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Abstract: The synthesis and characterization of two tritopic ligands containing a 2,2′:6′,2′′-terpyridine
(tpy) metal binding domain and either a 3,2′:6′,3′′- or a 4,2′:6′,4′′-tpy domain are detailed. The synthetic
routes to these ligands involved the [Pd(dppf)Cl2]-catalyzed coupling of a boronic ester-functionalized
2,2′:6′,2′′-tpy with bromo-derivatives of 3,2′:6′,3′′-tpy or 4,2′:6′,4′′-tpy. The 2,2′:6′,2′′-tpy domains of
the tritopic ligands preferentially bind Fe2+ in reactions with iron(II) salts leading to the formation
of two homoleptic iron(II) complexes containing two peripheral 3,2′:6′,3′′-tpy or 4,2′:6′,4′′-tpy metal-
binding sites, respectively. These iron(II) complexes are potentially tetratopic ligands and represent
expanded versions of tetra(pyridin-4-yl)pyrazine.

Keywords: 2,2′:6′,2′′-terpyridine; 3,2′:6′,3′′-terpyridine; 4,2′:6′,4′′-terpyridine; iron(II); expanded ligand

1. Introduction

Coordination entities result from the binding of a metal centre to a ligand [1], and
the metal centres may be mono- or multinuclear. A ligand is a chemical species with one
or more electrons available to bind a metal, and the electrons may be present in ‘lone
pairs’ or chemical bonds of the ligand [1]. Ligands are typically small-to-medium-sized
organic or inorganic molecules, ions, or radicals, and the ligand may bind to the metal
centres through one or more atoms. The latter case is described as chelating [1], and it
is convenient to describe chelating ligands in terms of their metal-binding domains [2].
Typical chelating metal-binding domains include carboxylate (in an O,O’-bidentate binding
mode), 1,3-diketonates, 2,2′-bipyridine, 1,10-phenanthroline and 2,2′:6′,2′′-terpyridine.

A special case exists with ligands that possess additional metal-binding capacity
after coordination to a metal centre. This additional capacity may be in a binding site
that cannot coordinate to the same metal for steric or electronic reasons or, more rarely,
when a potentially chelating ligand does not exhibit its maximum denticity. This latter
situation is described as a hypodentate coordination mode [3]. A complex containing
a ligand exhibiting a hypodentate bonding mode can act as a ligand itself. This new,
metal-containing coordination unit has been described as a metalloligand [4–9].

In 2007, we introduced the term “expanded ligand” to describe a class of com-
pounds in which two or more metal-binding domains are separated by a metal-containing
unit [10]. We have tended to use the term “expanded ligand” for metalloligands in
which the central core involves classical chelating metal-binding domains, in particu-
lar oligopyridines [11–18]. The description “expanded ligand” emphasizes the relationship
between the new coordination entity and the “parent” organic ligand. A typical exam-
ple of an expanded ligand is a 4′-(pyridin-4-yl)-2,2′:6′,2”-terpyridine (pytpy) complex
of the type [M(pytpy)2]n+ in which the central six-coordinate metal M is coordinated to
two terdentate tpy metal-binding domains from each of two pytpy ligands. Each of the
coordinated pytpy ligands has a nitrogen donor in the pyridin-4-yl available for further
coordination. This [M(pytpy)2]n+ moiety can be regarded as an expanded pyrazine or
an expanded 4,4′-bipyridine (Scheme 1). We have shown that this concept can usefully
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be used in the design of coordination networks involving pendant nitrogen and oxygen
donors on oligopyridine scaffolds. We now report the synthesis of potentially tritopic
ligands incorporating either 2,2′:6′,2′′- and 3,2′:6′,3′′-tpy or 2,2′:6′,2′′- and 4,2′:6′,4′′-tpy
metal-binding domains (Scheme 2) and their iron(II) complexes which can be classified as
expanded tetratopic ligands. We selected an {Fe(2,2′:6′,2′′-tpy)2}2+ scaffold containing a
low-spin d6 iron(II) centre for the preliminary investigation, as it permits parallel solution
1H NMR spectroscopic studies of the self-assembly.
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2. Results and Discussion
2.1. Synthesis and Characterization of Terpyridine Precursors 1–4

In order to achieve an efficient synthesis of tritopic ligands containing combinations
of 2,2′:6′,2′′- and 3,2′:6′,3′′-tpy or 2,2′:6′,2′′- and 4,2′:6′,4′′-tpy metal binding domains, we
first prepared compound 1 (Scheme 3) using the one-pot method of Wang and Hanan [19].
Bromo-2,5-dimethoxybenzaldehyde was reacted with two equivalents of 2-acetylpyridine
in basic EtOH solution followed by the addition of an excess of aqueous NH3. Compound
1 was isolated in 43.3% yield. The reaction of 1 with bis(pinacolato)diboron in the presence
of [Pd(dppf)Cl2] catalyst and KOAc led to 2 (Scheme 3), which was isolated in 50.2% yield.
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This strategy is analogous to that used by Sun et al. for the preparation of 4′-[4-(4,4,5,5-
tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-2,2′:6′,2′′-terpyridine [20]. Compounds 3 and
4 (Scheme 3) are isomers of 1 and were prepared in an analogous manner using 3- or
4-acetylpyridine in place of 2-acetylpyridine. After recrystallization, 3 and 4 were obtained
in 29.2% and 38.0% yields, respectively. The methoxy groups in these compounds were
introduced to improve the solubilities of the final ligands 5 and 6 described in Section 2.2.
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Scheme 3. Synthetic routes to compounds 2–4, with labelling for NMR spectroscopic assignments.
Reaction conditions: (i) 2-acetylpyridine, KOH, NH3, EtOH, room temperature (ca. 22 ◦C), 15 h;
(ii) B2pin2, KOAc, [Pd(dppf)Cl2] (5 mol%), DMSO, 110 ◦C, 24 h; (iii) 3-acetylpyridine, KOH, NH3,
EtOH, room temperature (ca. 22 ◦C), 15 h; (iv) 4-acetylpyridine, KOH, NH3, EtOH, room temperature
(ca. 22 ◦C), 15 h.

