findings indicated that curcumin extract reduces insulin resis-
tance, prevents cell death, delays the onset of diabetes, and enhances cell functions in
animal models [191]. Similar results were obtained when 250 mg curcuminoids were
used for nine months in pre-diabetic patients not diagnosed with diabetes. Furthermore,
Chuengsamarn et al. [33] reported that curcumin improves the overall performance of
β-cells with higher homeostasis model assessment (HOMA-β) and lower C reactive protein
(CRP). Those who received curcumin experienced higher levels of adiponectin and lower
levels of insulin resistance. In the meantime, Wickenberg reported that postprandial serum
insulin concentrations increased by 6 g turmeric ingestion without having an appreciable
impact on plasma glucose levels [192]. A paper by Gutierres and colleagues showed that
giving curcumin for 31 days to STZ-induced diabetic rats reduced the hyperlipidemic
and hyperglycemic effects [193]. On the other hand, a different study found curcumin
(90 mg/kg BW) with insulin (1 U/day vs. 4 U/day) in STZ-induced rats decreased hy-
perglycemia, hypercholesterolemia, and biochemical markers of kidney and liver damage
while increasing the activity of glutathione peroxidase and superoxide dismutase (hepatic
antioxidants) [194].

In addition, curcumin has excellent wound-healing qualities due to its capacity to re-
duce oxidative stress by removing free radicals [195]; many people with diabetes experience
difficulties with wound healing [196]. In this context, Yang and coworkers showed that
curcumin can prevent retinal attenuation by enhancing the retina’s ultrastructure [197]. By
promoting the superoxide dismutase enzyme’s expression, curcumin can reduce oxidative
stress [198] and the reduction of ROS production, both of which are crucial for treating
diseases such as diabetes caused by oxidative stress and inflammation [199]. Oxidative
stress is thought to make diabetes worse, whereas ROS have been proposed to be crucial in
diabetes pathogenesis. Curcumin’s chemical makeup and anti-oxidative strength allow it
to function naturally as a free radical scavenger. Fasting blood glucose (FBG), hemoglobin
A1c (HbA1C), estimated average glucose (EAG), and body mass index (BMI) levels were
all improved by curcumin in diabetic patients [200]. In this respect, Panahi et al. reported
that curcuminoid supplementation has an antioxidant effect in T2DM patients because it
reduced malondialdehyde (MDA) and raised serum SOD activity and total antioxidant
capacity [201]. Similarly, Jain reported that curcumin diet supplements (50 or 100 mg/kg
BW) decrease hyperglycemia and inflammatory processes in STZ-induced diabetic rats
by preventing McP-1, HbA1c, TNf-α, IL-6, and lipid peroxidation and suppressing the
NF-kB signaling pathway; protecting against inflammation [202]; and restoring normal
antioxidant enzymes levels, including catalase, glutathione peroxidase, and SOD [203].

He et al. [204] also reported that curcumin prevents the NF-kB signaling cascade and
inflammation. Reduced levels of IL-6 and TNF-a were assessed in STZ-induced diabetic
rats with heart damage in a study by Abo-Salem et al. [205]. On the other hand, Arafa
showed that curcumin could increase insulin sensitivity by decreasing cholesterol and
blood glucose levels [206]. A high curcumin supplement (100 mg/kg) improved insulin
intolerance and glucose in gestational diabetes mice by triggering the AMPK pathway [207].
Findings also showed that curcumin treatment significantly decreased superoxide pro-
duction and NADPH oxidase subunit expression (p67phox, p22phox, and gp91phox) in
diabetic rats. This effect may have been caused by curcumin inhibiting the protein kinase C
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(PKC)-MAPK signaling pathway [208]. Oxidative stress and endoplasmic reticulum (ER)
were protected from diabetes by the novel curcumin analog C66, which inhibited JNK acti-
vation in diabetes [209]. Additionally, results showed that curcumin significantly increased
mitochondrial permeability and decreased palmitate-induced oxidative stress. It did this by
causing pancreatic β-cells to secrete more insulin when glucose was present [210]. Patho-
logical complications of diabetes include diabetic nephropathy, diabetic neuropathy, vessel
damage, and cardiovascular diseases [211]. In contrast, Panahi et al. [212] reported that tak-
ing curcumin (1 g daily) for three months reduces leptin levels and the leptin/adiponectin
ratio (an indicator of atherosclerosis) in patients with atherosclerosis; it also increased
adiponectin. Table 2 shows data related to the antidiabetic activity of curcumin.

Table 2. Antidiabetic activity of curcumin along with molecular mechanisms.

Curcumin Dose Duration Model Mechanism of Action References

0.01–1 µM 24 h Streptozotocin-induced
diabetic rats

Decreased TNF-α, IL-6, HbA1c, lipid
peroxidation, and MCP-1 secretion [202]

2.5 or 10 M for 30 min High-glucose-treated H9C2
cardiomyocytes

Decreased TNF-a and IL-6
(pro-inflammatory cytokines) and
VCAM-1 and ICAM-1 (adhesion
molecules) expressions
Inhibited the HG-induced increase
in fibrotic genes (collagen-IV, TGF-b,
and collagen-I), and decreased AKT
phosphorylation

[213]

2.5, 5, or 10 µM once every two
days for 12 weeks

Primary cultures of neonatal
rat cardiomyocytes Decreased JNK phosphorylation [214]

0.75% 8 weeks db/db mice
Decreased PPAR-γ via AMPK
activation and decreased lipid
peroxidation

[203]

10 mg/kg/day 42 days STZ-induced diabetic
C57BL/6 mice

Suppressed hyperglycemia-induced
inflammation, hypertrophy, and
fibrosis, and decreased TNF-α and
ICAM-1

[213]

20 mg/kg 45 days
Streptozotocin-induced rats
fed with a high-cholesterol
diet (HCD)

Decreased glycemia and
dyslipidemia [215]

30–90 mg/kg 31 days Streptozotocin-induced
diabetic rats

Anti-hyperglycemic and
anti-hyperlipidemic effect
Decreased blood glucose and lipid
levels, and lowered levels of hepatic
antioxidants

[193,194]

0.05 g/100 g diet 10 weeks
Streptozotocin-induced rats
fed with a high-cholesterol
diet (HCD)

Decreased glycemia and
dyslipidemia [216]

50, 150, or 250 mg/kg 7 weeks
Streptozotocin-induced rats
fed with a high-cholesterol
diet (HCD)

Decreased glycemia and
dyslipidemia [217]

80 mg/kg 60–75 days
Streptozotocin-induced rats
fed with a high-cholesterol
diet (HCD)

Decreased glycemia and
dyslipidemia [218]

80 mg/kg 45 days STZ-induced diabetic rats Decreased blood glucose
Decrease antioxidant defenses [219]

100 mg/kg 28 days
Streptozotocin-induced rats
fed with a high-cholesterol
diet (HCD)

Decreased glycemia and
dyslipidemia [220]
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Table 2. Cont.

