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Abstract: This study examines the synthesis of two geminal bisphosphonate ester-supported Ln3+

complexes [Ln(L3)2(NO3)3] (Ln = Nd3+ (5), La3+ (6)) and optical properties of the neodymium(III)
complex. These results are compared to known mono-phosphonate ester-based Nd3+ complexes
[Nd(L1/L2)3X3]n (X = NO3

−, n = 1; Cl−, n = 2) (1–4). The optical properties of Nd3+ compounds
are determined by micro-photoluminescence (µ-PL) spectroscopy which reveals three characteristic
metal-centered emission bands in the NIR region related to transitions from 4F3/2 excited state.
Additionally, two emission bands from 4F5/2, 2H9/2 → 4IJ (J = 11/2, 13/2) transitions were observed.
PL spectroscopy of equimolar complex solutions in dry dichloromethane (DCM) revealed remarkably
higher emission intensity of the mono-phosphonate ester-based complexes in comparison to their
bisphosphonate ester congener. The temperature-dependent PL measurements enable assignment
of the emission lines of the 4F3/2 → 4I9/2 transition. Furthermore, low-temperature polarization-
dependent measurements of the transitions from R1 and R2 Stark sublevel of 4F3/2 state to the 4I9/2

state for crystals of [Nd(L3)2(NO3)3] (5) are discussed.

Keywords: photoluminescence spectroscopy; lanthanide; phosphonate ester ligands; neodymium;
X-ray

1. Introduction

Luminescent lanthanide(III) (Ln3+) ions have attracted considerable research interest
due to their versatile photophysical properties [1–5], which are related to their 4f electrons:
Due to their small radial distribution, 4f electrons exhibit minimal interaction and little
involvement in chemical bonding with surrounding ligands, since they are effectively
shielded by electrons of the 5s and 5p shell. Thus, Ln3+ luminescence exhibits characteristic
narrow emission bands (FWHM < 10 nm) [6,7] along with relatively long emission lifetimes
in a micro- or millisecond range [8–10]. This UV/Vis-to-NIR photoluminescence results
from intra-configurational 4f-4f transitions [11] which are Laporte forbidden, but partially
permitted by mixing of 4f and 5d orbitals or with charge transfer states of neighboring
ligands [6,12].

Luminescence of Ln3+ ions has received considerable attention due to potential
applications in a variety of technological fields such as light-emitting diodes [13–15],
bioimaging [16–20], optical telecommunication [21–23], and luminescent ratiometric ther-
mometers [24–30]. Especially Nd3+ ions have attracted interest for the development of
diode-pumped solid-state lasers based on Nd-doped crystals [31–36], used for medical
applications [37,38] and material processing [39–41]. We previously reported the syn-
thesis of mono-phosphonate ester-supported Ln3+ (Ln=La, Nd, Dy, Er) complexes in-
cluding their structural and optical characterizations [42]. Starting with various mono-
phosphonate esters featuring varied aromatic residues, mono- or dimeric lanthanide com-
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plexes of the type [Ln(L)3X3]n (1–4) (L = phosphonate ester ligand; X = NO3
−, n = 1; Cl−,

n = 2) were synthesized. Room temperature (RT) absorption as well as luminescence
spectra of Dy3+ and Nd3+ complexes were reported. In this work, we present additional
synthesis and characterization of two geminal bisphosphonate ester-supported Ln3+ com-
plexes [Ln(L3)2(NO3)3] (Ln = Nd3+ (5), La3+ (6)) (for preparation of L3 see [43]) as well
as a comparison of the photoluminescence properties of the Nd3+ derivative 5 to com-
pounds 1–4. Micro-photoluminescence (µ-PL) studies of the complexes at RT reveal the
characteristic emission bands of neodymium(III) ions which are centered around 890 nm,
1060 nm, and 1350 nm, corresponding to the 4F3/2 → 4I9/2, 4F3/2 → 4I11/2, and 4F3/2 →
4I13/2 transitions, respectively. Furthermore, two transition bands assigned to transitions
from 4F5/2 and 2H9/2 excited states to 4IJ (J = 11/2, 13/2) were detected. Evaluation of RT
measurements of equimolar complex solutions provide insight into the emission strength
of the various complexes. High-resolution µ-PL measurements of solid bulk material at
liquid helium temperature (5 K) give detailed information on the three characteristic emis-
sion bands of neodymium(III) ions corresponding to transitions from the 4F3/2 manifold.
Low-temperature polarization-dependent µ-PL measurements reveal information about
the crystal orientation of the complex [Nd(L3)2(NO3)3] (5).