The electrospray mass spectra of 1–4 were recorded in MeCN solutions with the
addition of a few drops of formic acid. The base peak in each spectrum of 1, 3 and 4 arose
from the [M+H]+ ion (Figures S1–S3) while for 2, peaks at m/z = 518.21 and 1013.39 (Figure
S4) were assigned to the [M+Na]+ and [2M+Na]+ ions, respectively. The 1H NMR spectra
of isomers 1, 3 and 4 are compared in Figure 1, and confirm the characteristic spectroscopic
signature of each tpy isomer. The signals arising from the two OMe environments are little
affected across the series of compounds. Assignments of the 1H and 13C{1H} NMR spectra
were made using COSY, NOESY, HMQC, and HMBC methods (Figures S5–S10). Upon
going from 1 to 2, the aromatic region of the 1H NMR spectrum is not significantly affected
by the replacement of the bromo substituent by the boron-containing group. The effects
of this change are most noticeable for the signals arising from protons HC6 and HC3, and
the OMe groups, as shown in Figure 2. The full 1H NMR spectrum, and the HMQC and
HMBC spectra for 2 are displayed in Figures S11–S13, and full assignments are given in the
Materials and Methods section.
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full spectrum).

The solution absorption spectra of 1–4 (Figure 3) exhibit intense absorptions in the
UV region arising mainly from spin-allowed π*←π transitions. Replacing the bromo by
the dioxaborolane group has only a small impact on the absorption spectrum. In contrast,
moving across the isomer series 1 to 3 to 4 leads to noticeable changes in the profile of the
spectrum (Figure 3).

The single crystal structures of 2, 3 and 4 were obtained. X-ray quality crystals of
2 were obtained directly from the isolated crystalline solid of 2 (see Section 3.3). Single
crystals of 3 were grown from an EtOH/CHCl3 solution stored at 2–5 ◦C for three days,
and X-ray quality crystals of 4 were selected from the crystalline solid after the isolation of
the bulk compound (see Section 3.5). Due to the similarities in their structures, we discuss
the compounds together, starting at a molecular level and then moving on to the packing
interactions. Compounds 3 and 4 crystallize in the triclinic space group P1 and monoclinic
space group P21/n, respectively, while 2 crystallizes in the orthorhombic space group Pbca.
The asymmetric unit in each structure contains one independent molecule, and these are
depicted in Figure 4. Bond lengths and angles are unexceptional, and selected parameters
are given in the caption to Figure 4. In all three compounds, the O–Carene bonds are shorter
than the O–CMe bonds (see caption to Figure 4) and this is consistent with an extension of
the p-conjugation from the arene ring to an sp2 hybridized O atom. This is also supported
by the CMe–O–Carene bond angle which lie in the range 116.40(14) to 117.91(17)◦. In 2, the
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boron atom is planar (sum of the C–B–O and O–B–O bond angles = 360◦), and the bond
lengths O3–B1 = 1.361(2) Å and O4–B1 = 1.364(2) Å are consistent with a p-contribution
to the B–O bonds [21]. The angles between the least squares planes of adjacent pairs of
pyridine rings containing N1/N2 and N2/N3 are 28.1 and 25.9◦ in 3, 30.3 and 21.6◦ in 4, and
26.2 and 9.5◦ in 2. In each compound, the arene ring exhibits the typical twist with respect to
the pyridine ring containing N2 in order to relieve repulsive H . . . H contacts (angle = 44.1◦

in 3, 43.5◦ in 4 and 50.3◦ in 2). We note that Schwalbe et al. have reported the structure
of 4′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,2′:6′,2′′-terpyridine (Scheme 4), and
that in this compound, the BO2C2-ring (although slightly puckered) is approximately
coplanar with the central pyridine ring of the tpy unit (Cambridge Structural Database [22],
CSD, refcode FEKWEZ) [23]. In 4′-[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-
2,2′:6′,2′′-terpyridine (2a, Scheme 4), the angles between the least squares planes of the
central pyridine ring and the phenylene spacer, and the phenylene spacer and the BO2C2-
ring (again, slightly puckered) are 23.5 and 3.4◦, and 39.6 and 10.6◦, respectively, for two
independent molecules (CSD refcode NERZAO) [20].
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adopted in the crystal structure of 3 because of the assembly of the centrosymmetric motif 
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Scheme 4. Structures of the previously reported compounds 4′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-
2-yl)-2,2′:6′,2′′-terpyridine [23] and (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-2,2′:6′,2′′-
terpyridine (2a) [20].
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Figure 4. The structures of (a) 3, (b) 4 and (c) 2 with ellipsoids plotted at 50% probability level and H
atoms omitted for clarity. Selected bond parameters: in 3: C11–Br1 = 1.8950(16) Å, C12–O1 = 1.365(2),
O1–C22 = 1.429(2), C9–O2 = 1.367(2), O2–C23 = 1.424(2) Å, C12–O1–C22 = 116.40(14),
C9–O2–C23 = 117.14(14)◦; in 4: C10–Br1 = 1.898(2), O1–C11 = 1.358(2), O1–C22 = 1.426(3),
O2–C8 = 1.370(2), O2–C23 = 1.437(2) Å, C11–O1–C22 = 117.91(17), C8–O2–C23 = 117.08(16)◦; in
2: C19–B1 = 1.561(2), O3–B1 = 1.361(2), O4–B1 = 1.364(2), O1–C17 = 1.3714(18), O1–C28 = 1.4278(18),
O2–C20 = 1.3682(18), O2–C29 = 1.4226(19), O3–C22 = 1.4676(19), O4–C23 = 1.4643(19) Å,
C17–O1–C28 = 117.28(12), C20–O2–C29 = 117.62(12), O4–B1–C19 = 119.46(14), O3–B1–O4 = 113.21(14),
O3–B1–C19 = 127.33(15)◦.

A trans,trans-conformation of the 2,2′:6′,2′′-tpy unit is observed in 2 (Figure 4c), typical
of non-coordinated tpy ligands. The conformation of the 3,2′:6′,3′′-tpy unit in 3 (Figure 4a)
is one of three possible, limiting planar conformations (Scheme 5) and appears to be
adopted in the crystal structure of 3 because of the assembly of the centrosymmetric motif
shown in Figure 5. This features a combination of face-to-face π-stacking of pyridine rings
containing N3 and N1i (symmetry code i = 2 − x, 1 − y, 1 − z) and C23–H23 . . . N1i

