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Abstract: The photo-induced denitrogenative annulations of a variety of 1-alkenylbenzotriazoles were
investigated. By judiciously manipulating the structural variations of 1-alkenylbenzotriazoles, two
characteristic polycyclic skeletons associated with monoterpene indole alkaloids were constructed
through a diverted and controllable manner. The present work not only enriches the photochemistry
of 1-alkenylbenzotriazoles, but also offers a unified approach to access skeletally diverse indole
alkaloid scaffolds.
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1. Introduction

Monoterpene indole alkaloids comprise a large class of natural products that exhibit
diverse molecular architectures and broad biological activities [1,2]. Among them, an array
of strychnos and akuammiline alkaloids featuring a 4a,9a-heterocycle-fused tetrahydrocar-
bazole skeleton (I, Figure 1), as shown in minfiensine (1), vincorine (2) and aspidophylline
A (3), have spurred great interest of synthetic chemists in the past decades. Character-
ized by a unique [4.3.3]propellane core containing two adjacent quaternary stereocenters,
tetracyclic skeleton I has been viewed as one of the major synthetic challenges associated
with this group of natural products, and thus a plethora of synthetic approaches have been
developed to access it and related scaffolds [3–5]. Besides the above-mentioned molecules,
there also exist some monoterpene indole alkaloids that bear the same A/B/C tricyclic
ring system to I but differ in the connectivity patterns between the A/B/C and D rings [1].
Taking alsmaphorazine D (4), melodinine E (5) and leuconoxine (6) as examples, all of them
share a characteristic octahydropyrido[1,2-a]pyrrolo[2,3-b]indole core (II), in which the D
ring is connected to A/B/C ring at N1 and C9a instead of C4a and C9a as shown in I. The
structural similarity between I and II could be rationalized by their inherent biosynthetic
relationship. It has been suggested that the latter should be biosynthetically derived from
the former through the cleavage of the C4a–C4 bond followed by the formation of a N1–C4
bond [6,7]. Of note, although this biosynthetic hypothesis seems to be inspiring, it has
remained yet to be validated in practice [8].

1,2,3-Benzotriazoles are an important class of heterocycles that have found widespread
applications in organic synthesis, medicinal chemistry, and material science [9–13]. His-
torically, it has been reported that some 1-substituted 1,2,3-benzotriazoles could undergo
denitrogenative transformations to generate other valuable products. This unique reac-
tivity has aroused considerable interest from the synthetic community in recent years,
which leads to the development of a broad range of novel denitrogenative transformations
of 1,2,3-benzotriazoles [14–19]. Among them, some photochemical reactions are partic-
ularly attractive due to their appealing synthetic potential and environmentally benign
nature [20–27]. For example, it has been reported that 1-vinyl-1,2,3-benzotriazole 7 could
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undergo sequential photo-induced nitrogen extrusion, N-radical 1,3-shift, 1,5-diradical
combination and tautomerization to yield the indole product 10 (Scheme 1A). From a
synthetic point of view, this unique photo transformation represents a promising synthetic
tool to access indole-derived natural products. However, such potential has rarely been
explored, with only sporadic cases documented [22,23]. In 1980s, Wender and co-workers
reported a seminal work on this subject, in which a series of natural product-relevant indole
scaffolds were prepared by this method, as exemplified by the case leading to tetrahy-
drocarbazole 12 [22]. Another notable example was reported by Johnson and co-workers,
in which a spiro-oxindole derivative 14 was obtained through the photo-induced deni-
trogenative annulation of 13 followed by hydrolysis of the in situ-generated indolenine
intermediate [23].
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In recent years, our group has been striving to develop conceptually novel and
practically useful denitrogenative transformations of 1,2,3-benzotriazoles [28–30]. Dur-
ing this course, we realized that the photo-induced denitrogenative annulation of 1-
alkenylbenzotriazoles, if combined with rational design, might serve as an enabling tool for
the synthesis of monoterpene indole alkaloids. As depicted in Scheme 1B, we envisioned
that a functionalized 1-alkenylbenzotriazole like 15 could undergo the photo-induced deni-
trogenative annulation to give 2,3,3-trisubstituted indolenine intermediate 16. Once formed,
the imine moiety of 16 could be captured by a nitrogen- or oxygen-derived nucleophile
(e.g., NHR or OH) pre-installed on the side chain at C4a (path a), thus affording the 4a,9a-
heterocycle-fused tetrahydrocarbazole derivative 17. On the other hand, if the nitrogen- or
oxygen-derived nucleophile exists in a masked form (e.g., NR2, or OR), a different reaction
pathway could be imagined for the intermediate 16. Based on some inspiring cases [8],
1,3-acyl migration could take place, giving rise to the dihydropyrido[1,2-a]indolone deriva-
tive 20, either through the diradical intermediate 18 (retro-photo-Fries rearrangement, path
b1) [31–35] or zwitterion species 19 (path b2) [36–39]. Finally, 20 could be elaborated into
the tetracyclic skeleton II through some additional operations. From a synthetic perspective,
the above-mentioned synthetic blueprint appears to be attractive, since it enables the facile
access of two different polycyclic skeletons associated with monoterpene indole alkaloids
in a diverted and controllable manner.
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Scheme 1. Research background and working hypothesis (A,B).