Curcumin Dose Duration Model Mechanism of Action References

100 or 200 mg/kg/day 8 weeks STZ-induced diabetic
Wistar rats

Decreased inflammatory factors
(TNF-α and IL-1β)
Activated AKT/GSK-3β
signaling pathway

[221]

120 mg/kg 1 month Diabetic male rats
Decreased glucose level and
mitochondrial dysfunction
Increased antioxidant defense

[222]

150 mg/kg, 45 days Diabetic male rats
Decreased blood glucose and HbA1c
Increased plasma insulin, AST, and
ALT

[223]

0.2 g/kg 6 weeks Diabetic db/db mice Decreased SREBP1c, ChREBP, CPT1,
and ACAT [224]

200 mg/kg/day 6 weeks STZ-induced diabetic
Wistar rats Inhibited IL-6 and TNF-α levels [205]

200 mg/kg 16 weeks Streptozotocin-induced
diabetic rats

Decreased Bcl-2
Increased Bax and caspase-3 [221]

250 mg/day 9 months
240 prediabetic subjects
n = 120 placebo group
n = 120 curcuminoid group

0% T2DM incidence in the treated
group vs. 16.4% incidence in the
placebo group
Increased HOMA-β and
adiponectin levels
Decreased HOMA-IR
(insulin resistance)
Decreased C-peptide level
Improved β-cells function

[33,225]

300 mg 8 weeks

67 T2DM patients:
n = 21 placebo group
n = 22 atorvastatin group
n = 23 NCB-02 group

Improved the endothelial function
Decreased malondialdehyde,
endothelin-1, IL-6, and NF-α

[226]

500 mg/day
plus 5 mg/day for 3 months

100 T2DM patients: n = 50 in
the placebo group
n = 50 in the
curcuminoids group

Decreased blood glucose level,
C-peptide, HbA1c, alanine
aminotransferase, and aspartate
aminotransferase

[227]

475 mg 10 days 8 T2DM patients treated with
glyburide (5 mg)

Decreased LDL, VLDL, and
triglycerides
Increased HDL
Improved glycemic control (lower
blood glucose levels after breakfast,
lunch, and dinner)

[228]

1000 mg/day +
10 mg/day 12 weeks

100 T2DM patients:
n = 50 placebo group
n = 50 curcuminoids group

Decreased leptin and TNF-α
Decrease leptin/adiponectin ratio
Decreased adiponectin

[212]

300 mg/day 3 months

100 overweight/obese T2DM
patients, n = 50 placebo
group and n = 50 in the
curcuminoid group

Decreased fasting glycemia
Decreased HOMA-IR
(insulin resistance)
Decreased HbA1c
Increased lipoprotein lipase activity
Decreased FFA and triglycerides

[34,229]

2.2.3. Quercetin

Quercetin (Figure 3) has been proven useful in treating T2D [230]. Research by Pereira
and coworkers showed that quercetin interacts with molecular marks in the adipose tissue,
liver, skeletal muscle, pancreas, and small intestine to maintain glucose homeostasis [231].
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Other studies reported that quercetin treats T2D by reducing hyperglycemia, enzyme levels,
liver glucose content, high blood pressure, serum cholesterol levels, and hyperlipidemia, as
well as by encouraging weight loss [230,232], lowering blood sugar levels [233–235], im-
proving glucose tolerance [233,236] and hepatic glucokinase activity [236], and enhancing
the subsequent release of insulin and pancreatic cell regeneration [237,238]. In this respect,
research findings revealed that quercetin activates AMPK, which inhibits glycogenic isoen-
zymes such as phosphoenolpyruvate carboxylase (PEPCK) and glucose-6-phosphatase
(G6Pase) to reduce glucose synthesis [235,239] and stimulate protein kinase B (Akt) and
skeletal muscle GLUT4 receptors, which in turn activates AMPK in the cell membrane [240].
Pereira confirmed that the GLUT4 transporter controls blood sugar levels by controlling
glucose entrance into the cells [231]. In another study, Borghi indicated that by encour-
aging the GLUT4 translocation to the cell membrane, quercetin administration, GLUT2
expression, and intestinal-sodium-dependent glucose uptake are reduced, thus lowering
gastrointestinal absorption of glucose and controlling blood sugar levels [241].

Similarly, Spínola et al. showed that the inhibition of pancreatic-amylase and intestinal-
glucosidase decreases starch hydrolysis, slows postprandial hyperglycemia progression,
and diminishes the rate of glucose absorption by quercetin usage [242,243]. Another study
reported that quercetin improves dyslipidemia caused by a high-fat diet (HFD) in Swiss
albino mice [244]. By controlling the levels of c-peptide and HbA1c, quercetin reduced the
harm to pancreatic β-cells [245] and decreased lipid levels and insulin resistance [246], thus
increasing pancreatic β-cell functions and exerting anti-hyperglycemic activity in diabetic
rats [247]. In this respect, 20 µM of quercetin induced a significant increase in insulin
secretion by increasing intracellular calcium ions through interaction with L-type Ca2+ ion
channels in INS-1 β-cells [248], as well as simultaneous transient inhibition of KATP chan-
nels [249]. According to these results, quercetin controls glucose metabolism by enhancing
glycolysis and reducing gluconeogenesis [250]. Moreover, published research showed that
fat accumulation, reduced body weight, dyslipidemia, hyperglycemia, and hyperinsuline-
mia were significantly improved by quercetin treatment due to improved gene-associated
glucose or lipid metabolism in high-fat-fed obese mice [246,251]. In addition to lowering
blood sugar and HbA1c levels, Wang et al. found that oral administration of quercetin in
multiple doses improved glycogen synthesis, decreased insulin resistance, and lowered
glucosidase activity. Furthermore, it decreased oxidative stress, which enhanced pancreatic
insulin secretion and helped diabetic patients control their blood glucose levels [209]. In
addition, quercetin helps in alleviating diabetic complications by blocking AR [252].

The protein expression of insulin-signaling molecules such as phosphatidylinositol
3-kinases (PI3K) and insulin receptor substrate-1 (IRS-1) can be increased by quercetin,
according to studies on STZ-induced diabetic rats; this results in an increase in insulin-
mediated glucose uptake [231]. A survey by Ashraf and colleagues showed that quercetin
lowers oxidative stress by scavenging ROS and improving the AMP/ATP ratio in clonal
pancreatic cells [253]. On the other hand, obesity-related T2DM is associated with fat
buildup in the muscles and liver, which triggers the nuclear transcription factor NF-B
(NF-B) and Jun N-terminal kinase (JNK) inflammatory pathways [254]; both of these
pathways are suppressed by quercetin [255]. In addition, brown adipose tissue releases
pro-inflammatory mediators such as IL-8, IL-4, IL-1, IL-6, TNF-α, and histamine in response
to high blood glucose levels and improved insulin resistance [256]. These mediators are
inhibited by quercetin, which also reduces oxidative stress [257]. Blocking the enzymes
lipoxygenase and cyclooxygenase prevents the release of pro-inflammatory mediators such
as prostaglandins and leukotrienes [258]. Yao et al. reported in a clinical survey conducted
among the Chinese population an inverse relationship between quercetin consumption
and the prevalence of T2D [259]. Table 3 lists the antidiabetic activity of quercetin and its
mechanisms of action.
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Table 3. Antidiabetic activity of quercetin with its molecular mechanisms.