hydrogen bonds (C23 is in one of the methyl groups, see Figure 4a). For the π-stacking
interaction (Figure 5a), the centroid . . . centroid distance is 3.93 Å, and the angle between
the ring planes is 29.2◦. While these parameters are not optimal [24], the interaction
is supplemented by CHmethyl . . . N hydrogen bonds (Figure 5b) for which the metric
parameters are C23 . . . N1i = 3.518(4) Å, C23H23 . . . N1i = 2.63 Å, and angle C23–H23 . . .
N1i = 150.6◦. In addition, C3–H3 . . . Br1ii (symmetry code ii = 1 − x, 1 − y, − z) contacts
also play a role in packing interactions (C3 . . . Brii = 3.586(2) Å, C3H3 . . . Brii = 2.99 Å,
angle C3–H3 . . . Brii = 122.1◦). In contrast to the packing interactions in 3, there are no
π-stacking interactions between molecules of 4, and packing is dominated by CH . . . N
and CH . . . O hydrogen bonds. Of note are the bifurcated interactions shown in Figure 5c
which involve N3 as a single donor and C2i–H2i and C5i–H5i as acceptors. Pertinent bond
metrics are C2i . . . N3 = 3.396(3) and C5i . . . N3 = 3.558(3) Å, C2iH2i . . . N3 = 2.74 Å and
C5iH5i . . . N3 = 2.61 Å, angle C2i–H2i . . . N3 = 126.7◦ and C5i–H5i . . . N3 = 175.2◦.
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Scheme 5. The three limiting planar conformations, I–III, of 3,2′:6′,3′′-terpyridine. Conformation I is
observed in the single crystal structure of 3.
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Figure 5. (a,b) Packing of molecules of 3: (a) face-to-face π-stacking of pyridine rings, and (b) C–H
. . . N hydrogen bonds within the same structural motif as that shown in part (a). (c) Bifurcated
hydrogen bonding interactions in 4; symmetry code i = x, y, –1 + z. (d) C–H . . . B1 contacts in the
packing of molecules of 2; symmetry codes: i = 3/2–x, 1–y, 1/2+z; ii = 2–x, 1–y, 1–z.

Molecules in the crystal structure are oriented with respect to one another such that the
trigonal planar B1 atom exhibits short contacts with two C–H units from adjacent molecules
(Figure 5d). The contacts involve C12i–H12i . . . B1 and C14ii–H14ii . . . B1 (metrics are C12i

. . . B1 = 3.660(3) and C14ii . . . B1 = 3.889(3) Å; H12i . . . B1 = 2.94 and H14ii . . . B1 = 3.04 Å;
angle C12i–H12i . . . B1 = 133.8 and C14ii–H14ii . . . B1 = 149.4◦). Although not discussed
in the original work [20], the crystal structure of 2a (Scheme 4) also exhibits short C–H
. . . B contacts, but in this case, they are augmented by C–H . . . O contacts. A search
of the CSD [22] (version 2022.2.0) using Conquest (version 2022.2.0) [25] for compounds
containing a Bpin unit with a trigonal planar boron atom attached to an aryl of alkenyl
unit (see Figure S14 in the Supporting Materials for the search motif) gave 487 compounds,
261 of which contained C–H . . . B contacts in which the H . . . B distance was less than
or equal to the sum of the van der Waals radii; normalized H coordinates were applied
within the program Conquest [25] to make the bond length equal to the average neutron
diffraction value. Disordered structures were excluded. The range of CH . . . B distances
was 2.58–3.02 Å with a mean value of 3.02 Å, and the C–H . . . B angles ranged from 100.6 to
177.9◦ with a mean value of 145.1◦. The parameters for the interactions in 2 are comparable
to these mean values. The nature of the interaction is ambiguous: the boron atom could act
as a Lewis acid with the C–H bond as a donor, or the C–H σ* orbital could accept electron
density from the π-bonding orbitals of the B–O or B–Caryl/alkenyl bonds.

2.2. Synthesis and Characterization of the Asymmetrical Bis(Terpyridine) Ligands 5 and 6

Compounds 5 and 6 were prepared using palladium-catalyzed cross coupling re-
actions of the boronic ester 2 with the two bromo-derivatives 3 and 4 (Scheme 6). The
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asymmetric bis(terpyridines) 5 and 6 were isolated in 57.4 and 36.2% yields, respectively,
after purification. Both electrospray and high-resolution ESI mass spectra were recorded
and showed peaks assigned to [M+H]+. For 5, the base peak in the HR ESI-MS arose from
the [M+H]+ ion (m/z 737.2869) and the [M+Na]+ ion was also observed at higher mass
(Figure S15 in the Supporting Materials). For 6, peaks at m/z 369.1476 and 737.2871 arose
from the [M+2H]2+ and [M+H]+ ions, with the former corresponding to the base peak
as shown in Figure S16. The assignments of the 1H and 13C{1H} NMR spectra of 5 and
6 were made with the aid of COSY, NOESY, HMQC and HMBC experiments, and by
comparing the spectra of 5 and 6 with those of compounds 1, 3 and 4. NOESY crosspeaks
between HB3/HC6, HB′3/HC′6, HC3/HOMe1, HC′3/HOMe1′ , HC6/HOMe2, and HC′6/HOMe2′

(see Scheme 6) were diagnostic. Figure 6 displays a comparison of the 1H NMR spectra
of 5 and 6. In addition to the signatures of the 2,2′:6′,2′′- and 3,2′:6′,3′′-tpy domains in the
spectrum of 5, and of the 2,2′:6′,2′′- and 4,2′:6′,4′′-tpy domains in that of 6, both spectra
show a clean separation of the signals for the four chemically and magnetically different
OMe environments. The absorption spectra of 5 and 6 are discussed in the next section.
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2.3. Expanded Ligands [Fe(5)2]2+ and [Fe(6)2]2+

The expanded ligands [Fe(5)2]2+ and [Fe(6)2]2+ were isolated as the nitrate and tetraflu-
oridoborate salts, respectively. The salt [Fe(5)2][NO3]2 was prepared from the correspond-
ing chloride. Ligand 5 was dissolved in a mixture of MeOH and CHCl3, and addition of
FeCl2·4H2O followed by an excess of aqueous NaNO3 (see Section 3.8) led to the precipi-
tation of [Fe(5)2][NO3]2 as a purple solid in 82.4% yield. Compound 6 was reacted with
Fe(BF4)2·6H2O in a mixture of MeOH and CHCl3 (see Section 3.9), and [Fe(6)2][BF4]2 was
isolated as a purple solid in 78.0% yield.