2. Results and Discussion

At the initial of our study, two 1-alkenylbenzotrizoles 15a and 15b, which bear a
NHBoc and OH moiety on the side chain, respectively, were prepared through a couple
of steps (for details, see Supplementary Materials). With these precursors in hand, we
then focused our attention on exploring the designed photo-induced denitrogenative
annulation reaction. Based on some relevant works [17–22], we first chose to conduct
the photoreaction of 15a with MeCN as the solvent and 254 nm UV lamp as the light
resource. To our disappointment, the reaction outcomes turned out to be complicated, and
no desired product 17a could be identified in the reaction mixtures (Table 1, entry 1). In
sharp comparison, the photoreaction of 15b appeared to be more encouraging, with the
expected product 17b obtained in 23% yield (entry 2). Besides, we also identified another
unstable product (ca. 30%) in the reaction, which was assigned to be the 5/3/5 tricyclic
compound 21 based on the extensive spectroscopic studies. Furtherly, we conducted a
condition screening using 15b as the substrate. However, only a slightly improved yield of
17b (30%) was obtained when the reaction was performed in THF (entry 3).
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Table 1. Condition optimization of the photoreaction.

Entry Reactant Solvent Light Source (nm) Yield (%)

1 15a MeCN 254 17a: 0%
2 15b MeCN 254 17b: 23%
3 15b THF 254 17b: 30%
4 15b Ethyl acetate 254 17b: 22%
5 15b 1,4-Dioxane 254 17b: 22%
6 15b MeOH 254 17b: 14%
7 15b DMF 254 17b: 16%
8 15b Toluene 254 17b: 15%
9 15b THF 311 17b: 27%
10 15b MeCN 311 17b: 20%
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The above-mentioned results suggest that although the designed photo-induced den-
itrogenative annulation is feasible, the reaction outcomes largely rely on the judicious
manipulation of the substrate structures. The distinct results associated with 15a and 15b
indicate that a nucleophile with favorable steric and electronic nature should be employed
to capture the in situ-generated indolenine intermediate. Apparently, the OH group ap-
pears to be a better choice than the NHBoc for the current reaction. On the other hand,
the identification of byproduct 21 indicated that there exist some unexpected reaction
pathways besides the desired one. The plausible mechanism of the photoreaction of 15b is
outlined in Scheme 2. Simply, upon photo irradiation, 15b will undergo nitrogen extrusion
to generate diradical species I-15b. Subsequently, I-15b will go through radical 1,3-shift
to give 1,5-diradicals II-15b and III-15b as a pair of cis/trans isomers. Between them,
the cis-isomer II-15b could advance to 17b though 1,5-diradical combination followed by
imine capture by the hydroxyl group. Comparably, for trans-isomer III-15b, a 1,5-hydrogen
abstraction will take place preferentially, leading to a new 1,3-diradical species (V-15b) [40].
Finally, a 1,3-diradical combination followed by the cyclization of the hydroxyl group onto
the imine moiety will give rise to the observed byproduct 21.

