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Abstract: A novel near-infrared (NIR) fluorescent probe (SWJT-9) was designed and synthesized for
the detection of hypochlorite anion (ClO−) using a diaminomaleonitrile group as the recognition
site. SWJT-9 had large Stokes shift (237 nm) and showed an excellent NIR fluorescence response to
ClO− with the color change under the visible light. It showed a low detection limit (24.7 nM), high
selectivity, and rapid detection (within 2 min) for ClO−. The new detection mechanism of SWJT-9 on
ClO− was confirmed by 1H NMR, MS spectrum, and the density functional theory (DFT) calculations.
In addition, the probe was successfully used to detect ClO− in HeLa cells.

Keywords: fluorescence; hypochlorite anion (ClO−); near-infrared probe; chemodosimeter

1. Introduction

Neutrophils, known as polymorphonuclear cells, are the largest number of white
blood cells in the body [1–3]. They are the main immune cells that protect the body
from microbial infection and eliminate pathogens [4]. In neutrophils, hydrogen peroxide
(H2O2) reacts with chloride ions to generate hypochlorite anions [5–7] under the catalysis of
myeloperoxidase. Hypochlorite anions plays a very important role in the human body [8,9].
However, excessive hypochlorite anion in the body will oxidize biological molecules, such
as protein, cholesterol, DNA, and RNA in living cells, which will lead to cardiovascular
disease, inflammatory disease, cancer, and so on [10–15]. Therefore, it is necessary to
monitor hypochlorite anions in vitro and in vivo.

At present, many analytical methods have been applied to the detection of hypochlorite
anions, such as colorimetry, luminescence, electrochemistry, and chromatography [16–18].
In addition, the fluorescence probing method was paid more attention as an excellent
detection tool, which has realized the detection of many active species [19–23]. Fluorescence
probes for the detection of hypochlorite anions have been reported continuously in recent
years [24–46]. Among them, some chemodosimeters using a diaminomaleonitrile group as
the reaction site were used to detect hypochlorite anions, which had many advantages, such
as specific recognition, high selectivity, and fast response. However, most chemodosimeters
for the hypochlorite anion could hardly achieve near-infrared fluorescence emission and
did not have a large Stokes shift (Table S1) [34–46]. It is well known that NIR fluorescent
probes with a large Stokes shift have more advantages due to good applications in biological
systems [47]. Therefore, it is necessary to design a near-infrared fluorescent probe with
a large Stokes shift for the detection of hypochlorite anions with high selectivity and
rapid response.

In connection with our previous work [26,48,49], herein, we reported a novel chemod-
osimeter (SWJT-9), which had a large Stokes shift and emitted near-infrared fluorescence
due to using a dicyanoisophorone skeleton. It can specifically recognize a hypochlorite
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anion based on the inhibition of C=N rotational isomerization [50]. Moreover, SWJT-9 was
successfully applied to HeLa cell imaging.

2. Results and Discussion
2.1. Design SWJT-9

Through the Duff reaction, an aldehyde group was generated at the ortho position
of the hydroxyl group in a dicyanoisophorone skeleton. The diaminomaleonitrile group
was then used as the recognition group [36,51] to obtain the probe SWJT-9 (Scheme 1).
The structure of SWJT-9 was confirmed by NMR and MS (Figures S1–S3, Supplementary
Materials). The fluorescence of SWJT-9 would reduce by the rotational isomerization of
the C=N double bond [52]. After the addition of hypochlorite anions, a reaction between
SWJT-9 and ClO− would occur to obtain compound 3, which had no C=N bond; therefore,
the fluorescence would be enhanced [53–55].
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2.2. Photoproperties of Probe

In order to study the effect of organic solvents on the probe, methanol, ethanol, acetoni-
trile, DMSO, and DMF were used (Figure S4, Supplementary Materials). The effect of the
buffer solution and pH on the probe were also studied (Figure S5, Supplementary Materials).
According to these results, and considering the solubility of the probe, the solution of
ethanol and PBS (9/1, v/v) at pH 7.4 was selected as the test condition.