The electrospray and HR-ESI mass spectra of both iron(II) complexes were recorded,
and each spectrum exhibited a peak arising from the [M–2BF4]2+ ion (m/z 764.67). The
characteristic isotope pattern and half-mass peak separations are depicted in Figures S21
and S22. In the HR-ESI mass spectrum of [Fe(6)2][BF4]2, a low intensity peak was observed
at m/z 1615.4979 corresponding to the [M–BF4]+ ion. The 1H and 13C{1H} NMR spectra
were recorded in CD3CN; the addition of a few grains of solid K2CO3 to the solutions in
the NMR tubes led to a sharpening of the signals. The spectra were assigned using NOESY,
COSY, HMQC, and HMBC methods and through comparison with the corresponding
uncoordinated 5 and 6. Figures S23–S26 show the HMQC and HMBC. Coordination
of ligands 5 and 6 to iron(II) results in significant changes in the chemical shifts of the
signals for protons HA6, HB3 and HC6 (Figure 7 and Figure S27). These protons are all
associated with the 2,2′:6′,2′′-tpy metal-binding domain (see Scheme 6). The large shift to
lower frequency for HA6 is typical of the formation of {M(2,2′:6′,2′′-tpy)2}n+ units as the
HA6 protons of one ligand experience shielding since these protons lie over the aromatic
system of the second ligand. Protons HB3 and HC6 are both influenced by the change in
conformation of the 2,2′:6′,2′′-tpy from trans,trans to cis,cis upon coordination to Fe(II).
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Figure 7. Comparison of the aromatic regions of the 1H NMR spectra (500 MHz, 298 K) for (a) com-
pound 6 in CDCl3, and (b) [Fe(6)2][BF4]2 in CD3CN. Differences in solubilities required the use of
different solvents.

Figure 8 shows the solution absorption spectra of the two bis(terpyridines) 5 and 6 and
their iron(II) complexes. For solubility reasons, the absorption spectrum of 5 was recorded
in a MeCN/CHCl3. The stock solution (1.0 × 10−3 mol dm−3) for the measurements
was made up in a mixture of MeCN/CHCl3 (9:1 by volume) which was then diluted to
a concentration of 2.0 × 10−5 mol dm−3 using MeCN. MeCN solutions were used for
the other three compounds. The spectra of 5 and 6 exhibit intense absorptions in the UV
region arising mainly from spin-allowed π*←π transitions. The approximate doubling of
the extinction coefficients in the high-energy region on going from free ligand to complex
is consistent with the formation of [FeL2]2+ species. The spectra of [Fe(5)2][NO3]2 and
[Fe(6)2][BF4]2 exhibit broad absorptions with λmax = 568 nm which are assigned to metal-
to-ligand charge transfer (MLCT).
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Figure 8. Absorption spectra of ligands 5 (MeCN/CHCl3, see text) and 6 (MeCN, 2.0× 10−5 mol dm−3),
and of the complexes [Fe(5)2][NO3]2 and [Fe(6)2][BF4]2 (MeCN, 1.0 × 10−5 mol dm−3).

Attempts to grow X-ray quality crystals of [Fe(5)2][NO3]2 and [Fe(6)2][BF4]2 were
unsuccessful. Attempts were also made using [PF6]− in place of [NO3]− in the case of
[Fe(5)2]2+, and with mixtures of the two counterions. In the absence of a single crystal
structure, the structure of the [Fe(6)2]2+ ion was optimized at a molecular mechanics
level (MM2) using the program Spartan 18 (v. 1.4.8) [26], and the dimensions of this
“expanded ligand” were compared with a related ‘simple ligand’. The simplest analogue is
tetra(pyridin-4-yl)pyrazine. While structures of two zinc(II) complexes of this ligand have
been reported [27], the structure of the ligand itself has not. The modelled structure (MM2
level [26]) is shown in Figure 9a and the distance between the two 4,2′:6′,4′′-tpy donor sites
of 6.5 Å is compared to the separation of the corresponding units in [Fe(6)2]2+ (Figure 9b).
Comparisons with other bis(4,2′:6′,4′′-tpy) ligands could also be made, but we have chosen
only the smallest analog in keeping with the comparisons made in Scheme 1. In the case of
the [Fe(5)2]2+ ion, the conformational variation of the 3,2′:6′,3′′-tpy units compared to that
of the 4,2′:6′,4′′-tpy domains leads to a more flexible expanded ligand.
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3. Materials and Methods
3.1. General

1H, 13C{1H} and 2D NMR spectra were recorded at 298 K on a Bruker Avance III-
500 spectrometer (Bruker BioSpin AG, Fällanden, Switzerland) equipped with a BBFO
probehead. The 1H and 13C NMR chemical shifts were referenced with respect to resid-
ual solvent peaks (δ TMS = 0). A Shimadzu LCMS-2020 instrument (Shimadzu Schweiz
GmbH, 4153 Reinach, Switzerland) was used to record electrospray ionization (ESI) mass
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spectra, and a Bruker maXis 4G QTOF (Bruker BioSpin AG, Fällanden, Switzerland) in-
strument for HR ESI mass spectra. A PerkinElmer UATR Two instrument (PerkinElmer,
8603 Schwerzenbach, Switzerland) and a Shimadzu UV2600 (Shimadzu Schweiz GmbH,
4153 Reinach, Switzerland) spectrophotometer were used to record FT-IR and absorption
spectra, respectively.

Bis(pinacolato)diboron, 4-bromo-2,5-dimethoxybenzaldehyde, 2-acetylpyridine, 3-
acetylpyridine, and [Pd(dppf)Cl2] were purchased from Fluorochem (Chemie Brunschwig
AG, 4052 Basel, Switzerland), 4-acetylpyridine and Fe(BF4)2·6H2O from Sigma Aldrich
(Sigma Aldrich Chemie GmbH, 89,555 Steinheim, Germany), and Na2CO3 and FeCl2·4H2O
from Acros Organics (Fisher Scientific AG, 4153 Reinach, Switzerland). These chemicals
were used as received.