Having the mechanistic rationalization in mind, we sought to improve the reaction
by judiciously manipulating the substrate structure. As we envisioned, introducing two
substitutions on the C1 position of the substrate (e.g., 15c and 15d in Scheme 3) will facilitate
the reaction from two aspects. First, the competitive 1,5-hydrogen abstraction would be
precluded in this scenario due to the absence of suitable C–H bonds on the C1 position.
Second, the equilibrium between the cis- and trans-imine intermediates will shift towards
the desired direction. Taking 15c as an example, II-15c should be thermodynamically
more favorable than III-15c, and thus the desired reaction pathway would take place
preferentially. To our delight, this speculation was validated quickly in practice. As shown
in Scheme 3, when 1-alkenylbenzotrizoles 15c and 15d were submitted to the photoreaction,
the corresponding annulation products 17c (56%) and 17d (54%) were obtained in notably
improved yields.
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Besides the C1 substitute effect, we found that the structural variation on the side chain
also exerted a profound effect on the reaction outcome. Indeed, when 1-alkenylbenzotrizole
15e bearing a carboxylic acid on side chain was attempted in the photoreaction, a different
result was obtained. In this case, two products were isolated, between which the minor
component turned out to be the desired product 17e (38%) and the major one was as-
signed as tetrahydrocarbazole 22 (Scheme 4A). The structure of 22 was confirmed by the
comparison of its spectroscopic data with those reported in literature [41]. Although the
exact mechanism for the formation of 22 remains unclear at this stage, a plausible one is
suggested in Scheme 4B. Naturally, the reaction also starts from the denitrogenation of 15e.
However, different from the above-mentioned cases, in the current scenario the resulting
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I-15e more likely advances to the zwitterion species II-15e and III-15e through N-radical
1,3-shift and intramolecular proton transfer from the carboxylic acid to the imine moiety.
Between them, II-15e could convert to 17e following the same pathway as suggested above.
Comparably, III-15e might go through an intramolecular 1,5-hydrogen transfer followed
by radical 1,3-shift to yield N-radical cation species IV-15e. Subsequently, a Nazarov-type
cyclization would take place, and the resulting product V-15e could undergo sequential
tautomerization and decarboxylation to yield byproduct 22.
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Taking the above outcomes into consideration, we decided to integrate the structural
modifications on the C-1 position and C-4a side chain into a single molecule. To this end,
1-alkenylbenzotrizoles 15f and 15g were synthetized. As we expected, both 15f and 15g
proved to be excellent substrates for the photoreaction by providing the corresponding
products in good yields (17f: 63%; 17g: 64%).

Having the 4a,9a-heterocycle-fused tetrahydrocarbazole skeleton (I) secured in an
acceptable efficiency, we then moved to explore the proposed chemistry leading to the
tetracyclic skeleton II (Figure 1). According to our design, two structural modifications
should be implemented on the 1-alkenylbenzotrizoles. First, the nucleophile on the side
chain should be masked, and thus the in situ-generated indolenine intermediate (e.g., 16,
Scheme 1) could not be captured. Secondly, a carbonyl group should be introduced onto
the C-4 position of the cyclohexene unit, which allows the proposed 1,3-acyl migration
to take place. Taking these rationalizations in mind, 1-alkenylbenzotrizoles 15h and 15i
were prepared and evaluated in the photoreactions. To our delight, the designed chemistry
worked well under the conventional photo conditions (254 nm UV, CH3CN, 25 °C), with
the desired dihydropyrido[1,2-a]indolone derivatives 20h and 20i obtained in 42% and 35%
yields, respectively. Although the yields of the above reactions appeared to be moderated,
their overall efficiency is appreciable, since they actually integrate several transformations
into a single operation.

Naturally, we also attempted the carboxylate-derived 1-alkenylbenzotrizoles 15j and
15k in the photoreaction. Again, these two substrates showed slightly different reactivity
from 15h and 15i. As shown, besides the expected products 20j and 20k, we also identified
another product in these reactions, which were assigned to be the tricyclic compounds
23 and 24, respectively. Interestingly, compared with 20j and 20k, 23 and 24 not only
showed different tricyclic ring systems, but also lost a unit of -CH2CO2Me. A plausible
mechanism for the above-mentioned transformations is suggested in Scheme 5B. Taking
15j as example, a photo-induced denitrogenative annulation will take place first, leading
to indolenine intermediate 16j. Without a suitable nucleophile to trap the imine moiety,
16j would go through two different pathways upon further photo irradiation. On one
hand, the proposed retro-photo-Fries rearrangement will take place through the cleavage
of C4a-C4 bond (path a), and the resulting diradical species 18j readily converts to the
product 20j through 1,6-radical combination. On the other hand, the cleavage of C4a-C5
bond might also occur as a competitive pathway (path b), with the release of an α-carbonyl
radical species. Subsequently, the resulting 18j’ will abstract a hydrogen form the reaction
system to yield the byproduct 23. Interestingly, we did not observe similar byproducts in
the reactions with 15h and 15i, indicating that the generation of a stabilized α-carbonyl
radical species should be the driving force of path b.
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3. Materials and Methods
3.1. General Information

Commercially available reagents were purchased from commercial sources and used
as received without further purification. If no further details are given, the reaction was per-
formed under ambient atmosphere and temperature. Analytical thin layer chromatography
(TLC) was performed on silica gel-coated plates (Merck, 60 F254) with the indicated solvent
mixture, and visualization was performed using ultraviolet (UV) irradiation (λ = 254 nm)
and/or staining with aqueous KMnO4. If not specially mentioned, flash column chro-
matography used silica gel (200–300 mesh) supplied by Tsingtao Haiyang Chemicals
(Qingdao, China).