Quercetin Dose Duration Model Mechanism of Action References

10 mg/kg 4 weeks STZ-induced diabetic rats
Decreased blood glucose and increased insulin secretion
Decreased blood glucose levels
Decreased creatinine and blood urea nitrogen levels

[260–262]

10 mg/kg 28 days STZ-induced diabetic rats
Increased insulin secretion
Decreased blood glucose levels
inhibited apoptosis

[263,264]

15 mg/kg 25 days STZ-induced
diabetic rats

Decreased blood glucose levels and
Improved glucose tolerance [265,266]

20–50 mg/kg 6 weeks STZ-induced
diabetic rats

Decreased inflammation
Reduced blood glucose levels
Decreased fasting blood glucose
Decreased hypertension
Increased insulin secretion
Decreased ROS production

[267,268]

25–75 mg/kg 28 days STZ-induced diabetic rats Increased insulin secretion and decreased blood glucose [269]

50 mg/kg 30 days Alloxan-induced
diabetic rats Inhibited α-glucosidase activity and reduced oxidative stress [270]

50 mg/kg 7 days Alloxan-induced
diabetic mice

Decreased blood glucose
Increased insulin secretion
Decreased inflammation

[271,272]

50 mg/kg 12 weeks HFF obese rats Reduced oxidative stress [270,273]

50 mg/kg 8 weeks STZ-induced diabetic rats

Decreased blood glucose
Decreased fasting blood glucose
Decreased inflammation
Suppressed IL-1β, TNF-α, and
production of AGEs
Increased insulin secretion

[274–276]

50 mg/kg 4 weeks Alloxan-induced diabetic
rats

Lowered blood glucose levels
Decreased inflammation
Decreased fasting blood glucose
Increased insulin secretion
Decreased creatinine, AST, ALT, and cholesterol levels

[277–279]

50 mg/kg 12 weeks STZ-induced
diabetic rats

Decreased the production of reactive oxygen species (ROS) and
improved glucose tolerance [280,281]

50–80 mg/kg 45 days STZ-induced diabetic rats

Reduced blood glucose levels
Improved oxidative stress
Decreased LDL and VLDL cholesterol
Decreased blood glucose
Increased insulin secretion

[282,283]

90 mg/kg 10 weeks STZ-induced diabetic rats
Decreased oxidative stress
Decreased lipid peroxidation
Reduced AGE product activity

[284,285]

100 mg/kg 14 days STZ-induced diabetic rats
Increased insulin secretion
Decreased fasting blood glucose
Decreased blood glucose

[286]

100–200 mg/kg 6 weeks STZ-induced diabetic rats

Improved glucose tolerance
Decreased blood glucose
Increased insulin secretion
Increased HDL cholesterol
Decreased triglycerides, VLDL, LDL, and total cholesterol

[287–289]

1 g/kg 1 month STZ-induced diabetic
Wistar rats

Improved insulin secretion insulin and increased glucose uptake
Decreased fasting blood sugar [252]

2.2.4. Catechins

Kim and colleagues reported that catechins stimulate either GLUT4 transcription or
translocation to the plasma membrane in muscle cells and glucose uptake in peripheral tis-
sues. Furthermore, catechins inhibit lipogenesis, glycogen synthesis, and glucose oxidation
in liver cells [290]. Similar results were reported by several studies [291–295]. Catechins
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can also impair glucose transporters on the plasma membrane of intestinal cells, Similarly,
epicatechin gallate inhibits the Na+-dependent glucose transporter in rabbit intestinal
brush-border membrane vesicles (SGLT1), demonstrating that epicatechin gallate inhibits
SGLT1 [296,297]. Moreover, researchers showed that catechins prevent weight gain and
the start of chronic illnesses such as T2D or metabolic syndrome when consumed regu-
larly [298,299]. Similarly, other researchers indicated that epigallocatechin gallate inhibits
pancreatic glucosidase in a noncompetitive manner that is reversible [300–302]. Moreover,
galloylated catechins are more potent than nongalloylated catechins at inhibiting glucosi-
dase and amylase. Depending on their chemical composition, catechins have varying levels
of inhibitory power [303].

2.2.5. Isoflavones

Findings showed that the consumption of isoflavone decreased the risk of diabetes [304]
via glucose uptake inhibition and negligible intestinal carbohydrate absorption [305]. In
addition, isoflavones enhance insulin sensitivity and resistance, safeguarding pancreatic
β-cells, acting as an anti-inflammatory agent, reducing oxidative stress, and preventing
the formation of the Maillard reaction and advanced glycation end products [306]. In this
context, Rockwood et al. reported that genistein significantly lowers hyperglycemia in
T2D [307,308], increases cell proliferation while decreasing apoptosis [309], and reduces
oxidative stress and cardiac inflammation [310]. In contrast, daidzein’s preventive effect on
reducing hyperglycemia, dyslipidemia, obesity, insulin resistance, inflammation, and other
T2D complications has been thoroughly studied. It causes an immunomodulatory effect in
mice with diabetes [311,312]. To incorporate several methods to increase flavonoids’ antidi-
abetic activity, numerous strategies have been developed in recent years to use flavonoids
in vitro and in vivo models.

2.2.6. Hydroxycinnamic Acids
Ferulic Acid

Published research revealed that ferulic acid (FA) lowers hyperglycemia, the lipid
profile, creatinine, urea, serum glutamic oxaloacetate transaminases, and serum glutamic
pyruvic transaminases while maintaining islet mass in STZ-induced diabetic rats over the
course of three weeks [313]. At doses of 0.01 and 0.1% of the standard diet, FA lowered
blood glucose levels in STZ-induced diabetic mice. In KK-Ay mice, 0.05% FA significantly
lowered blood glucose levels [314]. Similarly, oral administration of FA (10 and 50 mg/kg
BW) into STZ-induced diabetic rats demonstrated antioxidant activity; it decreased the
levels of lipid peroxidation indicators in the serum, liver, pancreas, and kidney [315]. In this
respect, several food items such as tomatoes, berries (such as strawberries), rice husks, and
other fruits and vegetables commonly contain FA [316,317]. By increasing plasma insulin
levels, glucokinase activity, and liver glycogen synthesis in diabetic rats, FA and sinapic
acid effectively decreased blood glucose levels [318,319].