3.2. Compound 1

The compound 4-bromo-2,5-dimethoxybenzaldehyde (5.00 g, 20.4 mmol) was dis-
solved in EtOH (60 mL), then 2-acetylpyridine (4.94 g, 4.57 mL, 40.8 mmol) and crushed
KOH (2.29 g, 40.8 mmol) were added to the solution. Aqueous NH3 (32%, 78.6 mL) was
slowly added to the reaction mixture, and this was stirred at room temperature overnight.
The solid that formed was collected by filtration, washed with H2O (3 × 10 mL) and EtOH
(3 × 10 mL), recrystallized from EtOH/CHCl3 and dried in vacuo. Compound 1 was
isolated as a white powder (3.96 g, 8.84 mmol, 43.3%). M.p. = 175 ◦C. 1H NMR (500 MHz,
DMSO-d6) δ/ppm 8.74 (ddd, J = 4.8, 1.8, 0.9 Hz, 2H, HA6), 8.66 (dt, J = 8.0, 1.1 Hz, 2H, HA3),
8.54 (s, 2H, HB3), 8.03 (td, 2H, J = 7.6, 1.8 Hz, HA4), 7.51 (ddd, 2H, J = 7.6, 4.8, 1.1 Hz, HA5),
7.45 (s, 1H, HC3), 7.24 (s, 1H, HC6), 3.89 (s, 3H, HOMe2), 3.80 (s, 3H, HOMe1). 13C{1H} NMR
(126 MHz, DMSO-d6) δ/ppm 155.1 (CB2/A2), 154.9 (CB2/A2), 150.5 (CC2/C5), 150.0 (CC2/C5),
149.4 (CA6), 147.3 (CB4), 137.4 (CA4), 127.5 (CC1), 124.4 (CA5), 121.0 (CA3/B3), 120.9 (CA3/B3),
117.2 (CC3), 114.2 (CC6), 111.7 (CC4), 56.9 (COMe1/OMe2), 56.7 (COMe1/OMe2). UV-VIS (MeCN,
2.0× 10−5 mol dm−3) λ/nm (ε/dm3 mol−1 cm−1): 240 (37,500), 277 (28,100), 311 sh (16,500).
ESI-MS m/z 448.02 [M+H]+ (calc. 448.06). Found C 61.04, H 3.99, N 9.42; required for
C23H18BrN3O2 C 61.62, H 4.05, N 9.37.

3.3. Compound 2

A 100 mL Schlenk tube was charged with compound 1 (1.00 g, 2.23 mmol), B2pin2
(0.680 g, 2.68 mmol), KOAc (0.657 g, 6.69 mmol) and [Pd(dppf)Cl2] (0.049 g, 0.067 mmol).
The reaction vessel was flushed with nitrogen, then degassed DMSO (25 mL) was added,
and the mixture was stirred and heated at 110 ◦C for 24 h. After allowing it to cool to room
temperature, the mixture was diluted with toluene (100 mL) and was washed with brine
(4 × 50 mL). The toluene layer was dried over Na2SO4 and was then filtered. The solvent
was removed by rotary evaporation, yielding a brown residue, which was redissolved in
CH2Cl2 and filtered through a celite pad. The brown portion was retained by the celite,
while the colorless solution was dried, giving 2 (0.555 g, 1.12 mmol, 50.2%) as a crystalline,
white solid. M.p. = 211 ◦C. 1H NMR (500 MHz, DMSO-d6) δ/ppm 8.75 (ddd, J = 4.8, 1.8,
0.9 Hz, 2H, HA6), 8.67 (dt, J = 8.0, 1.1 Hz, 2H, HA3), 8.55 (s, 2H, HB3), 8.04 (td, 2H, J = 7.6,
1.8 Hz, HA4), 7.52 (ddd, 2H, J = 7.6, 4.8, 1.1 Hz, HA5), 7.29 (s, 1H, HC3), 7.08 (s, 1H, HC6),
3.78 (s, 3H, HOMe2), 3.77 (s, 3H, HOMe1), 1.32 (s, 12H, HOMe3). 13C{1H} NMR (126 MHz,
DMSO-d6) δ/ppm 158.3 (CC5), 155.1 (CB2), 154.8 (CA2), 149.7 (CC2), 149.4 (CA6+B4), 147.9
(CC4), 137.5 (CA4), 131.1 (CC1), 124.4 (CA5), 121.0 (CB3/A3), 120.9 (CB3/A3), 119.3 (CC3), 113.2
(CC6), 83.4 (Ca), 56.3 (COMe1+OMe2), 24.7 (COMe3). UV-VIS (MeCN, 2.0 × 10−5 mol dm−3)
λ/nm (ε/dm3 mol−1 cm−1): 246 (39,200), 276 (30,300), 315 sh (13,500). ESI-MS m/z 518.21
[M+Na]+ (calc. 518.22), 1013.40 [2M+Na]+ (calc. 1013.46). Found C 69.66, H 6.07, N 8.55;
required for C29H30BN3O4 C 70.31, H 6.10, N 8.48.

3.4. Compound 3

The compound 4-bromo-2,5-dimethoxybenzaldehyde was dissolved in EtOH (40 mL),
then 3-acetylpyridine (2.47 g, 2.25 mL, 20.4 mmol) and crushed KOH (1.15 g, 20.4 mmol)
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were added to the solution. Aqueous NH3 (32%, 39.3 mL) was added slowly to the
reaction mixture, and this was stirred at room temperature overnight. The solid that
formed was collected by filtration, washed with H2O (3 × 10 mL) and EtOH (3 × 10 mL),
recrystallized from EtOH/CHCl3 and dried under vacuum. Compound 3 was isolated as
a white crystalline solid (1.33 g, 2.98 mmol, 29.2%). M.p. = 198 ◦C. 1H NMR (500 MHz,
DMSO-d6) δ/ppm 9.43 (dd, J = 2.4, 0.9 Hz, 2H, HA2), 8.69 (dd, J = 4.8, 1.6 Hz, 2H, HA6),
8.61 (ddd, J = 8.0, 2.4, 1.6 Hz, 2H, HA4), 8.19 (s, 2H, HB3), 7.58 (ddd, J = 8.0, 4.8, 0.9 Hz, 2H,
HA5), 7.46 (s, 1H, HC3), 7.36 (s, 1H, HC6), 3.92 (s, 3H, HOMe2), 3.83 (s, 3H, HOMe1). 13C{1H}
NMR (126 MHz, DMSO-d6) δ/ppm 154.0 (CB2), 150.6 (CC2), 150.1 (CC5), 149.9 (CA6), 148.2
(CA2), 147.6 (CB4), 134.4 (CA4), 134.0 (CA3), 127.0 (CC1), 123.9 (CA5), 120.4 (CB3), 117.1 (CC3),
114.9 (CC6), 111.8 (CC4), 56.9 (COMe2), 56.7 (COMe1). UV-VIS (MeCN, 2.0 × 10−5 mol dm−3)
λ/nm (ε/dm3 mol−1 cm−1): 240 (37,000), 315 (16,000). ESI-MS m/z 448.03 [M+H]+ (calc.
448.06). Found C 61.18, H 4.03, N 9.42; required for C23H18BrN3O2 C 61.62, H 4.05, N 9.37.