1H NMR spectra were recorded on a Bruker Avance III 400 (400 MHz) spectrometer.
TMS (δH 0.00) were used as the internal reference. 13C NMR spectra were recorded
on a Bruker Advance III 400 (100 MHz) spectrometer in CDCl3 (δC 77.16) using their
central resonance as the internal reference. All 13C NMR spectra were proton decoupled.
High-resolution mass spectra (HRMS) were recorded on a Waters Xevo G2 QTOF MS. A
commercially available UV lamp (model: Philips TUV 25W/G25 T8, emission wave-length
range: 200–280 nm; λmax: 254 nm) was used as light resource.

3.2. General Procedure

A quartz tube was charged with 1-alkenylbenzotriazoles (40 mg) at N2 atmosphere.
The freshly distilled THF or MeCN (5.0 mL) was added and the reaction mixture was
stirred at room temperature for 3–10 h upon photolysis (254 nm). The resulting solution
was concentrated in vacuo. The residue was directly purified by flash chromatography
(silica gel, 200–300 mesh, hexanes/EtOAc or CH2Cl2/MeOH) to yield the corresponding
product (Irradiation system, see Supplementary Materials).

2-(2-(1H-Benzo[d][1,2,3]triazol-1-yl)cyclohex-1-en-1-yl) ethanol (15b): colorless oil;
Yield: 86%; 1H NMR (400 MHz, CDCl3) δ 1.78–1.93 (m, 4H), 1.99 (t, J = 6.5 Hz, 2H), 2.33–2.39
(m, 2H), 2.41–2.47 (m, 2H), 2.53 (t, J = 5.3 Hz, 1H), 3.59–3.65 (m, 2H), 7.35 (ddd, J = 8.1, 5.9,
1.9 Hz, 1H), 7.42–7.51 (m, 2H), 8.02 (dd, J = 8.4, 1.0 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ
145.6, 136.6, 132.9, 130.0, 127.8, 124.1, 120.1, 110.3, 60.0, 35.5, 29.6, 28.8, 22.9, 22.2. HRMS
m/z calcd for C14H18N3O [M+H]+: 244.1450; found: 244.1449.

(4bR,8aR)-5,6,7,8-Tetrahydro-9H-8a,4b-(epoxyethano)carbazole (17b): white solid;
Yield: 30%; 1H NMR (400 MHz, CDCl3) δ 1.35–1.47 (m, 3H), 1.60–1.68 (m, 2H), 1.70–
1.80 (m, 1H), 1.92–1.99 (m, 2H), 2.17–2.25 (m, 2H), 3.57–3.67 (m, 1H), 3.89–3.96 (m, 1H), 4.30
(s, 1H), 6.61 (m, 1H), 6.76 (t, J = 7.4 Hz, 1H), 7.02–7.08 (m, 2H).13C NMR (100 MHz, CDCl3)
δ 148.3, 135.6, 127.8, 122.8, 119.2, 109.2, 102.4, 66.2, 53.5, 38.0, 33.1, 32.4, 20.8, 19.7. HRMS
m/z calcd for C14H18NO [M+H]+: 216.1388; found: 216.1387.

N-Phenylhexahydro-3aH-cyclopenta[2,3]cyclopropa[1,2-b]furan-3a-amine (21): white
solid; Yield: ca. 30%; 1H NMR (400 MHz, CDCl3) δ 1.49–1.64 (m, 2H), 1.70–1.99 (m, 4H),
1.97–2.07 (m, 1H), 2.05–2.16 (m, 1H), 2.46 (q, J = 10.2 Hz, 1H), 3.53 (ddd, J = 10.1, 9.0, 7.7 Hz,
1H), 4.12 (td, J = 9.0, 2.2 Hz, 1H), 4.62 (s, 1H), 6.72–6.81 (m, 3H), 7.18 (td, J = 8.5, 7.2 Hz, 2H).
13C NMR (100 MHz, CDCl3) δ 145.8, 129.3, 118.7, 113.8, 79.4, 65.7, 39.8, 31.9, 30.8, 28.6, 26.3,
23.2. HRMS m/z calcd for C14H18NO [M+H]+: 216.1388; found: 216.1387.