Gallic Acid

Gandhi et al. reported that gallic acid (GA) exhibits antidiabetic properties in animal
models lacking insulin or are resistant to insulin [320] by significantly reducing blood sugar,
triglyceride, total cholesterol, urea, uric acid, low-density lipoprotein cholesterol, and
creatinine while simultaneously raising plasma levels of insulin (16.3 U/mL), C-peptide,
and glucose tolerance [321]. Other researchers showed that GA reduces gluconeogenesis
and increases glycolysis, ultimately decreasing hyperglycemia in STZ-induced diabetic
rats [322]. Fruits such as grapes and berries contain GA [323,324]; in this regard, researchers
found that apple juice and berries might help improve short-term glycemic control [9].

Protocatechuic Acid

Protocatechuic acid (PCA) showed reduced levels of hepatic gluconeogenic enzymes
such as fructose-1,6-bisphosphatase, glucose 6-phosphatase (G6Pase), and sorbitol dehydro-
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genase, as well as increased levels of glucose-6-phosphate dehydrogenase and hexokinase
in STZ-induced diabetic rats [325]. These results show that PCA can enhance GLUT4
translocation, adiponectin secretion, and glucose uptake [326]; prodigious amounts of
PCA are found in gooseberry, raspberry, blueberry, mulberry, honey, soybeans, and loquat
fruit [325].

Ellagic Acid

Ellagic acid (EA) might be a useful dietary supplement to lessen the metabolic changes
associated with HFD feeding animals in combination with STZ injection [327]. EA reduces
glycation stress, hyperglycemia, inflammation, and hyperinsulinemia and aggravates renal
function dose-dependently. In this respect, research findings showed that EA (3.12–50 M)
increases the expression of PPAR in L6 myotubes and GLUT4 [328].

Salicylic Acid

Blackberries, cantaloupes, blueberries, dates, grapes, apricots, kiwis, olives, green
peppers, radishes, tomatoes, and mushrooms are among the foods that contain salicylic acid
in high concentrations. This acid lowers blood concentrations in diabetic Goto-Kakizaki
rats [329].

Caffeic Acid

Numerous fruits and vegetables, including blueberries, kiwis, cherries, plums, ap-
ples, pears, potatoes, artichokes, cider, and coffee, contain caffeic acid (CA), a phenolic
acid [7]. Researchers reported that dietary supplements with CA (0.02% in the diet for
five weeks) decrease blood glucose, G6Pase, and phosphoenolpyruvate carboxy kinase
activities, accompanied by a decrease in the liver GLUT2 expression and enhanced in-
sulin levels, glucokinase, catalase, glutathione peroxidase, and SOD activities in db/db
mice [330]. Additionally, CA significantly lowered the levels of plasma HbA1c [331]. In
insulin-resistant rats undergoing a glucose test, administration of CA reduced the elevation
of plasma glucose levels. CA also increases the isolated adipocytes’ ability to absorb glu-
cose. Moreover, the reduction in plasma glucose appears to be caused by CA’s increased
glucose utilization [332].

p-Coumaric Acid

Another phytochemical, p-coumaric acid, is prevalent in fruits and vegetables, includ-
ing apples, pears, beans, potatoes, tomatoes, tea, and pineapple [333–335]. By changing
glucose and lipids’ metabolism, p-coumaric acid can potentially prevent or treat insulin
resistance and T2D [336].

Chlorogenic Acid

Chlorogenic acid (CGA) increases GLUT in skeletal muscle by phosphorylating AKP-
activated protein kinase, which enhances the metabolism of lipids and glucose, thus
reducing the hazard of diabetes [337]. Evidence suggests that CGA reduces intestinal-
sodium-gradient-driven glucose transport and inhibits G6Pase. It increased AMPK phos-
phorylation and favorable metabolic changes linked to AMPK activation while improving
skeletal muscle glucose uptake and lipid profiles [338]. In addition, Bassoli and coworkers
reported that inhibiting G6Pase activity prevents the production of hepatic gluconeogene-
sis [339]. Moreover, it reduced hepatic steatosis and inhibited the expression and activity
of G6Pase in the liver [340]. Cherries, apples, kiwis, artichokes, eggplants, plums, and
coffee are just a few of the foods that contain CGA, one of the most prevalent phenolic
compounds [7]. CGA reduces the effects of retinopathy and other diabetic complications in
animals by preventing retinal neo-angiogenesis [341]. Furthermore, enzymes that break
down carbohydrates are weakly inhibited by chlorogenic acid [342]. Research findings
indicated that CGA inhibits glucosidase activity [343].
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trans-Cinnamic Acid

trans-Cinnamic acid (t-CA) is found in numerous food-related plants, fruits, and
herbs [344]. Through the involvement of GLUT4, t-CA (1 ng/mL) isolated from Cin-
namomum cassia activates insulin-mediated glucose transport [345]. In isolated islets, it
significantly increased glucose-enhanced insulin secretion [346]. Daily oral administration
of t-CA (80 mg/kg BW) for four weeks decreased hyperglycemia in male albino rats with
diabetes induced by alloxan [347]. These results demonstrate that treatment with t-CA
(80 M) increases AMPK activation and adiponectin secretion. Additionally, the inhibitory
effect of paclitaxel suggests that t-CA-stimulated signaling in 3T3-L1 adipocytes involves a
G-protein-coupled receptor and enhances insulin sensitivity [348].

2.2.7. Anthocyanins/Anthocyanidins

Zhou and coworkers reported that anthocyanidins (ACNs) promote health through
their antioxidant, anti-inflammatory, and blood-sugar-regulating properties [235]. In this
regard, AMPK/ACC/mTOR pathway helps anthocyanin-rich mulberry extract prevent hy-
perglycemia [349]. Other researchers showed that by managing blood lipid and triglyceride
levels, lowering cholesterol, and having low-density cholesterol while raising high-density
cholesterol and apolipoprotein, ACNs might reduce insulin resistance [350]. Moreover,
anthocyanins stimulated the release of insulin by increasing the appearance of the intracel-
lular Ca2+ signaling pathway and the glucose-transport-related gene (Glut2) in mouse islet
β-cells. Along this line, purple potato extract with added cyanidin increased insulin secre-
tion [351]. Delphinidin 3-arabinoside anthocyanidins, found in fermented berry beverages,
controlled DPPIV and its substrate GLP-1, boosted insulin secretion, and increased the
mRNA expression of genes related to insulin receptors [352]. Published work by Graf et al.
showed that ACN-rich grape-bilberry juice (AGBJ) supplementation improved several
risk factors for diseases linked to obesity in male Fischer rats for ten weeks. Results re-
vealed that AGBJ intervention successfully reduced serum levels of triglycerides and leptin
while having no impact on the release of adipokines, adiponectin, glucose, insulin, or non-
esterified fatty acids. In addition, AGBJ increased plasma levels of polyunsaturated fatty
acids while lowering levels of saturated fatty acids. Overall, the findings suggested that
AGBJ might effectively combat metabolic diseases linked to obesity [353]. In STZ-induced
T2DM rats, ACNs from purple root vegetables reduced liver damage and oxidative stress
and enhanced lipid and blood glucose levels [354].