2. Results

2.1. Mono-Phosphonate Ester-Based Nd3+ Complexes 1–4 and the Geminal Bisphosphonate
Ester-Supported Complexes 5 (Nd3+) and 6 (La3+)

The ligand platforms L1–L3 as well as complexes 1–4 are synthesized according to
literature procedures (Scheme 1a,b) [15,16]. For the preparation of the latter, three equiva-
lents of ligand L1 or L2 are combined with a [Nd(H2O)6X3] (X = NO3

− or Cl−) precursor in
EtOH solution. Compounds [Ln(L3)2(NO3)3] (Ln = Nd3+ (5) or La3+ (6)) are prepared in the
same manner, but under the addition of only two equivalents of geminal bisphosphonate
ester L3 and are obtained as pale-yellow to yellow solids. The lanthanum(III) derivative is
prepared in order to have additional access to NMR spectroscopy as a powerful analytic
tool. In comparison to free L3 which exhibits a 31P{1H} NMR resonance at 19.4 ppm [16],
complex 6 shows a slightly high field shifted signal at 18.8 ppm. The same observation
can be made in the 1H NMR spectrum for the corresponding methine bridge proton of the
P–C–P moiety. The triplet resonance at 5.48 ppm (2JPH = 30.8 Hz) of free L3 is shifted to
5.39 ppm in complex 6. The P=O vibration at 1252 cm−1 of free L3 becomes red-shifted
to 1222 cm−1 (5) and 1221 cm−1 (6) upon coordination to an electron deficient metal ion
corresponding to a slight weakening of the P=O bond (SI, Figures S5 and S6). In general,
the P=O vibrations are in good agreement with those observed for other related phos-
phonate ester-supported lanthanide complexes [42,44–47]. Crystals of [Nd(L3)2(NO3)3]
(5) and [La(L3)2(NO3)3] (6) are obtained from vapor diffusion of pentanes into saturated
tetrahydrofuran (THF) solutions of each complex. The compounds are isostructural, both
crystallizing in the monoclinic space group C2/c as well as showing half a molecule in the
asymmetric unit. The molecular structure of [Nd(L3)2(NO3)3] (5) is exemplarily shown in
Figure 1. Complexes 5 and 6 adopt a doubly-capped square-antiprismatic geometry in a
ten-fold all-O coordination.

The Ln–OP=O (5: 2.443(5); 6: 2.525(5)) and Ln–ONO3 (5: 2.570(11); 6: 2.629(18)) distances
increase going from complex [Nd(L3)2(NO3)3] (5) to [La(L3)2(NO3)3] (6) in accordance
with an increasing ionic radius from Nd3+ (1.11 Å) to La3+ (1.16 Å) [48]. The free ligand L3
shows merged P=O and P–C bond lengths of 1.462(4) Å and 1.806(6) Å, respectively. [16] In
contrast, the P=O (5: 1.466(5) Å; 6: 1.467(5) Å) distance becomes slightly elongated while
the P–C bond (5: 1.779(7) Å; 6: 1.788(7) Å) becomes somewhat shortened upon lanthanide
ion coordination. To properly host the metal ions, the observed P–C–P angle (5: 118.4(4) ◦;
6: 117.8(4)) is less acute than in the free ligand system L3 (113.7(3)). The OP=O–Ln–OP=O (5:
72.5(16); 6: 71.4(16)) angle expectedly decreases when switching from the smaller Nd3+ to
the bigger La3+ ion.
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4. (c) Monomeric structure of L3-supported Ln(NO3)3 (Ln = Nd3+, La3+) compounds 5 and 6. 
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Scheme 1. (a) Overview on the mono-phosphonate ester ligands L1 and L2 and the anthracene-based
geminal bisphosphonate ester L3. (b) Schematic structures of L1- and L2-supported complexes
1–4: Monomeric Nd(NO3)3-based complexes 1 and 3 and dimeric NdCl3-based species 2 and 4.
(c) Monomeric structure of L3-supported Ln(NO3)3 (Ln = Nd3+, La3+) compounds 5 and 6.
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Figure 1. The molecular structure of complex [Nd(L3)2(NO3)3] (5) which is isostructural to the
solid-state structure of lanthanum(III) derivative [La(L3)2(NO3)3] (6). Anisotropic displacement
parameters are depicted at the 50% probability level. Hydrogen atoms are omitted for clarity.
Symmetry transformations used to generate equivalent atoms: #1: −x + 1, y, −z + 3/2. Selected
bond lengths [Å] and angles [◦] of 5 and 6 (If there is more than one value for a considered bond
length or angle, merged values are given): Ln–OP=O (5: 2.443(5); 6: 2.525(5)), Ln–ONO3 (5: 2.570(11); 6:
2.629(18)), P=O (5: 1.466(5); 6: 1.467(5)), P–C (5: 1.779(7); 6: 1.788(7)), P–C–P (5: 118.4(4); 6: 117.8(4)),
OP=O–Ln–OP=O (5: 72.5(16); 6: 71.4(16)).