2-(2-(1H-Benzo[d][1,2,3]triazol-1-yl)-3,3-dimethylcyclohex-1-en-1-yl) ethanol (15c): col-
orless oil; Yield: 92%; 1H NMR (400 MHz, CDCl3) δ 0.89 (s, 3H), 1.15 (s, 3H), 1.50 (s, 1H),
1.56–1.74 (m, 2H), 1.75–1.83 (m, 2H), 1.83–1.94 (m, 2H), 2.26–2.46 (m, 2H), 3.50 (m, 2H), 7.36
(ddd, J = 8.1, 6.6, 1.4 Hz, 1H), 7.40–7.51 (m, 2H), 8.06 (dt, J = 8.3, 1.1 Hz, 1H). 13C NMR
(100 MHz, CDCl3) δ 145.1, 138.2, 137.3, 134.8, 127.7, 123.9, 119.9, 110.9, 60.2, 39.2, 36.5, 35.8,
30.0, 28.5, 27.9, 19.0. HRMS m/z calcd for C16H22N3O [M+H]+: 272.1763; found: 272.1761.

(4bR,8aR)-8,8-Dimethyl-5,6,7,8-tetrahydro-9H-8a,4b-(epoxyethano)carbazole (17c): white
solid; Yield: 56%; M.p. 106–107 °C; 1H NMR (400 MHz, CDCl3) δ 1.08 (s, 3H), 1.09 (s, 3H),
1.36–1.45 (m, 3H), 1.51–1.66 (m, 2H), 2.05–2.15 (m, 1H), 2.20–2.37 (m, 2H), 3.59 (ddd, J = 10.5,
8.1, 6.5 Hz, 1H), 3.91 (td, J = 8.1, 1.8 Hz, 1H), 4.41 (s, 1H), 6.63 (dt, J = 7.4, 1.0 Hz, 1H), 6.75
(td, J = 7.4, 1.0 Hz, 1H), 7.04 (t, J = 7.5 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ 147.8, 136.9,
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127.7, 122.3, 119.0, 109.3, 105.9, 67.4, 54.3, 38.5, 37.4, 36.3, 33.6, 26.5, 25.2, 17.5. HRMS m/z
calcd for C16H22NO [M+H]+: 244.1701; found: 244.1702.

2-(6-(1H-Benzo[d][1,2,3]triazol-1-yl)spiro[4.5]dec-6-en-7-yl) ethanol (15d): colorless
oil; Yield: 91%; 1H NMR (400 MHz, CDCl3) δ 1.03–1.13 (m, 1H), 1.13–1.19 (m, 1H), 1.20–1.31
(m, 1H), 1.35–1.75 (m, 7H), 1.78–1.88 (m, 4H), 2.03–2.15 (m, 1H), 2.26–2.38 (m, 2H), 3.39–3.52
(m, 2H), 7.33 (ddd, J = 8.1, 6.6, 1.3 Hz, 1H), 7.38–7.49 (m, 2H), 7.97–8.04 (m, 1H). 13C NMR
(100 MHz, CDCl3) δ 145.0, 138.9, 135.9, 135.1, 127.8, 123.9, 119.9, 110.7, 60.3, 47.5, 37.6, 36.5,
36.0, 36.0, 29.7, 24.2, 23.9, 19.7. HRMS m/z calcd for C18H24N3O [M+H]+: 298.1919; found:
298.1921.

(4b′R,8a′R)-6′,7′-Dihydro-5′H,9′H-spiro[cyclopentane-1,8′-[8a,4b](epoxyethano)carbazole]
(17d): white solid; Yield: 54%; M.p. 84–85 °C; 1H NMR (400 MHz, CDCl3) δ 1.34–1.50 (m,
4H), 1.52–1.75 (m, 7H), 1.80–1.90 (m, 2H), 1.92–2.01 (m, 1H), 2.10–2.25 (m, 2H), 3.54 (ddd,
J = 11.3, 8.3, 5.8 Hz, 1H), 3.91 (ddd, J = 8.7, 7.7, 1.3 Hz, 1H), 4.38 (s, 1H), 6.57 (dt, J = 7.6,
0.8 Hz, 1H), 6.72 (td, J = 7.4, 1.0 Hz, 1H), 6.99–7.06 (m, 2H). 13C NMR (100 MHz, CDCl3) δ
148.9, 135.7, 127.8, 122.8, 118.6, 108.3, 106.2, 66.4, 54.7, 49.0, 39.7, 35.8, 34.3, 32.5, 32.2, 26.2,
25.0, 17.1. HRMS m/z calcd for C18H24NO [M+H]+: 270.1858; found: 270.1857.