ACNs act as anti-inflammatory agents by suppressing the expressions of a few in-
flammatory cytokines crucial to the inflammatory response, including TNF-, IL-6, and
IL-1 [355–358]. Monocyte chemoattractant protein 1 (MCP-1), a chemokine, plays a role
in developing diabetes mellitus by controlling leukocyte migration and infiltration [359].
Numerous studies demonstrated that ACNs can lower MCP-1 expression [358,360]. In
addition, research findings showed that ACNs could be a potent therapeutic agent to
prevent obesity and diabetes because of the changes in AMP-activated protein kinase
activation. ACNs decreased the AMP/ATP ratio, which strongly correlated with ACN
supplementation. [361]. AMP-activated protein kinase (AMPK) is a critical molecule in the
control of glucose metabolism in the liver, white adipose tissue, and skeletal muscle, which
is activated by ACNs [354,362–365]. Activation of AMPK induces GLUT4, thus improving
glucose utilization and uptake [365,366]. Moreover, the production of the liver’s glucose
is decreased when AMPK is activated [367]. Findings confirmed that ACNs could help
with obesity, as well as impaired glucose tolerance, insulin resistance, and DM prevention.
Cyanidin-3-glucoside (C3G) improved glucose tolerance (GT) and reduced body weight
gain in mice fed with a high-fat diet [368]. In this regard, numerous studies demonstrated
that ACN-rich blueberries can decrease body weight, enhance lipid profiles, suppress the
countenance of inflammatory factors, and increase insulin sensitivity in animal models fed
with a high-fat diet [356,369–371]. Black elderberry [360], raspberry [372], Aronia melano-
carpa [373,374], and black rice [375] are rich in ACN and could improve insulin resistance
and lipid metabolism in the liver or serum in obese mice.
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Takikawa et al. [362] reported that bilberry extract containing an increased ACN level
significantly decreases blood glucose levels in T2DM mice and improves insulin sensitivity.
Feeding T2DM mice a diet containing 0%, 5%, or 10% buckwheat sprouts revealed that
as the number of buckwheat sprouts in the diet increases, lipids levels and blood glucose
improve more noticeably [376]. Similarly, ACNs from the black soybean seed coat could also
lessen the harm done to the liver, kidney, and pancreas in STZ-induced T2DM mice [377].
In a different experiment involving animals, giving blueberry ACN extract to T2DM mice
improved glucose tolerance and blood glucose levels; reduced polydipsia and polyuria
symptoms; and reduced TC, TG, and insulin levels [378]. Ye and colleagues reported that
C3G intervention reduces blood sugar and insulin resistance and improves blood sugar and
lipid parameters in db/db mice [379]. Furthermore, diabetic db/db mice supplemented
with dietary C3G for 5 weeks showed reduced hepatic triglyceride content and steatosis
and decreased inflammatory cytokine concentration in the serum [380].

On the other hand, malvidin and ACNs were used in combination with metformin
in the treatment of STZ-induced diabetic rats, and the outcomes demonstrated that the
combination therapy has more significant relief from insulin resistance, decreased fasting
blood glucose, and improved lipid metabolism and serum insulin compared to single
therapy [381]. After receiving combined treatment with fenofibrate and ACNs in T2DM pa-
tients with postprandial hyperlipidemia, the serum postprandial triglyceride level and LDL
cholesterol concentration were pointedly reduced (from black soybeans) [382]. Several stud-
ies showed that ACNs can decrease the initiation of pro-inflammatory factors and improve
insulin resistance [367,383]. ACNs prevent the stimulation of JNK and NF-B, which lowers
the phosphorylation of IRS-1 serine residues and improves insulin resistance [367,371].
Additionally, it has been demonstrated that ACN can trigger the production of adiponectin,
which can potentially reduce insulin resistance [358,384,385]. ACNs increase the efficiency
of two enzymatic antioxidants called SOD and catalase (CAT), which shield cells from oxida-
tive damage by catalyzing the conversion of free radicals into hydrogen peroxide [358,386].
Furthermore, the inflammatory response may accelerate the development of DM complica-
tions and contribute to insulin resistance, eventually resulting in T2D complications [387].
Cranberries, blackberries, chokeberries, black grapes, gooseberries, bilberries, red raspber-
ries, blueberries, blackcurrants, and strawberries are rich sources of ACNs. Other sources
include a variety of other fruits such as peaches, grapes, nectarines, pomegranates, plums,
cherries, seeds, and vegetables, i.e., red onions and red lettuce [388]. Table 4 lists the
anthocyanins’ role as potential antidiabetic agents along with their molecular mechanisms.

Table 4. Antidiabetic activity of anthocyanins and their molecular mechanisms.

Anthocyanins Dose Duration Model Mechanism of Action References

320 mg/day 4 weeks T2D patients

Decreased FBG, LDL-cholesterol, IL-6, IL-18,
and TNF-a
Increased IL-10 and adiponectin
(anti-inflammatory markers)

[38]

160 mg 24 weeks T2D patients Increased antioxidant capacity and
decreased insulin resistance [385]

1.5 mL/kg After 12 h of
fasting condition T2D patients Decreased FBG level, improved insulin

resistance and β-cell functions [389,390]

0.47 g 3 weeks T2D patients Decreased postprandial glycemia [385]

320 mg/day 12 weeks 160 pre-diabetics,
double-blind

Caused moderate reductions of LDL-c,
HbA1c, apo A1, and apo B [391]

150, 300, or 600 mg/day 4 weeks 23 healthy subjects,
double-blind

Decreased glucose in the blood and hindered
the secretion of insulin and incretins. [392]

1050 mg/day whortleberry
extract (9 mg anthocyanins)

2 months (every
week 3 days) 37 T2D, double-blind Decreased blood glucose levels and HbA1c [393]
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2.2.8. Kaempferol

Kaempferol exhibits anti-oxidative stress anti-hyperglycemic [394], anti-inflammatory [395],
and hypolipidemic [396] effects. Inflammatory cytokines, including TNF-α and IL-6, stimu-
late the c-Jun amino-terminal kinase (JNK) and I-kB kinase-b/nuclear factor-kB (NF-kB)
paths in insulin-sensitive organs and inhibit insulin signaling [397]. Similar to an insulin
secretagogue, kaempferol enhances insulin secretion. Kaempferol increased plasma insulin
levels while lowering the blood glucose level in STZ-induced diabetic rats [398]. Kaempferol
directly activates mitochondrial calcium uptake (MCU) in a concentration-dependent man-
ner. An amount of 1 µM can trigger the pancreatic β-cell secretion/metabolism/coupling
and closely dual the uptake of mitochondrial Ca2+ [399,400]. With an increase in cAMP,
Ca2+, and glutathione (GSH) levels, kaempferol raises glucagon-like peptide 1 (GLP-1)
and insulin levels [401]. In this respect, Fang et al. showed that in 3T3-L1 adipocytes,
kaempferol enhances insulin-dependent glucose uptake [402]. Kaempferol also lowers
blood glucose levels by boosting GCK levels and enhancing glycogen synthesis [22].