2.2. Photoluminescence Properties

2.2.1. Room Temperature Emission Properties of Nd3+ Complexes 1–5 from Amorphous
Solids and Solutions

Neodymium(III) complex [Nd(L3)2(NO3)3] (5) exhibits a broad absorption band in
the UV range due to ligand absorption as well as sharp absorption bands between 500 to
850 nm, characteristic of Nd3+ ions (see Figure S7 in SI file). Excitation of the synthesized
Nd3+ complexes at 750 nm, which is resonant with the 4I9/2 → 4F7/2, 4S3/2 transition,
results in the detection of three emission bands in the NIR region (centered around 890 nm,
1060 nm, and 1350 nm). These are associated with the electronic transitions 4F3/2 → 4I9/2,
4F3/2 → 4I11/2, and 4F3/2 → 4I13/2, respectively. Pumping into the 4F7/2, 4S3/2 levels also
enable the detection of two emission lines from the 4F5/2, 2H9/2 excited states (4F5/2, 2H9/2
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→ 4IJ) centered around 960 nm (J = 11/2) and 1180 nm (J = 13/2). However, following
non-radiative decay and due to the small energy gap between 4F5/2, 2H9/2 levels, and 4F3/2,
emission from the lower excited state represents the dominant process. Figure 2 depicts RT
emission spectra of [Nd(L1)3Cl3]2 (2) highlighting the relatively weak transition bands from
the 4F5/2, 2H9/2 states as insets, which were detected also for the other Nd3+ complexes.
These emission bands from 4F5/2, 2H9/2 states cannot be observed from conventional
laser materials such as Nd:YAG, but were observed from Nd-doped lead halides [49–51].
Lead halides represent solid-state host materials with low maximum phonon energy and
therefore less quenching of luminescence from 4F5/2, 2H9/2 excited states.
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Figure 2. Normalized emission spectra of [Nd(L1)3Cl3]2 (2) obtained from amorphous bulk material
at room temperature (RT): (a) 4F3/2 → 4I9/2 transition and 4F5/2, 2H9/2 → 4I11/2 (inset). (b) 4F3/2 →
4I11/2 transition and 4F5/2, 2H9/2 → 4I13/2 (inset).

Investigation of solutions of equimolar concentration enables comparison of emission
intensities of the various complexes. For comparison, Figure 3a–c firstly represents the
emission spectra obtained from amorphous bulk material [Nd(L2)3(NO3)3] (3) and of the
complexes dissolved in dry dichloromethane (DCM). Only a minor shift in the emission
bands was observed.

Since the mono-phosphonate ester-supported neodymium chloride complexes are
less soluble in DCM, only nitrate-based complexes with mono-phosphonate and gem-
inal bisphosphonate esters are considered. The complexes are dissolved in dry DCM
(c = 4 × 10−3 mol/L) and their optical characteristics were investigated at RT using µ-PL
spectroscopy (same laser power and acquisition time for all three complexes). Since there
is less rotation and vibrational modes along the Nd-O bonds, geminal bisphosphonate
ester-based complexes are more rigid than their mono-phosphonate ester congeners. As
a result, enhanced luminescence intensity can be anticipated for complexes based on a
geminal bisphosphonate ester such as L3. In contrast, the emission spectra shown in
Figure 3d–f demonstrate that higher emission intensities are detected in the case of the
mono-phosphonate esters-supported complexes, with [Nd(L2)3(NO3)3] (3) exhibiting the
most intense emissions. The salient emission intensity of [Nd(L2)3(NO3)3] (3) is about four
times higher compared to [Nd(L3)2(NO3)3] (5). This observation is possibly a consequence
of better ligand-to-metal charge transfer (LMCT) for the evaluated mono-phosphonate ester
ligands compared with the parent geminal bisphosphonate ligand system L3.
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Figure 3. The normalized emission spectra of complex [Nd(L2)3(NO3)3] (3) obtained from amorphous
bulk material (dashed line) and a solution in dry dichloromethane (DCM) (solid line, c = 4× 10−3 mol/L)
related to the transition from 4F3/2 to 4I9/2 (a),4I11/2 (b) and 4I13/2 (c). RT photoluminescence (PL) spectra
of [Nd(L1)3(NO3)3] (1) (dot-dashed line), [Nd(L2)3(NO3)3] (3) (dashed line), and [Nd(L3)2(NO3)3] (5)
(solid line) in dry DCM (c = 4× 10−3 mol/L) of 4F3/2→ 4I9/2 (d), 4F3/2→ 4I11/2 (e), and 4F3/2→ 4I13/2