3.5. Compound 4

The compound 4-bromo-2,5-dimethoxybenzaldehyde (2.50 g, 10.2 mmol) was dis-
solved in EtOH (40 mL), then 4-acetylpyridine (2.47 g, 2.27 mL, 20.4 mmol) and crushed
KOH (1.15 g, 20.4 mmol) were added to the solution. Aqueous NH3 (32%, 39.3 mL) was
slowly added to the reaction mixture, and this was stirred at room temperature overnight.
The crystalline solid that formed was collected by filtration, washed with H2O (3 × 10 mL)
and EtOH (3 × 10 mL), and dried in vacuo. Compound 4 was isolated as a white crys-
talline solid (1.74 g, 3.87 mmol, 38.0%). M.p. = 242 ◦C. 1H NMR (500 MHz, DMSO-d6)
δ/ppm 8.77 (m, 4H, HA2), 8.30 (s, 2H, HB3), 8.24 (m, 4H, HA3), 7.47 (s, 1H, HC3), 7.36 (s,
1H, HC6), 3.91 (s, 3H, HOMe2), 3.82 (s, 3H, HOMe1). 13C{1H} NMR (126 MHz, DMSO-d6)
δ/ppm 153.7 (CB2), 150.6 (CC2), 150.4 (CA2), 150.0 (CC5), 147.9 (CB4), 145.3 (CA4), 126.7 (CC1),
121.8 (CB3), 121.1 (CA3), 117.1 (CC3), 114.9 (CC6), 112.0 (CC4), 56.9 (COMe2), 56.7 (COMe1). UV-
VIS (MeCN, 2.0 × 10−5 mol dm−3) λ/nm (ε/dm3 mol−1 cm−1): 242 (34,400), 313 (12,800).
ESI-MS m/z 448.03 [M+H]+ (calc. 448.06). Found C 60.93, H 3.99, N 9.36; required for
C23H18BrN3O2 C 61.62, H 4.05, N 9.37.

3.6. Compound 5

A 100 mL Schlenk tube was charged with 2 (500 mg, 1.01 mmol), 3 (498 mg, 1.11 mmol),
Na2CO3 (321 mg, 3.03 mmol) and [Pd(dppf)Cl2] (37.0 mg, 0.05 mmol). The reaction vessel
was flushed with N2, and then degassed DMSO (20 mL) was added, and the mixture was
stirred at 110 ◦C under an N2 atmosphere overnight (ca. 14 h). The reaction mixture was
then cooled to room temperature, leading to some precipitation. The solid was removed
by filtration and was washed with toluene. The filtrate was diluted with toluene (70
mL) and was washed with brine (5 × 100 mL), then the organic layer was dried over
Na2SO4, filtered, and the solvent was partially removed by rotary evaporation. While
removing the solvent, part of the product precipitated as an off-white solid. This was
collected by filtration and washed with acetone, yielding a first batch of 5. The filtrate
was then further concentrated and purified by column chromatography on basic Al2O3
with Brockmann activity II (ethyl acetate:cyclohexane 1:2). After combining batches of
product, 5 was isolated as a white solid (428 mg, 0.58 mmol, 57.4%). M.p. = 294 ◦C. 1H
NMR (500 MHz, CDCl3) δ/ppm 9.39 (dd, J = 2.3, 0.9 Hz, 2H, HA′2), 8.74 (ddd, J = 4.8,
1.8, 0.9 Hz, 2H, HA6), 8.73–8.71 (m, 4H, HA′6+B3), 8.70 (dt, J = 8.0, 1.1 Hz, 2H, HA3), 8.57
(ddd, J = 8.0, 2.3, 1.7 Hz, 2H, HA′4), 8.04 (s, 2H, HB′3), 7.91 (td, 2H, J = 7.7, 1.8 Hz, HA4),
7.52 (ddd, 2H, J = 8.0, 4.8, 0.8 Hz, HA′5), 7.37 (ddd, 2H, J = 7.6, 4.8, 1.2 Hz, HA5), 7.21 (s,
1H, HC6), 7.11 (s, 1H, HC′6), 7.10 (s, 1H, HC′3), 7.04 (s, 1H, HC3), 3.89 (m, 6H, HOMe1′+OMe2),
3.86 (s, 3H, HOMe2′ ), 3.85 (s, 3H, HOMe1). 13C{1H} NMR (126 MHz, CDCl3) δ/ppm 156.5
(CB2/A2), 155.4 (CB2/A2), 154.7 (CB′2), 151.7 (CC′5), 151.4 (CC2), 150.8 (CC5), 150.6 (CC′2),
149.7 (CA′6), 149.2 (CA6), 148.9 (CC′4), 148.6 (CC4), 148.2 (CA′2), 137.1 (CA4), 135.3 (CA′3),
135.2 (CA′4), 129.7 (CC4), 128.7 (CC1), 128.1 (CC′4), 127.3 (CC′1), 124.0 (CA′5), 123.9 (CA5),
122.0 (CB3), 121.6 (CA3), 120.6 (CB′3), 115.6 (CC′3), 115.4 (CC3), 114.4 (CC6), 114.3 (CC′6), 57.05
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(COMe1/OMe1′/OMe2/OMe2′ ), 57.0 (COMe1/OMe1′/OMe2/OMe2′ ), 56.7 (COMe1/OMe1′/OMe2/OMe2′ ),
56.6 (COMe1/OMe1′/OMe2/OMe2′ ). UV-VIS (MeCN/CHCl3 9:1, 2.0 × 10−5 mol dm−3) λ/nm
(ε/dm3 mol−1 cm−1) 275 (28,900), 318 (15,600). ESI-MS (MeCN solution with addition of
a few drops of formic acid) m/z 737.23 [M+H]+ (calc. 737.29). HR ESI-MS m/z 737.2869
[M+H]+ (base peak, calc. 737.2871), 759.2687 [M+Na]+ (calc. 759.2690).