An imbalance in the making and utilization of glucose leads to disorders of glucose
metabolism. Hepatic IR plays a significant role in fasting hyperglycemia. In this regard,
abnormal glucose-metabolism-regulating enzyme levels, such as phosphoenolpyruvate
carboxykinase, PC, glucokinase (GCK), and glucose-6-phosphatase, are a hallmark of
hepatic IR (PEPCK). Blood sugar levels directly affect how GCK is activated and inactivated.
Activation of GCK is thus a probable target for diabetes treatment [403]. Kaempferol
(50 mg/kg/day), administered orally to mice, significantly reduces hyperglycemia by
reactivating hexokinase and inhibiting PC and gluconeogenesis [394]. A direct rise in the
activity of Akt and inhibition of PC are additional components of the mechanism by which
kaempferol inhibits hepatic gluconeogenesis [22], as Akt phosphorylates and suppresses
FOXO1 transcription when insulin signaling is activated, ultimately suppressing PEPCK
and G6P expression [404,405]. As part of its anti-inflammatory effects, kaempferol prevents
the hepatic inhibitor IkB kinase/NF-kB pathway and restores Akt activity [406]. To create
phosphatidylinositol (3,4,5)-triphosphate, insulin first binds to the insulin receptor on the
cell’s outer surface, causing tyrosine phosphorylation of the insulin receptor substrate
(PIP3). Protein kinase C (PKC) and P70 ribosomal S6 kinase (S6K) are both activated by
PIP3 after Akt, a 3-phospholipid-dependent protein kinase I, is activated [407].

The physiological effects of insulin are significantly influenced by Akt-dependent
phosphorylation. GSK3a/b is first inactivated by Akt-induced phosphorylation, which
then causes dephosphorylation and activation of glycogen synthase [408]. To control the
intracellular GLUT4 vesicle movement to the cell membrane and boost glucose uptake,
Akt phosphorylates the 160 kDa TBC1D4/AS160 substrate [409,410]. To have an anti-
inflammatory effect, kaempferol constrains the hepatic Ik-B kinase/NF-kB pathway and
increases Akt activity [406]. Adipose tissues, the liver, and the muscles exhibit increased
AMPK and ACC phosphorylation in response to kaempferol [411,412]. For the treatment
of diabetes, AMPK activation is an important pharmacological target. In this context,
thiazolidinediones (TZDs) and metformin have been recognized as AMPK activators [413].
Foods high in kaempferol can lower postprandial glucose levels and decrease carbohydrate
absorption. Changes in the intestinal microbiota play a significant role in metabolic syn-
drome, type II diabetes, and obesity [414]. Additionally, kaempferol decreases the relative
richness of thick-walled flora, boosts bacteroides, lowers blood lipid and glucose levels, and
enhances IR in C57BL/6 obese mice [415]. The excellent autophagy enhancer kaempferol
reduces ER stress, promotes intracellular lipid degradation, and guards against lipotoxic
damage to β-cells [416]. To maintain intracellular balance, autophagy is well-defined
as an intracellular lysosomal degradation process of defective proteins, macromolecules,
damaged organelles, and toxic aggregates [417]; disorders of autophagy are linked to
IR, obesity, and T2DM [418]. In another study, Varshney and coworkers reported that
through AMPK mTOR signaling, treatment with 10 µM kaempferol increased lipid droplet
co-localization with lysosomes and autophagosomes in cells and decreased ectopic lipid
buildup and ER stress [419]. Chronic hyperglycemia in diabetes eventually destroys the
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mitochondrial function, activates nicotinamide adenine dinucleotide phosphate oxidase,
and increases the production of ROS [420]. The excellent antioxidant effect of kaempferol
can prevent excessive ROS from damaging β-cells. Kaempferol protects pancreatic β-cells
from oxidative damage in diabetes [421]. In the kidney, liver, heart tissues, and erythrocytes
of diabetic rats, kaempferol significantly increases membrane-bound ATPase activity [422].
This is yet another way that kaempferol protects β-cells. Natural plants such as ginkgo
biloba, galangal, and pueraria have been used for a long time, especially in Asia, and are
good sources of kaempferol. In addition, it can be found in foods such as tomatoes, beans,
gooseberries, grapes, cabbage, cauliflower, and strawberries [423]. Listed in Table 5 are
data pertaining to the role of kaempferol as a potential antidiabetic agent from molecular
mechanisms to in vivo studies.

Table 5. Antidiabetic activities of kaempferol, along with molecular mechanisms.

Kaempferol Dose Duration Model Mechanism of Action References

0.01, 0.1, 1, and 10 µM 4 days Human islet
(CMRL-1066) cells

Decreased apoptosis and increased
pancreatic β-cells [424]

1, 10, and 25 µM
Treated on days 3, 8, and
12, and observed after
48 h of the last treatment

Human
mesenchymal stem
cells (hMSCs)

Decrease adipogenesis and
Increased lipolysis [425]

5, 10, and 20 µM 15 days Zebrafish Decreased triglyceride synthase [426]

5 mg/kg
15 mg/kg 6 weeks Male TSOD and

TSNO mice

Decreased lipid synthesis, decreased
fatty acid oxidation, and increased
liver cholesterol transport

[427]

50 mg/kg 12 weeks Male C57BL/6J mice
Decreased hepatic gluconeogenesis,
increased glycogen synthesis, and
decreased blood glucose

[22]

75, 150, or 300 mg/kg 8 weeks Male Wistar rats Increased fatty acid oxidation [428]

100 mg/kg 45 days Male Wistar rats Increased membrane-bound
ATPases, and increased antioxidants [398]

200 mg/kg 8 weeks C57BL/6 mice
Decreased blood glucose and
insulin resistance
Regulated intestinal flora

[415]

2.2.9. Hesperetin

Hesperidin effectively reduces pancreatic β-cell dysfunction and programmed cell
death in diabetic rat models, as well as the expression of the 78-kDa glucose-regulated
protein (GRP78) [429]. Additionally, by upregulating the anti-apoptotic cell lymphoma
extra-large (Bcl-xL) and downregulating the BCL2-linked X-protein, hesperidin as an
apoptosis regulator successfully modulated the expressions of apoptosis regulatory proteins
(Bax) [429]. Additionally, by controlling AMPK-mediated p300 inactivation, hesperetin
and naringenin protected pancreatic β-cells in both in vitro and in vivo models [430]. The
apoptosis of pancreatic β-cells is influenced by the initiation of the MAPK and FoxO1/PPAR
signaling pathways [431] and may accelerate the development of type II diabetes and
insulin resistance [432]. Furthermore, phosphorylation of the MAPK activates NF-kB,
causing the release of pro-inflammatory cytokines [433]. Research findings indicated that
hesperetin metabolites reduce inflammation by preventing the phosphorylation of NF-B
and MAPK. Finally, it is worth mentioning that hesperidin is most prevalent in citrus
fruit [434].