(f) transition. For data acquisition, laser power and excitation duration were kept constant. The spiky
signal of the 4F3/2→ 4I13/2 transition (c,f) between 1350 nm and 1380 nm is related to setup noise.

2.2.2. Liquid Helium Temperature Emission Properties of Nd3+ Complexes 1–5

At liquid helium temperature (5 K), narrow emission lines (FWHM = 1.1 nm–4.6 nm)
can be observed as compared to RT measurements. Generally, there are 10, 12, and 14 tran-
sition lines resulting from transitions from the 4F3/2 manifold to the 4I9/2, 4I11/2, and 4I13/2
manifolds, respectively, under the assumption of a non-cubic symmetry around the Nd3+

ion, which has an odd number of electrons (Kramers ions [52,53]). This can be rationalized
by using the energy level diagram displayed in Figure 4. It illustrates how the 4F3/2 state is
divided into upper (R2) and lower (R1) Stark sublevels, whereas the 4I9/2, 4I11/2, and 4I13/2
states are split into five (Z1-Z5), six (Y1-Y6) and seven (X1-X7) sublevels, respectively.
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Figure 4. Nd3+ ion energy level diagram: The absorption transition 4I9/2 → 4F7/2, 4S3/2 (excitation
at 750 nm) is followed by non-radiative decay to 4F5/2, 2H9/2 and 4F3/2 states, respectively. With
depopulation of these states’ emission bands centered around 960 nm (4F5/2, 2H9/2 → 4I11/2) and
1180 nm (4F5/2, 2H9/2 → 4I13/2) as well as around 890 nm, 1060 nm, 1350 nm occur. Latter ones
correspond to the 4F3/2 →4I9/2, 4F3/2 → 4I11/2, and 4F3/2 → 4I13/2 transitions, respectively. Due
to the ligand field splitting, the 4F3/2, 4I9/2, 4I11/2, and 4I13/2 states are split into two (R1, R2), five
(Z1–Z5), six (Y1–Y6) and seven (X1–X7) Stark sublevels, respectively.

Figure 5 illustrates the temperature-dependent emission spectra of
complex [Nd(L2)3(NO3)3] (3). At low temperature (5 K), ten emission lines of the 4F3/2 →
4I9/2 transition can be observed, which overlap strongly at higher temperatures due to the
broadening of electron-phonon interactions. Despite low-temperature measurements, 4F3/2
→ 4I11/2 and 4F3/2 → 4I13/2 transitions are less resolved. This is due to the spectral overlap
between the emission lines since they lie close together.
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As the morphology has a significant impact on the emission spectrum, crystals of the
geminal bisphosphonate ester-supported compound [Nd(L3)2(NO3)3] (5) are investigated
in this respect. The normalized PL spectra of the amorphous bulk and crystalline complexes
are depicted in Figure 6a. As expected, the amorphous bulk material has a wider linewidth
than the crystalline sample due to structural disorder.
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Figure 6. (a) The normalized PL emission spectra at 5 K of [Nd(L3)2(NO3)3] (5) corresponding to
4F3/2 → 4I9/2 transition from amorphous bulk sample (dashed line) and crystalline sample (solid
line). (b) Low-temperature (5 K) PL spectra of crystalline [Nd(L3)2(NO3)3] (5) of the 4F3/2 → 4I9/2

transition taken at a polarization angle of 0◦ and 90◦.