3.7. Compound 6

A 100 mL Schlenk tube was charged with 2 (750 mg, 1.67 mmol), 4 (753 mg, 1.52 mmol),
Na2CO3 (483 mg, 4.56 mmol) and [Pd(dppf)Cl2] (55.6 mg, 0.076 mmol). The reaction vessel
was flushed with N2, then degassed DMSO (20 mL) was added, and the mixture was stirred
at 110 ◦C under N2 overnight (ca. 14 h). The reaction mixture was then cooled to room
temperature, leading to some precipitation. The solid was removed by filtration and washed
with toluene. The filtrate was diluted with additional toluene (70 mL) and washed with
brine (5 × 100 mL), then the organic layer was dried over Na2SO4, filtered, and the solvent
was partially removed by rotary evaporation. A first batch of 6 (174 mg) was obtained by
washing the brown residue with acetone and recrystallizing it from acetone/chloroform.
The rest of the compound was purified by column chromatography on basic Al2O3 with
Brockmann activity II (ethyl acetate:cyclohexane 2:1). After combining batches of product,
6 was isolated as a white solid (407 mg, 0.55 mmol, 36.2%). M.p. = 227 ◦C. 1H NMR
(500 MHz, CDCl3): δ/ppm 8.80 (d, J = 6.12 Hz, 4H, HA′2), 8.73 (ddd, J = 4.7, 1.9, 0.9 Hz, 2H,
HA6), 8.71–8.67 (m, 4H, HA3+B3), 8.12–8.09 (m, 6H, HA′3+B′3), 7.89 (td, 2H, J = 7.7, 1.8 Hz,
HA4), 7.36 (ddd, 2H, J = 7.5, 4.7, 1.2 Hz, HA5), 7.20 (s, 1H, HC6), 7.11 (s, 1H, HC′3), 7.10 (s,
1H, HC′6), 7.03 (s, 1H, HC3), 3.89 (s, 3H, HOMe1′ ), 3.88 (s, 3H, HOMe2), 3.86 (s, 3H, HOMe2′ ),
3.85 (s, 3H, HOMe1). 13C{1H} NMR (126 MHz, CDCl3): δ/ppm 156.6 (CB2), 155.5 (CA2),
154.7 (CB′2), 151.7 (CC′5), 151.3 (CC2), 150.8 (CC5), 150.6 (CC′2), 150.4 (CA′2), 149.3 (CA6),
149.1 (CB′4), 148.5 (CB4), 146.7 (CA′4), 137.0 (CA4), 129.8 (CC′4), 128.8 (CC1), 128.0 (CC4), 127.1
(CC′1), 123.9 (CA5), 121.9 (CB3), 121.8 (CA′3/B′3/A3), 121.6 (CA′3/B′3/A3), 121.5 (CA′3/B′3/A3),
115.6 (CC′3), 115.3 (CC3), 114.4 (CC6), 114.3 (CC′6), 57.1 (COMe1/OMe2/OMe1′/OMe2′ ), 57.0
(COMe1/OMe2/OMe1′/OMe2′ ), 56.7 (COMe1/OMe2/OMe1′/OMe2′ ), 56.6 (COMe1/OMe2/OMe1′/OMe2′ ).
UV-VIS (MeCN, 2.0 × 10−5 mol dm−3) λ/nm (ε/dm3 mol−1 cm−1): 238 (44,500), 254 sh
(40,500), 275 sh (32,900), 343 sh (14,000). ESI-MS (MeCN solution with addition of a few
drops of formic acid) m/z 759.28 [M+Na]+ (base peak, calc. 759.27), 737.31 [M+H]+ (calc.
737.29). HR ESI-MS m/z 369.1476 [M+2H]2+ (base peak, calc. 369.1472), 737.2869 [M+H]+

(calc. 737.2871).

3.8. [Fe(5)2][NO3]2

An MeOH solution of FeCl2·4H2O (3.37 mg, 0.017 mmol) was added dropwise to a
warm solution (70 ◦C) of 5 (25 mg, 0.034 mmol) in MeOH/CHCl3 (40 mL, 1:3 by vol.). The
mixture turned immediately purple while stirring. After 30 min, CHCl3 was removed
under vacuum following which the purple MeOH solution was treated with an excess of
aqueous NaNO3, and the mixture was stirred for an additional 10 min; precipitation of
a purple solid was observed. The mixture was cooled to 2–5 ◦C in a refrigerator. When
the solution became colorless and all the fine purple solid had precipitated, the solid was
collected on celite, washed with H2O, and dissolved in MeCN. The solvent was removed
by rotary evaporation, affording [Fe(5)2][NO3]2 as a purple solid (23.2 mg, 0.014 mmol,
82.4%). 1H NMR (500 MHz, CD3CN) δ/ppm 9.46 (dd, J = 2.3, 0.9 Hz, 4H, HA′2), 9.27 (s,
4H, HB3), 8.70 (dd, J = 4.7, 1.6 Hz, 4H, HA′6), 8.64 (dt, J = 7.9, 1.9 Hz, 4H, HA′4), 8.61 (m,
4H, HA3), 8.24 (s, 4H, HB′3), 7.93 (td, J = 7.7, 1.5 Hz, 4H, HA4), 7.72 (s, 2H, HC6), 7.55 (ddd,
J = 8.1, 4.8, 0.9 Hz, 4H, HA′5), 7.38 (s, 2H, HC′6), 7.35 (s, 2H, HC3), 7.24 (s, 2H, HC′3), 7.23
(dd, J = 6.2, 1.2 Hz, 4H, HA6), 7.14 (ddd, J = 7.1, 5.6, 1.3 Hz, 4H, HA5), 4.10 (s, 6H, HOMe1),
4.03 (s, 6H, HOMe2), 3.95 (s, 6H, HOMe1′ ), 3.93 (s, 6H, HOMe2′ ). 13C{1H} NMR (126 MHz,
CD3CN): δ/ppm 160.7 (CB2), 159.2 (CA2), 155.6 (CB′2), 154.0 (CA6), 152.8 (CC5), 152.5 (CC′5),
151.9 (CC2), 151.5 (CC′2), 151.1 (CA′6), 149.4 (CA′2), 149.1 (CB4), 139.7 (CA4), 135.6 (CA′3),
135.4 (CA′4), 131.7 (CC4), 129.7 (CC′4), 128.4 (CC′1), 128.2 (CA5), 126.3 (CC1), 125.1 (CB3),
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124.7 (CA′5), 124.6 (CA3), 121.5 (CB′3), 116.8 (CC3), 116.5 (CC′3), 115.3 (CC6), 115.1 (CC′6), 57.4
(COMe2+OMe1), 57.2 (COMe2′+OMe1′ ). UV-VIS (MeCN, 1.0 × 10−5 mol dm−3) λ/nm (ε/dm3

mol−1 cm−1): 284 (83,600), 321 (58,300), 568 (23,700). ESI-MS m/z 764.67 [M–2NO3]2+ (calc.
764.25). HR-MS m/z 764.2479 [M–2NO3]2+ (calc. 764.2469).