3. Discussion

A diet high in vegetables and fruits offers several nutritional advantages. Vegeta-
bles and fruits contain polyphenols in addition to minerals, vitamins, and fiber [435,436].
Flavonoids are polyphenols, which include flavonols, flavanols, flavones, flavanones, an-
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thocyanidins, and isoflavones. They are found in the human diet, such as in citrus fruits,
which have the highest concentration of flavanones [437,438]. Increasing the intake of foods
high in flavonoids has been linked to positive health effects and a decline in the incidence
of chronic ailments such as type II diabetes (T2D), cardiovascular illnesses, and dyslipi-
demias [437,439]. By lowering oxidative stress, increasing insulin secretion, and enhancing
insulin sensitivity, flavonoids protect against high glucose levels [440]. Previous research
claimed that flavonoids prevent pancreatic β-cells from undergoing apoptosis [441] and
that they engaged in anti-inflammatory, anti-apoptotic, and antioxidant-like activities.
Flavonoids regulate these effects by modulating the activity of signaling cascades such
as nuclear factor kappa-B (NF-kB) and protein mitogen-activated kinases (MAPKs) [442].
Flavonoids in these functional foods and phytomedicine have beneficial effects on immune
function, blood sugar levels, glucose metabolism, and insulin secretion [9]. Numerous
controlled studies showed that dietary phenolic consumption reduces diabetes risk fac-
tors by regulating the major pathways for carbohydrate metabolism and hepatic glucose
homeostasis. Consuming many polyphenols is linked with a decreased risk of developing
diabetes mellitus [6]. One of the phenolic acid’s best-known effects on the metabolism of
carbohydrates is its ability to inhibit the key enzymes, glucosidase, and amylase, which
convert dietetic carbohydrates to glucose [9,443]. Despite a genetic predisposition, dietary
changes and augmented physical activity may delay the onset of type II diabetes [444,445].

Diets high in polyphenols can help in managing type II diabetes. The prevention of
diabetes in various models of insulin resistance is recognized from changes in the liver,
adipose tissue, and skeletal muscle, and animal studies consistently show that resveratrol
improves insulin action. Resveratrol alters established pathways for aging, transforms
obese mice’s physiology into that of mice on a standard diet, and enhances health, as
demonstrated by various indicators such as survival, motor function, organ pathology,
insulin sensitivity, PGC-1 activity, and mitochondrial number. Notably, none of these
changes arose in tandem with a significant loss in body weight [157]. This is significant and
indicates the potential of resveratrol to treat various diseases such as type II diabetes linked
to impaired insulin action. However, human studies are needed to assess resveratrol’s
therapeutic value given that type II diabetic patients may use it. It is important to note
that resveratrol’s positive effects on β-cells were also observed in type II diabetic patients,
significantly lowering blood insulin levels in those with hyperinsulinemia. A concurrent
decline in the homeostasis model of assessment for β-cell function (HOMA-) was observed
in conjunction with this effect [108]. Although resveratrol had some positive effects on
type II diabetic patients, other studies showed that it did not affect blood insulin levels or
HOMA-B [106]. Reduced demand for insulin is a benefit of resveratrol-induced reduction
in insulin resistance. Consequently, β-cell failure is also decreased because they secrete
less insulin.

Curcumin is potentially used for the treatment of diabetes and associated complica-
tions. It is an inexpensive drug and relatively safe, and it reduced hyperlipidemia and
glycemia in rodent models of diabetes. Due to deficiencies in insulin secretion and its action,
diabetics cannot effectively metabolize glucose, and curcumin can have a therapeutic effect
by playing a crucial role in β-cell functions. A rise in blood glucose levels is a hallmark
of T2DM, a heterogeneous and chronic metabolic sickness caused by insulin resistance in
target tissues and pancreatic β-cell dysfunction. Preclinical research using animal models
and clinical trials found that curcumin pointedly lowers fasting plasma glucose and gly-
cated hemoglobin (HbA1c) levels, according to T2DM results. In the treatment of metabolic
syndrome, curcumin successfully lowers triglycerides and LDL-C (low-density lipoprotein
cholesterol); enhances fasting blood sugar levels and insulin resistance (HOMA-IR); and
reduces AST levels, body weight, and aminotransferase levels [223]. Curcumin has been
shown in preclinical studies to lessen inflammation by preventing and regulating the tissue
release of pro-inflammatory cytokines, such as IL-4, IL-8, IL-6, and TNF-α [446].

Oral glucose tolerance and insulin secretion by pancreatic β-cells are both enhanced by
quercetin. Due to its inhibition of glucosidase and DPP-IV enzymes, glucagon-like peptide-
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1 (GLP-1) and glucose-dependent insulinotropic polypeptides have a longer half-life (GIP).
Additionally, quercetin inhibits the production of pro-inflammatory molecules such as IL-4,
IL-6, IL-1, and TNF-α. Through the hangup of glucosidase and interference with glucose
transport across intestinal cells’ plasma membrane, catechins regulate glucose absorption
through two distinct mechanisms. In particular, catechins help to recover insulin sensitivity,
lower blood lipid levels, decrease white fat depots, and reduce blood sugar and lipid levels.
In vivo tests using substances such as streptozotocin and alloxan or diets (high fructose
and fat diets) inducing T2D in animal models have demonstrated vital anti-hyperglycemic
activity for several significant hydroxycinnamic acids, including p-coumaric acid, cinnamic
acid, ferulic acid, caffeic acid, chlorogenic acid, and rosmarinic acid [447].

Anthocyanidins are of great nutritional interest because they have demonstrated
antidiabetic activity primarily through inhibition of oxidative stress, insulin secretion
promotion, insulin resistance improvement, lipid and glucose metabolism, and antioxidant
and anti-inflammatory functions. One of the reasons anthocyanins have an anti-T2D
outcome is because of their antioxidant properties. This is because oxidative-stress-related
cell damage is a significant factor in the development of T2D. To decrease lipo-toxicity,
kaempferol regulates lipid metabolism, enhances IR, and improves insulin signaling. It
also restores the equilibrium between glucose production and consumption, reducing
glucose toxicity. To protect β-cells, kaempferol corrects the imbalance in autophagy and
apoptosis. Flavanones can improve health by changing the expression of genes and proteins
in pancreatic cells. However, little is known about how flavanones work in pancreatic
β-cells underneath high glycemic stress in physiologically relevant concentrations or how
they affect the expression of all proteins. Citrus flavonoid hesperetin (Hst), which is
effective in preventing diabetes and its complications, has recently attracted the attention
of researchers. Novel methods with few side effects are urgently needed to treat diabetes
and its complications. New monomeric molecules derived from herbal medicine, a type
of complementary medicine, are being sought after for the cure of diabetes as well as
its complications.