When a perfect crystal considered under ideal conditions is excited with a laser, the
emission bands have a narrow Lorentzian shape since all emitting molecules have the same
orientation in the crystal. Due to differences in the local environment of the Nd3+ centers
in amorphous bulk samples and grown crystals, broadened Gaussian band shapes are
observed [54]. As described by Lenz et al. [54] the PL intensity of transition lines is strongly
affected by the crystal orientation. This orientation-dependence was also observed for
crystalline [Nd(L3)2(NO3)3] (5) when applying a polarizer in front of the detector. As the
polarization angle increases from 0◦ to 90◦, the intensity of the transition lines associated
with the R1 sublevel decrease, whereas transition lines associated with the R2 sublevel
increase, as illustrated in Figure 6b.

3. Discussion

According to Figure 4, ten, twelve and fourteen emission lines are expected for the
4F3/2 → 4I9/2, 4F3/2 → 4I11/2, and 4F3/2 → 4I13/2 transitions, respectively. Due to spectral
overlap, not all transition lines can be resolved in the emission spectra as demonstrated
by the 4F3/2 → 4I9/2 transition of [Nd(L3)2(NO3)3] (5), where only eight of ten emission
lines can be observed (Figure 6a). However, temperature-dependent PL measurements can
be used to assign the emission lines. At RT, the R2 Stark sublevel is easily populated due
to the small energy difference between R1 and R2 [55,56]. With decreasing temperature,
R2 is less populated leading to decreasing PL intensity of the corresponding emission
lines. Figure 5a illustrates the increase in emission intensities of transition lines centered at
869.3 nm, 875.3 nm, 879.8 nm, 892.6 nm, and 901.2 nm with rising temperature for the
4F3/2 → 4I9/2 transition of [Nd(L2)3(NO3)3] (3). A radiative depopulation of the R2 Stark
sublevel of the 4F3/2 state to the 4I9/2 manifold results in the emission of these lines.
Increased intensity of emission lines related to transitions from the R1 sublevel centered at
878.1 nm, 895.7 nm, and 904.6 nm may be caused by spectral overlap with R2 Stark sublevel
emission lines. The emission bands of the 4F3/2 → 4I11/2, and 4F3/2 → 4I13/2 transitions
were not assigned, as the emission lines overlap strongly even at low temperatures.

Due to spectral overlap and low intensity of some of the emission lines, its peak
positions (λmax) cannot be determined precisely. A powerful tool for resolving overlapping
spectral bands is the so-called derivative spectroscopy [57,58], which gives detailed infor-
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mation about emission lines and λmax values. Figure 7 depicts the zero-order (dashed line)
PL spectrum of [Nd(L2)3(NO3)3] (3) (recorded at 5 K) and its second-order derivative (D2)
spectrum (solid line). When compared to the original (zero-order) PL spectrum, the D2
spectrum’s peaks are reversed, revealing minima at λmax of the zero-order spectrum. In
addition, a positive satellite band is also present on either side of each dip. In general, sharp
peaks of zero-order spectra become even narrower in D2 spectra, while broad peaks will be
flattened, leading to a reduction in broad background but also to unwanted enhancement
of sharp noise-signals. Thus, PL spectra were smoothed to increase the signal-to-noise ratio.
The λmax values of the Nd3+ complexes are derived from the second-order derivative spec-
tra and are summarized in Table 1. Values for several transition lines are not reported in the
table, because λmax of the transition lines in case of [Nd(L2)3CL3]2 (4) and [Nd(L3)2(NO3)3]
(5) overlapped and could not be resolved properly. Only seven transition lines can be
detected in case of [Nd(L1)3Cl3]2 (2), which is insufficient for a valid assignment.
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Table 1. A summary of λmax values of 1–5 of transition lines corresponding to the 4F3/2→ 4I9/2 transition.

Complex [Nd(L1)3(NO3)3] (1) [Nd(L1)3Cl3]2 (2) [Nd(L2)3(NO3)3] (3) [Nd(L2)3Cl3]2 (4) [Nd(L3)2(NO3)3] (5)

Transition λmax [nm]

R2 → Z1 867.87 873.55 869.29 875.45 863.92
R1 → Z1 871.26 879.41 872.29 878.38 -
R2 → Z2 873.28 - 875.06 - 868.21
R1 → Z2 876.54 - 878.06 881.49 871.95
R2 → Z3 879.29 - 879.66 883.36 876.61
R1 → Z3 882.74 - 882.73 886.56 880.89
R2 → Z4 891.55 - 892.53 891.67 892.21
R1 → Z4 895.34 - 895.60 894.46 -
R2 → Z5 901.99 900.21 901.19 901.48 897.14
R1 → Z5 905.56 906.46 904.19 904.68 901.97