As shown in Figure 1a, the UV–Vis absorption spectrum of SWJT-9 showed an obvious
absorption band centered at 430 nm. After the addition of ClO− to the solution, the
absorbance red-shifted to about 550 nm. The color of the solution changed from yellow
to pink (Figure 1a, inset). These results suggested that a reaction might occur between
SWJT-9 and ClO−. In the fluorescence spectrum, SWJT-9 showed weak emission at about
667 nm (Φ = 0.018) under excitation at 550 nm (Figure 1b). After the addition of ClO−,
the fluorescence increased (Φ = 0.113) [56], and the fluorescence color of the solution was
observed from red to deep red (Figure 1b, inset). These results indicated that SWJT-9
could detect hypochlorite anions by colorimetric and fluorescence turn-on responses. The
fluorescence titration experiments were then conducted. As shown in Figure 1c, the
fluorescence intensity enhanced with the increase of the ClO− concentration, indicating
that SWJT-9 was a turn-on fluorescence probe. The detection limit was calculated as
24.7 nM (Figure S6, Supplementary Materials), which was far lower than the concentration
of hypochlorite anions produced by cells [57].
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Figure 1. (a) Absorption spectra of SWJT-9 (10.0 µM) and SWJT-9 + ClO− (2.0 mM) in EtOH–PBS
(9/1, v/v, pH 7.4) buffer solution. Inset: images of SWJT-9 (left) and SWJT-9 after adding ClO−

(right) under visible light. (b) Fluorescence spectra of SWJT-9 (10.0 µM) and SWJT-9 + ClO− (2.0 mM)
in EtOH–PBS (9/1, v/v, pH 7.4) buffer solution (λex = 550 nm). Inset: images of SWJT-9 (left) and
SWJT-9 + ClO− (right) after adding ClO− under UV light. (c) Fluorescence titrations of SWJT-9
(10.0 µM) with different concentrations of ClO− (0–2000.0 µM) (λex = 550 nm). (d) The fluorescence
intensity of the SWJT-9 (10.0 µM) and ClO− (2.0 mM) probes increased with time (λem = 667 nm).

In addition, it is well known that the reaction time is an important parameter for
examining intracellular hypochlorite anions [28]. The shorter the time, the better the
recognition. As shown in Figure 1d, the fluorescence intensity tends to equilibrate within
two minutes. These results showed that this probe has high sensitivity to hypochlorite
anions. Moreover, the constant (kobs) of the pseudo-first-order reaction was calculated to be
0.03041 s−1, and the t1/2 was 23 s (Figure S7, Supplementary Materials).

2.3. Competition Experiments

As show in Figure 2, when active oxygen species or other anions were added to the
solution of SWJT-9, the fluorescence intensity was still weak. The fluorescence intensity at
667 nm significantly enhanced when ClO− was added to the above solution. These results
indicated that the presence of other reactive oxygen species or anions would not interfere
with the recognition of ClO− by SWJT-9. The probe had a good anti-interference property
and potential application in biological environments.
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2.4. Response Mechanism

In order to verify the possible reaction mechanism of SWJT-9 and ClO–, 1H NMR
titration (Figure 3) and MS spectrum (Figure S8, Supplementary Materials) were used. As
shown in Figure 3, the proton signal of the C=N bond (Ha) appeared at 8.5 ppm. When
ClO– was added, the peak (Ha) disappeared gradually while a new proton (Hb) appeared.
Compared with two spectrum (SWJT-9 + ClO− and compound 3), they were basically the
same, which indicated 3 was the product from a reaction of SWJT-9 and ClO−. In addition,
as shown in Figure S8 (Supplementary Materials), the peak at m/z 349.3 of SWJT-9 + ClO−
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2.5. DFT Calculations

In order to investigate the relationship between the probe and the spectral changes,
density functional theory (DFT, B3LYP/6-311G, Gaussian 09) calculations were performed [58].
As shown in Figure 4, the HOMO electron density of SWJT-9 was distributed on the
dicyanoisophorone skeleton and diaminomaleonitrile group. However, for the LUMO
level, the electron density was only located on the dicyanoisophorone skeleton, which
meant that C=N isomerization occurred to lead to the weak fluorescence of SWJT-9 [59]. At
the HOMO and LUMO levels, the electrons of compound 3 were all mainly distributed in
the whole dicyanoisophorone group, indicating that compound 3 had a strong fluorescence
emission. These results suggested that SWJT-9 could be considered as a turn-on probe
for ClO−.
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2.6. Cytotoxicity of SWJT-9 and Its Imaging in HeLa Cells