4. Materials and Methods
4.1. Literature Search and Methodology

In the current review on food polyphenols and type II diabetes mellitus, relevant
references published between 2000 and 2022 were obtained from different bibliographical
databases such as Google Scholar, PubMed, Web of Science, Science Direct, and Scopus.
In our search, we used keywords related to food polyphenols (fruits and vegetables) and
their pharmacologic profiling including “nutritional polyphenols”, “traditional medicinal
uses”, “in vivo, in vitro anti-diabetic activities“, and “preclinical and clinical studies”. In
this work, articles were chosen on the basis of the following criteria: fruits and vegetables
containing polyphenols in the evaluation of in vitro/in vivo antidiabetic activity. After the
selection of raw material, the pharmacology of anti-diabetic polyphenols was provided.
We did not impose language restrictions in our search; however, we only included articles
published in English for further consideration.

4.2. Illustrations and Figures

The chemical structures were drawn in ChemDraw 22.0.0 with the help of Pubchem
(the mechanistic illustrated figures were drawn in Biorender (https://biorender.com/,
accessed on 18 March 2023). Previously published literature data were used to draw the
illustrated Figures.

5. Conclusions

T2D, which has a multifactorial pathology, affects millions of people around the
world. Treatment of this disease includes lifestyle modifications, dietary adjustments,
physical activity, and therapies involving medications for the rest of one’s life. This re-
view article has summarized most of the in vivo and in vitro studies conducted so far to

https://biorender.com/
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show how food polyphenols affect T2D. Recognized benefits of resveratrol in experimen-
tally insulin-deficient diabetic animals include anti-hyperglycemic action and pancreatic
β-cell protection. Curcumin is a safe and cost-effective natural anti-inflammatory and
anti-diabetic property that provides a treatment option for this condition, according to
several in vivo and in vitro studies, because it is pharmacologically safe, efficient, and with
few side effects. In addition to their capacity to influence gene expression and glucose
metabolism pathways such as AMPK, anthocyanins also have beneficial effects on insulin
resistance; lipid metabolism; glucose metabolism; the immune system; and the ability to
modulate hyperlipidemia, hyperglycemia, overweight, obesity, and cardiovascular diseases.
Kaempferol may significantly improve how diabetes and its complications are managed.
Consequently, dietary polyphenols could be used to prevent and treat diabetes. In addition,
results obtained from this review show that natural ingredients are crucial for maintaining
good health. Moreover, clinical studies and early research showed that polyphenols can
reduce insulin resistance, blood glucose levels, and dyslipidemia in diabetic patients. More
preclinical and clinical trials along with cytotoxicity tests should be conducted before these
phenolic compounds hit the market as antidiabetic agents. “Over-the-counter” (OTC)
polyphenol supplements for diabetics will be clinically effective because they are safe and
reduce inflammation and diabetes stress.
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Abbreviations

ACC Acetyl-CoA carboxylase
ACNs Anthocyanins
AGBJ Anthocyanins-rich grape-bilberry juice
AGEs Advanced glycation end products
AKT Protein kinase B
ALT Alanine aminotransferase
AMP Adenosine monophosphate
AMPK AMP-activated kinase
Apo A1 Apolipoprotein AI
Apo B Apolipoprotein B
AST Aspartate aminotransferase
Bcl-2 B-cell lymphoma 2
BMI Body mass index
C3G Cyanidin-3-glucoside
CA Caffeic acid
CGA Chlorogenic acid
ChREBP Carbohydrate-responsive element-binding protein
COX-2 Cyclooxygenase-2
CPT1 Carnitine palmitoyltransferase I
DAG Diacylglycerol
DPPIV Dipeptidyl peptidase-4
EA Ellagic acid
EAG Estimated average glucose
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ER Endoplasmic reticulum
FA Ferulic acid
FAS Fatty acid synthase
FBG Fasting blood glucose
FFAs Free fatty acids
FOXO1 Forkhead transcription factor FKHR
GA Galic acid
G6Pase Glucose 6-phosphatase
GCK Glucokinase
GLP-1 Glucagon-like peptide-1
GLUT2 Glucose transporter type 2
GLUT4 Glucose transporter type 4
GMP Guanosine monophosphate
GSH Glutathione
GSIS Glucose-stimulated insulin
GT Glucose tolerance
GTP Guanosine triphosphate
HbA1c Hemoglobin A1C
HDL High-density lipoprotein
HOMA-IR Homeostatic Model Assessment for Insulin Resistance
ICAM-1 Intercellular adhesion molecule 1
IKK Inhibitor of nuclear factor-κB (IκB) kinase (IKK)
IKKb Inhibitor of nuclear factor kappa-B kinase
IL-6 Interleukin-6
IMP Inosine monophosphate
IR Insulin resistance
IRS1 Insulin receptor substrate 1
IRS-1 Insulin receptor substrate 1
JNK C-Jun N-terminal kinase
LDL Low-density lipoprotein
MCP1 Monocyte chemoattractant protein-1
MDA Malondialdehyde
mTOR Mammalian target of rapamycin
NADPH Nicotinamide adenine dinucleotide phosphate
NF-kB Nuclear factor kappa- B
NM Not mentioned
PC Pyruvate carboxylase
PCA Protocatechuic acid
PDK1 3-Phosphoinositide-dependent protein kinase-1
PEPCK Phosphoenolpyruvate carboxykinase
PGC-1α Peroxisome-proliferator-activated receptor-gamma coactivator (PGC)-1alpha
PI 3-kinase Phosphatidylinositol 3-kinase
PIP3 Phosphatidylinositol (3,4,5)-trisphosphate
PKC Protein kinase C
PPAR-c Peroxisome proliferator-activated receptor-C
PPAR-γ Peroxisome proliferator-activated receptor gamma
RBP4 Retinol-binding protein 4
ROS Reactive oxygen species
S6K S6 kinase
SGLT1 Sodium-glucose transporter 1
SIRT1 Silent information regulator 1
SOD Superoxide dismutase
SREBP1 Sterol regulatory element-binding proteins
SREBP-1 Sterol regulatory element-binding protein 1
STZ Streptozotocin
T2D Type II diabetes
TAG Triacylglycerol
TC Total cholesterol
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TCA Tricarboxylic acid
TG Triglycerides
TGF-β Transforming growth factor-beta
TLR4 Toll-like receptor 4
TNF-α Tumor necrosis factor α
VCAM-1 Vascular cell adhesion molecule 1
VLDL Very low density lipoprotein
WAT White adipose tissue
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