As previously stated, the 4f shell of lanthanides is well shielded by electrons of the 5s
and 5p orbitals resulting in only minor influence from neighboring ligands. However, for
Stark level splitting, ligand parameters such as interatomic distances and electric charge
are critical [54]. As a result, nitrate and chloride anions have a significant influence on
the PL spectra. Figure 8a–c compares the 5 K emission bands associated with the three
NIR transitions of Nd3+ complexes 1–4. The emission bands of the monomeric NO3

− and
dimeric Cl− based Nd3+ complexes under investigation are similar, nevertheless, there are
two noteworthy differences: First, NO3

− based complexes exhibit emission lines for the
4F3/2 → 4I9/2 transition that start at shorter wavelengths and are spread across a wider
spectral range. Second, the transition lines of the neodymium(III) chloride complexes, apart
from the two outer lines of each transition band, are much less prominent than those of the
nitrate-based congeners. It appears that the different organic ligands do not significantly
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influence the µ-PL spectrum, as similar spectra were observed for [Nd(L1)3(NO3)3] (1) and
[Nd(L2)3(NO3)3] (3), and [Nd(L1)3Cl3]2 (2) and [Nd(L2)3Cl3]2 (4), respectively.
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Figure 8. The normalized low-temperature (5 K) PL spectra of amorphous bulk [Nd(L1)3(NO3)3] (1)
(black), [Nd(L1)3Cl3]2 (2) (red), [Nd(L2)3(NO3)3] (3) (green), and [Nd(L2)3Cl3]2 (4) (blue) for the 4F3/2

→ 4I9/2 (a), 4F3/2→ 4I11/2 (b), and 4F3/2→ 4I13/2 (c) transitions, respectively. (d–f) Low-temperature
(5 K) PL spectra of mono-phosphonate ester-supported compound [Nd(L2)3(NO3)3] (3) (dashed line)
and geminal bisphosphonate ester complex [Nd(L3)2(NO3)3] (5) (solid line) for the three different
emission bands.

Figure 8d–f compares the low-temperature (5 K) PL spectra of mono-phosphonate
ester-supported complexes [Nd(L2)3(NO3)3] (3) (dashed line) and [Nd(L3)2(NO3)3] (5)
(solid line). The geminal bisphosphonate ester complex 5 exhibits a redshift in emission
compared to compounds with mono-phosphonate ester ligands, such as 3. The R2 → Z1
transition line for 3 and 5 is shifted by 3.7 nm (Figure 8d). In both NO3 based complex
types, the transition line shape is similar.
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In line with the already mentioned orientation-dependence of the PL intensity of tran-
sition lines for crystalline samples, we explored this aspect for the geminal bisphosphonate
ester complex [Nd(L3)2(NO3)3] (5) by introducing a polarizer in front of the detector. Since
the first two transition lines of 4F3/2 → 4I9/2 transition are spectrally most isolated, the
following investigations focus on the R2 → Z1 and R1 → Z1 transition lines. The relative
emission intensities as a function of the polarization angle, as extracted from careful fits of
many spectra, are shown in Figure 9a. As can be seen, an increase in peak intensity corre-
sponds to transitions from the upper Stark sublevel R2 while a decrease in peak intensity
corresponds to the transition from the lower Stark R1 sublevel and vice versa. Figure 9b
shows the transition energies of the two transition lines as a function of the linear polariza-
tion angle. The oscillatory behavior of both lines stems from two perpendicularly linearly
polarized components. The two transitions show anticorrelated shifts when changing the
polarization angle, confirming the above assigned transitions. While polarized emission has
been observed, the exact correlation between polarization and crystal orientation has not
yet been examined. It is necessary to conduct further investigations, which is beyond the
scope of this study. The FWHM was also found to be polarization-dependent as shown in
Figure 9c. The two transitions show as well anticorrelated broadening when changing the
polarization angle. Here only the R1→ Z1 transition line is plotted. Since the peak intensity
of the R2 → Z1 transition is weak, the fitting of the emission line was not unambiguous,
therefore it is not shown.
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Figure 9. (a) Emission intensities of the R2 → Z1 and R1 → Z1 transition lines of compound
[Nd(L3)2(NO3)3] (5); (b) λmax of the R2 → Z1 and R1 → Z1 transition lines of 5; (c) FWHM of
the R1 → Z1 transition line of 5 as a function of the polarization angle.