2-(2-(1H-Benzo[d][1,2,3]triazol-1-yl) cyclohex-1-en-1-yl) acetic acid (15e): white solid;
Yield: 93%; 1H NMR (400 MHz, CDCl3) δ 1.79–2.00 (m, 4H), 2.38–2.58 (m, 4H), 2.86 (s, 2H),
7.39 (m, 1H), 7.44–7.56 (m, 2H), 8.07 (d, J = 8.3 Hz, 1H), 11.34 (s, 1H). 13C NMR (100 MHz,
CDCl3) δ 174.9, 145.2, 133.0, 132.3, 131.7, 128.1, 124.4, 119.9, 110.3, 37.8, 29.8, 29.4, 22.7, 22.0.
HRMS m/z calcd for C14H16N3O2 [M+H]+: 258.1243; found: 258.1244.

(4bR,8aR)-5,6,7,8-Tetrahydro-9H-8a,4b-(epoxyethano)carbazol-11-one (17e): yellow
solid; Yield: 38%; 1H NMR (400 MHz, CDCl3) δ 1.24–1.46 (m, 3H), 1.60–1.83 (m, 3H),
2.06–2.12 (m, 1H), 2.36–2.44 (m, 1H), 2.84–2.99 (m, 2H), 4.82 (s, 1H), 6.72 (dt, J = 7.8, 0.8 Hz,
1H), 6.85 (td, J = 7.5, 1.0 Hz, 1H), 7.06–7.16 (m, 2H). 13C NMR (100 MHz, CDCl3) δ 174.1,
145.8, 134.9, 128.8, 123.1, 120.7, 110.4, 50.3, 38.4, 33.4, 33.0, 22.1, 20.2. HRMS m/z calcd for
C14H16NO2 [M+H]+: 230.1181; found: 230.1183.

1-Methyl-2,3,4,9-tetrahydro-1H-carbazole (22): light yellow oil; Yield: 50%; 1H NMR
(400 MHz, CDCl3) δ 1.31 (d, J = 7.0 Hz, 3H), 1.49–1.58 (m, 1H), 1.71–1.85 (m, 1H), 1.96–2.09
(m, 2H), 2.66–2.78 (m, 2H), 2.93–3.05 (m, 1H), 7.04–7.16 (m, 2H), 7.27–7.33 (m, 1H), 7.44–7.50
(m, 1H), 7.76 (s, 1H). 13C NMR (100 MHz, CDCl3) δ 138.7, 135.8, 127.8, 121.2, 119.3, 118.1,
110.5, 109.9, 32.5, 28.8, 22.1, 21.3, 20.4. HRMS m/z calcd for C13H16N [M+H]+: 186.1283;
found: 186.1278.

2-(2-(1H-Benzo[d][1,2,3]triazol-1-yl)-3,3-dimethylcyclohex-1-en-1-yl)acetic acid (15f):
white solid; Yield: 94%; M.p. 190–191 ◦C; 1H NMR (400 MHz, CDCl3) δ 0.86 (s, 3H), 1.18 (s,
3H), 1.77–1.83 (m, 2H), 1.85–1.96 (m, 2H), 2.30 (dt, J = 17.9, 5.8 Hz, 1H), 2.40 (d, J = 16.7 Hz,
1H), 2.48 (dt, J = 18.1, 6.4 Hz, 1H), 2.58 (d, J = 16.7 Hz, 1H), 7.33 (ddd, J = 7.9, 6.5, 1.2 Hz,
1H), 7.38–7.47 (m, 2H), 8.04 (d, J = 8.2 Hz, 1H), 11.31 (s, 1H). 13C NMR (100 MHz, CDCl3) δ
175.4, 144.8, 138.9, 134.8, 134.1, 127.9, 124.2, 119.7, 111.1, 39.0, 37.7, 36.6, 30.4, 28.3, 27.6, 18.8.
HRMS m/z calcd for C16H20N3O2 [M+H]+: 286.1556; found: 286.1556.