3.9. [Fe(6)2][BF4]2

An MeOH solution of Fe(BF4)2·6H2O (23.0 mg, 0.068 mmol) was added dropwise to a
hot solution (70 ◦C) of 6 (100.0 mg, 0.136 mmol) in MeOH/CHCl3 (ca. 1:3). The mixture
immediately turned purple while stirring. After 1 h, an excess of aqueous NaBF4 was
added and the mixture was stirred for an additional 10 min; immediate precipitation of a
purple solid was observed. The mixture was cooled down at 2–5 ◦C. When the solution
became colorless and all the fine solids had precipitated, the latter was collected on celite,
washed with H2O, and dissolved in MeCN. The solvent was removed by rotary evaporation,
affording [Fe(6)2][BF4]2 as a purple solid (90.3 mg, 0.053 mmol, 78.0%). 1H NMR (500 MHz,
CD3CN with a small amount of added K2CO3) δ/ppm 9.26 (s, 4H, HB3), 8.79 (d, J = 6.0 Hz,
8H, HA′2), 8.60 (d, J = 8.0 Hz, 4H, HA3), 8.34 (s, 4H, HB′3), 8.24 (dd, 8H, HA′3), 7.93 (td,
4H, J = 7.7, 1.5 Hz, HA4), 7.71 (s, 2H, HC6), 7.38 (s, 2H, HC′6), 7.35 (s, 2H, HC3), 7.25 (s,
2H, HC′3), 7.22 (m, 4H, HA6), 7.15 (ddd, J = 7.1, 5.6, 1.3 Hz, 4H, HA5), 4.11 (s, 6H, HOMe1),
4.03 (s, 6H, HOMe2), 3.95 (s, 6H, HOMe1′ ), 3.93 (s, 6H, HOMe2′ ). 13C{1H} NMR (126 MHz,
CD3CN, with a small amount of added K2CO3) δ/ppm 160.7 (CB2), 159.2 (CA2), 155.4 (CB′2),
154.0 (CA6), 152.8 (CC5), 152.6 (CC′5), 151.9 (CC2), 151.5 (CC′2), 151.4 (CA′2), 149.7 (CB′4),
149.0 (CB4), 146.9 (CA′4), 139.7 (CA4), 131.6 (CC4), 129.9 (CC′4+C′1), 128.2 (CA5), 126.3 (CC1),
125.1 (CB3), 124.7 (CA3), 122.8 (CB′3), 122.2 (CA′3), 116.8 (CC3), 116.5 (CC′3), 115.3 (CC6),
115.0 (CC′6), 57.4 (COMe2+OMe1), 57.2 (COMe2′+OMe1′ ). UV-VIS (MeCN, 1.0 × 10−5 mol dm−3)
λ/nm (ε/dm3 mol−1 cm−1): 284 (97,200), 321 (59,800), 568 (25,700). ESI-MS m/z 764.67
[M–2BF4]2+ (calc. 764.25). HR-MS m/z 764.2466 [M–2BF4]2+ (calc. 764.2469), 1615.4979
[M–BF4]+ (calc. 1615.4970).

3.10. Crystallography

Single crystal data were collected on a Bruker APEX-II CCD diffractometer (CuKα
radiation) with data reduction, solution, and refinement using the programs APEX [28],
ShelXT [29], Olex2 [30], and ShelXL v. 2014/7 [31]. All H atoms were included at geometri-
cally calculated positions and refined using a riding model with Uiso = 1.2 of the parent
atom, with the exception of methyl groups, which were refined with Uiso = 1.5. Structure
analysis and structural diagrams used CSD Mercury 2022.1.0 [32].

3.11. Compound 2

C29H30BN3O4, Mr = 495.37, colorless block, orthorhombic, space group Pbca, a = 15.2294(7),
b = 17.9085(7), c = 19.3318(8) Å, V = 5272.5(4) Å3, Dc = 1.248 g cm−3, T = 150 K, Z = 8,
µ(CuKα) = 0.668 mm−1. Total 65,360 reflections, 4886 unique (Rint = 0.0460). Refinement
of 4044 reflections (340 parameters) with I > 2σ(I) converged at final R1 = 0.0414 (R1
all data = 0.0527), wR2 = 0.1006 (wR2 all data = 0.1074), gof = 1.040. CCDC 2203621.

3.12. Compound 3

C23H18BrN3O2, Mr = 448.31, colorless block, triclinic, space group P1, a = 8.4228(7),
b = 11.1275(9), c = 11.1387(9) Å, α = 69.054(3), β = 86.557(3), γ = 81.212(4)◦, V = 963.52(14)
Å3, Dc = 1.545 g cm−3, T = 150 K, Z = 2, µ(CuKα) = 3.115 mm−1. Total 10,442 reflections,
3414 unique (Rint = 0.0205). Refinement of 3377 reflections (264 parameters) with I > 2σ(I)
converged at final R1 = 0.0252 (R1 all data = 0.0254), wR2 = 0.0677 (wR2 all data = 0.0679),
gof = 1.051. CCDC 2203620.

3.13. Compound 4

C23H18BrN3O2, Mr = 448.31, colorless block, monoclinic, space group P21/n, a = 8.3527(5),
b = 23.5829(14), c = 10.5854(7) Å, β = 112.567(3)◦, V = 1925.5(2) Å3, Dc = 1.547 g cm−3,
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T = 150 K, Z = 4, µ(CuKα) = 3.117 mm−1. Total 12,341 reflections, 3462 unique (Rint = 0.0231).
Refinement of 3210 reflections (264 parameters) with I > 2σ(I) converged at final R1 = 0.0321
(R1 all data = 0.0347), wR2 = 0.0817 (wR2 all data = 0.0840), gof = 1.053. CCDC 2203619.

4. Conclusions

We have prepared two tritopic ligands, 5 and 6, which possess 2,2′:6′,2′′- and 3,2′:6′,3′′-
tpy or 2,2′:6′,2′′- and 4,2′:6′,4′′-tpy metal-binding units, respectively. The synthetic strategy
involved the [Pd(dppf)Cl2]-catalyzed coupling of the boronic ester 2 with the bromo-
derivatives 3 and 4. Precursors 1–4 were fully characterized, including the single crystal
structures of compounds 2, 3, and 4. Treatment of 5 and 6 with iron(II) salts led to the
isolation of [Fe(5)2][NO3]2 and [Fe(6)2][BF4]2, which were characterized by spectroscopic
methods; in the solution absorption spectra, the MLCT band for each complex exhibits
a value of λmax = 568 nm. The complexes [Fe(5)2]2+ and [Fe(6)2]2+ are tetratopic ligands
bearing either two 3,2′:6′,3′′- or 4,2′:6′,4′′-tpy units; they represent expanded versions of
tetra(pyridin-4-yl)pyrazine. The coordination chemistry of these new expanded ligands
remains to be explored, with the ease of synthesis of [Fe(5)2]2+ and [Fe(6)2]2+ rendering
them potential building blocks in 2D- and 3D-coordination networks. There are only a
few previous literature examples of tetratopic metallocomplexes with an {Fe(2,2′:6′,2”tpy)2}
core [33,34].
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