4. Materials and Methods

Starting materials for synthesis were purchased commercially and were used as re-
ceived, unless stated otherwise. The ligands L1–L3 as well as complexes 1–4 have been
prepared according to literature protocols [42,43]. NMR experiments were performed with
a Varian 500 MHz spectrometer, and spectra were processed with MestReNova (v11.0.4-
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18998, Mestrelab Research S.L.). 1H- and 13C NMR spectra are referenced relative to TMS
using the residual solvent signals as internal standards [59]. IR spectra were recorded with a
diamond probe ATR IR spectrometer by Bruker. Elemental analyses were performed using
a HEKAtech Euro EA-CHNS elemental analyzer. For analyses, samples were prepared in
tin cups with V2O5 as an additive to ensure complete combustion.

4.1. General Procedure for the Preparation of Geminal Bisphosphonate Ester-Supported Ln3+

(Ln = Nd3+ (5), La3+ (6)) Complexes

[Ln(H2O)6(NO3)3] (Ln = Nd3+, La3+; 1.00 mmol, 1.00 eq.) is dissolved in a vial in
EtOH (15 mL). Ligand L3 (1.09 g, 2.00 mmol, 2.00 eq.) is dissolved in a round-bottom
flask in EtOH (15 mL). The lanthanide precursor solution is added to the ligand solution
under stirring and the mixture is stirred at RT overnight (~16 h). The formed precipitate is
recovered via percolation over a pleated filter, the filter cake is washed with small amounts
of −20 ◦C EtOH and subsequently, air dried. The complexes are isolated as pale-yellow
solids in non-optimized yields of 58% (5) and 59% (6). [Nd(L3)2(NO3)3] (5): IR (ATR)
ν̃ = 1222 (P=O), 1100 (P–OEt) cm−1; Anal. Calcd for C46H58Br2N3NdO21P4: C, 38.99; H,
4.13; N, 2.97. Found: C, 38.99; H, 4.18; N, 2.93; [La(L3)2(NO3)3] (6): 1H-NMR (500 MHz,
DMSO-d6): δ = 9.19 (d, 2H, 3JHH = 9.0 Hz, H4), 8.57 (dd, 2H, 3JHH = 6.4, 4JHH = 3.6 Hz,
H1), 8.49 (d, 2H, 3JHH = 8.8 Hz, H8), 8.37 (dd, 2H, 3JHH = 6.4, 4JHH = 3.6 Hz, H5), 7.75–7.69
(m, 6H, H2 + H6, H3), 7.63–7.59 (m, 2H, H7) 5.39 (t, 2H, 2JPH = 30.3 Hz, CH), 4.18–4.11 (m,
8H, CH2CH3), 3.86–3.74 (m, 2H, CH2CH3), 3.68–3.60 (m, 4H, CH2CH3), 3.54–3.46 (m, 4H,
CH2CH3), 1.24 (t, 12H, 3JHH = 7.1 Hz, CH2CH3), 0.61 (t, 12H, 3JHH = 7.0 Hz, CH2CH3) ppm;
13C{1H}-NMR (101 MHz, C6D6): δ = 131.6 (t, 2C, J = 4.4 Hz, CAr), 130.9 (t, 2C, J = 8.4 Hz,
CAr), 129.9 (t, 2C, J = 2.4 Hz, CAr), 129.8 (t, 2C, J = 3.3 Hz, CAr), 129.6–129.5 (m, 2C, CAr),
128.3 (s, 2C, CAr), 127.9 (s, 2C, CAr), 127.6 (s, 2C, CAr), 127.5 (s, 2C, CAr), 127.0 (s, 2C, CAr),
125.4–125.1 (m, 4C, CAr), 124.3–124.2 (m, 2C, CAr), 123.6 (t, 2C, J = 6.3 Hz, CAr), 63.0–62.8
(m, 4C, CH2CH3), 62.7–62.5 (m, 4C, CH2CH3), 40.5 (t, 2C, 1JPC = 134 Hz, CH (partially
covered by DMSO-d6 signal)), 16.3–16.1 (m, 4C, CH2CH3), 15.7–15.5 (m, 4C, CH2CH3) ppm;
31P{1H}-NMR (202 MHz, C6D6): δ = 18.9 (s, 4P) ppm; IR (ATR) ν̃ = 1221 (P=O), 1100 (P–OEt)
cm−1; Anal. Calcd for C46H58Br2N3LaO21P4: C, 39.14; H, 4.14; N 2.98. Found: C, 39.61; H,
4.24; N, 3.19.