(4bR,8aR)-8,8-Dimethyl-5,6,7,8-tetrahydro-9H-8a,4b-(epoxyethano)carbazol-11-one
(17f): white solid; Yield: 63%; M.p. 117–118 ◦C; 1H NMR (400 MHz, CDCl3) δ 1.12 (s,
3H), 1.23 (s, 3H), 1.31–1.41 (m, 1H), 1.45–1.54 (m, 3H), 1.55–1.67 (m, 1H), 2.08–2.17 (m, 1H),
2.84–3.01 (m, 2H), 4.81 (s, 1H), 6.72 (dt, J = 7.8, 0.7 Hz, 1H), 6.84 (td, J = 7.5, 1.0 Hz, 1H), 7.04
(dd, J = 7.5, 1.2 Hz, 1H), 7.11 (td, J = 7.7, 1.3 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ 174.8,
145.2, 136.1, 128.7, 122.7, 120.7, 110.4, 51.4, 40.7, 37.3, 37.2, 33.9, 26.4, 23.8, 17.3. HRMS m/z
calcd for C16H20NO2 [M+H]+: 258.1494; found: 258.1491.

2-(6-(1H-Benzo[d][1,2,3]triazol-1-yl)spiro[4.5]dec-6-en-7-yl)acetic acid (15g): white
solid; Yield: 84%; M.p. 204–205 ◦C; 1H NMR (400 MHz, CDCl3) δ 1.05–1.21 (m, 2H), 1.22–
1.32 (m, 1H), 1.39–1.59 (m, 3H), 1.60–1.70 (m, 1H), 1.72–1.91 (m, 4H), 2.11–2.22 (m, 1H),
2.23–2.32 (m, 1H), 2.35 (d, J = 16.7 Hz, 1H), 2.43–2.51 (m, 1H), 2.56 (d, J = 16.7 Hz, 1H),
7.35 (ddd, J = 8.1, 6.2, 1.7 Hz, 1H), 7.38–7.47 (m, 2H), 8.04 (d, J = 8.3 Hz, 1H), 10.40 (s, 1H).
13C NMR (100 MHz, CDCl3) δ 175.4, 144.8, 137.7, 135.0, 134.7, 127.9, 124.2, 119.8, 110.9,
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47.6, 37.9, 37.7, 36.5, 36.0, 30.2, 24.3, 24.1, 19.6. HRMS m/z calcd for C18H22N3O2 [M+H]+:
312.1712; found: 312.1708.

(4b′R,8a′R)-6′,7′-Dihydro-5′H,9′H-spiro[cyclopentane-1,8′-[8a,4b](epoxyethano)carbazol]-
11′-one (17g): white solid; Yield: 64%; 1H NMR (400 MHz, CDCl3) δ 1.37–1.79 (m, 12H),
1.90–2.13 (m, 2H), 2.88 (d, J = 2.9 Hz, 2H), 4.83 (s, 1H), 6.71 (d, J = 7.8 Hz, 1H), 6.83 (t,
J = 7.4 Hz, 1H), 7.05 (d, J = 7.4 Hz, 1H), 7.11 (t, J = 7.7 Hz, 1H). 13C NMR (100 MHz, CDCl3)
δ 175.0, 145.6, 135.8, 128.7, 122.8, 120.5, 110.2, 51.6, 48.9, 40.1, 36.1, 33.5, 32.4, 25.3, 23.1, 17.3.
HRMS m/z calcd for C18H22NO2 [M+H]+: 284.1651; found: 284.1656.

3-(1H-Benzo[d][1,2,3]triazol-1-yl)-2-(2-(methoxymethoxy)ethyl)-4,4-dimethylcyclohex-
2-en-1-one (15h): light yellow oil; Yield: 72%; 1H NMR (400 MHz, CDCl3) δ 0.95 (s, 3H),
1.39 (s, 3H), 1.92 (ddd, J = 13.3, 7.6, 5.8 Hz, 1H), 2.09–2.25 (m, 3H), 2.67–2.87 (m, 2H), 3.09 (s,
3H), 3.21–3.37 (m, 2H), 4.28–4.35 (m, 2H), 7.36–7.44 (m, 2H), 7.52 (ddd, J = 8.1, 7.0, 1.1 Hz,
1H), 8.11 (dt, J = 8.4, 1.0 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ 198.1, 156.8, 145.2, 136.0,
134.0, 128.4, 124.3, 120.3, 110.4, 95.9, 65.3, 55.1, 38.0, 37.1, 34.7, 27.0, 26.3, 26.1. HRMS m/z
calcd for C18H24N3O3 [M+H]+: 330.1818; found: 330.1805.