In order to further prove the excellent performance of the near-infrared fluorescence
of SWJT-9, HeLa cells were used (Figure 5) to study bioimaging. First, HeLa cells were
incubated with SWJT-9 (10.0 µM) for 30 min. As shown in Figure 5b, the fluorescence of
SWJT-9 was very weak in the red channel. In the other group, SWJT-9 and HeLa cells
were incubated at 37 ◦C for 30 min and then incubated with ClO– for another 20 min. The
fluorescence in the red channel improved obviously. These results indicated that SWJT-9
has good cell membrane transparency and can detect ClO− in HeLa cells. In addition,
the CCK test results showed that SWJT-9 did not produce significant cytotoxicity in HeLa
cells (Figure 6).
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3. Materials and Methods
3.1. Materials and Reagents

The materials, reagents, and detection methods are described in the Supplementary Materials.

3.2. Synthesis of Probe SWJT-9

Compound 1 and compound 2 were prepared according to the previously reported
literature [60].

Compound 2 (5.01 g, 15.61 mmol) and hexamethylenetetramine (4.16 g, 29.65 mmol)
were dissolved in trifluoroacetic acid (20 mL), heated to 100 ◦C, and reacted for 8 h. The
mixture solution was cooled to room temperature and extracted with CH2Cl2 (2 × 150 mL).
Finally, the collected organic layers were concentrated and purified by column chromatogra-
phy (petroleum ether:ethyl acetate = 4:1) on silica gel to obtain the known compound 3 [49]
(1.80 g, 33.1%).

Compound 3 (90.10 mg, 0.26 mmol) and diaminomaleonitrile (32.01 mg, 0.30 mmol)
were added to ethanol (10 mL). Then, the mixture was heated at 80 ◦C for two hours
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and then filtered with suction. After washing with ethanol, SWJT-9 can be obtained as
a solid. Yield: 45.0 %. 1H NMR (400 MHz, DMSO-d6): δ = 10.34 (s, 1H), 8.58 (s, 1H), 8.
0 (s, 1H), 7.95 (s, 1H), 7.47 (s, 1H), 7.37 (d, J = 16.0 Hz, 1H), 7.22 (d, J = 16.0 Hz, 1H), 6.84
(s, 1H), 3.93 (s, 3H), 2. 62 (s, 2H), 2. 53 (s, 2H), 1. 03 (s, 6H) ppm. 13C NMR (100 MHz,
DMSO-d6): δ = 170.7, 156.6, 151.8, 150.0, 148.9, 138.3, 128.0, 127.9, 126.9, 122.3, 122.3, 121.4,
114.9, 114.5, 114.3, 113.7, 113.2, 103.8, 75.9, 56.7, 42.8, 38.8, 32.2, 27.9 (2C) ppm. ESI-MS: m/z
439.1 [M + H]+.

4. Conclusions

In conclusion, a near-infrared fluorescent probe SWJT-9 for ClO− detection was de-
veloped. It exhibited a large Stokes shift (237 nm), high selectivity, good sensitivity, and
fast response. An obvious color change was observed by the naked eye under visible light
or ultraviolet light. SWJT-9 was a new near-infrared fluorescent probe using diaminoma-
leonitrile as the recognition group, and it can be successfully used in cells, indicating its
potential use in biological analyses. This work could provide some inspiration for future
research of near-infrared fluorescence probes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/molecules28010402/s1: Copies of 1H, 13C NMR, ESI-MS spectra, spectral data, and other
materials [61].

Author Contributions: Y.-W.W. conceived and designed the experiments; C.-X.L. and S.-Y.X. per-
formed the experiments; C.-X.L., S.-Y.X., X.-L.G., X.Z., Y.-W.W. and Y.P. analyzed the data; and C.-X.L.,
X.Z., Y.-W.W. and Y.P. wrote the paper. All authors have read and agreed to the published version of
the manuscript.
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