4.2. Crystallographic Details

X-ray diffraction experiments were performed with either a STOE IPDS 2 with an
image plate (Ø 34 cm) using a Mo-GENIX source (λ = 0.71073 nm) or a STOE StadiVari
instrument with DECTRIS PILATUS 200 K using a Cu-GENIX source (λ = 1.54186 nm). All
structures were solved using direct methods (SHELXT) [60] and refined against F2 using the
full-matrix least-squares methods of SHELXL [61] within the SHELXLE GUI [62] or with
OLEX2 [63]. CCDC 2201668 (5) and 2201669 (6) contain the supplementary crystallographic
data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/
data_request/cif.

4.3. Micro-Photoluminescence (µ-PL) Measurments

Luminescence characteristics of phosphonate ester-supported Nd3+ complexes are
investigated by µ-PL spectroscopy. For the characterization of Nd3+ complexes in solid
form, the samples were mounted in a liquid helium flow cryostat. The compounds are
attached to silicon wafer pieces by partially melting or, if non-meltable, by sticking with
vacuum grease, to fix the solid in position and to ensure good thermal conductivity when
cooling the sample down to liquid helium temperature. For RT PL measurements in
solution, the complexes were dissolved in dry DCM, filled into a cuvette, and attached
to the holder of an open cryostat. The Nd3+ complexes are excited at 750 nm, using
a CW Ti:Sapphire laser. A microscope objective (NA = 0.7) focuses the laser onto the
sample and collects the photoluminescence light of the complexes. The emitted light is

www.ccdc.cam.ac.uk/data_request/cif
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guided to a monochromator equipped with a liquid nitrogen-cooled InGaAs detector. For
polarization-dependent measurements, a polarizer is inserted in front of the detector.

Low-temperature measurements were conducted on amorphous solids except for
[Nd(L3)2(NO3)3] (5) where a crystalline sample was used. From this compound, crystals
were obtained from vapor diffusion of pentanes into a saturated THF solution of the
complex. The amorphous bulk material as well as a crystalline sample are depicted in
Figure 10a,b.
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Figure 10. The light microscope images of samples of [Nd(L3)2(NO3)3] (5): (a) amorphous bulk
material; (b) crystalline sample.

5. Conclusions

The preparation of two geminal bisphosphonate ester-supported Ln3+ complexes
[Ln(L3)2(NO3)3] (Ln = Nd3+, La3+) has been presented. Emission intensities of equimolar
solutions of the germinal bisphosphonate ester-supported Nd3+ nitrate complex 5 and
related NO3

− based Nd3+ complexes featuring mono-phosphonate esters were compared
obtaining unexpected higher emission intensities for the latter compounds. Emission
bands from 4F5/2, 2H9/2 → 4IJ (J = 11/2, 13/2) transitions were detected, which are rarely
presented for Nd3+ containing materials. The three emission bands characteristic for
transitions from 4F3/2 excited state, of mono- and dimeric phosphonate ester-supported
Nd3+ nitrate and chloride complexes as well as of the geminal bisphosphonate-based
complex at liquid helium temperature (5 K) were examined. PL spectra of all three complex
types depict similar features with slight shifts of peak positions. Temperature-dependent
PL spectroscopy enabled assignment of the transition lines corresponding to the 4F3/2 →
4I9/2 transition. At 5 K polarization-dependence of a crystalline sample was observed
showing opposite change in peak intensity of transitions related to the depopulation of the
R1 and R2 Stark sublevel, respectively.

This study shows that the investigated neodymium(III) complexes exhibit interesting
luminescence properties. With improved synthesis processes, their optical properties could
be further enhanced. In the next step, molecules will be integrated onto microcavities to
examine molecule-cavity coupling.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/molecules28010048/s1, Figure S1: 1H NMR spectrum of 6 in DMSO-d6, Figure S2: 13C{1H}
NMR spectrum of 6 in DMSO-d6, Table S1: Crystallographic data for complex 5 and 6, Figure S3:
Asymmetric unit of 5, Figure S4: Asymmetric unit of 6, Figure S5: ATR IR-spectrum of complex
[Nd(L3)2(NO3)3] (5), Figure S6: ATR IR-spectrum of complex [La(L3)2(NO3)3] (6), Figure S7: Normal-
ized absorption spectrum of complex [Nd(L3)2(NO3)3] (5) at room temperature showing sharp Nd3+

absorption bands. Reference [64] is cited in the Supplementary Materials.
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