10-(2-(Methoxymethoxy)ethyl)-9,9-dimethyl-8,9-dihydropyrido[1,2-a]indol-6(7H)-one
(20h): colorless oil; Yield: 42%; 1H NMR (400 MHz, CDCl3) δ 1.53 (s, 6H), 1.95 (t, J = 6.6 Hz,
2H), 2.81 (dd, J = 7.1, 6.2 Hz, 2H), 3.16 (dd, J = 8.2, 7.2 Hz, 2H), 3.36 (s, 3H), 3.78 (dd, J = 8.3,
7.2 Hz, 2H), 4.65 (s, 2H), 7.26–7.34 (m, 2H), 7.46–7.52 (m, 1H), 8.47–8.53 (m, 1H). 13C NMR
(100 MHz, CDCl3) δ 169.5, 141.3, 134.5, 131.1, 124.8, 123.9, 118.0, 116.8, 113.6, 96.6, 67.3,
55.4, 37.0, 32.7, 30.9, 28.6, 25.7. HRMS m/z calcd for C18H24NO3 [M+H]+: 302.1756; found:
302.1751.

6-(1H-Benzo[d][1,2,3]triazol-1-yl)-7-(2-(methoxymethoxy)ethyl)spiro[4.5]dec-6-en-8-one
(15i): light yellow oil; Yield: 74%; 1H NMR (400 MHz, CDCl3) δ 1.20–1.28 (m, 2H), 1.39–1.63
(m, 4H), 1.81–1.99 (m, 2H), 2.10–2.22 (m, 3H), 2.31–2.42 (m, 1H), 2.65–2.81 (m, 2H), 3.08 (s,
3H), 3.22–3.34 (m, 2H), 4.26–4.34 (m, 2H), 7.35–7.44 (m, 2H), 7.53 (ddd, J = 8.1, 7.0, 1.0 Hz,
1H), 8.11 (dt, J = 8.3, 1.0 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ 198.3, 155.9, 145.2, 136.5,
134.3, 128.5, 124.4, 120.3, 110.3, 95.8, 65.4, 55.1, 48.7, 36.9, 35.2, 34.6, 33.9, 26.5, 24.5, 24.3.
HRMS m/z calcd for C20H26N3O3 [M+H]+: 356.1974; found: 356.1961.

10′-(2-(Methoxymethoxy)ethyl)-7′,8′-dihydro-6′H-spiro[cyclo-pentane-1,9′-pyrido[1,2-
a]indol]-6′-one (20i): light yellow oil; Yield: 35%; 1H NMR (400 MHz, CDCl3) δ 1.79–1.96
(m, 6H), 1.99 (dd, J = 7.1, 6.0 Hz, 2H), 2.15–2.29 (m, 2H), 2.76 (dd, J = 7.1, 5.9 Hz, 2H), 3.10
(dd, J = 8.3, 7.2 Hz, 2H), 3.36 (s, 3H), 3.81 (dd, J = 8.3, 7.2 Hz, 2H), 4.65 (s, 2H), 7.23–7.32 (m,
2H), 7.46–7.51 (m, 1H), 8.46–8.52 (m, 1H). 13C NMR (100 MHz, CDCl3) δ 169.7, 141.9, 134.5,
131.1, 124.6, 123.8, 118.0, 116.8, 112.8, 96.5, 67.0, 55.3, 43.4, 39.3, 34.5, 31.7, 25.7, 25.6. HRMS
m/z calcd for C20H26NO3 [M+H]+: 328.1913; found: 328.1909.

Methyl 2-(2-(1H-benzo[d][1,2,3]triazol-1-yl)-3,3-dimethyl-6-oxocyclohex-1-en-1-yl) ac-
etate (15j): light yellow oil; Yield: 73%; 1H NMR (400 MHz, CDCl3) δ 0.95 (s, 3H), 1.45 (s,
3H), 2.11–2.27 (m, 2H), 2.48 (d, J = 16.9 Hz, 1H), 2.77–2.86 (m, 2H), 3.03 (d, J = 16.9 Hz, 1H),
3.50 (s, 3H), 7.37–7.47 (m, 2H), 7.51 (ddd, J = 8.0, 6.8, 1.0 Hz, 1H), 8.11 (d, J = 8.4 Hz, 1H). 13C
NMR (100 MHz, CDCl3) δ 197.3, 170.4, 157.4, 145.2, 134.0, 132.8, 128.7, 124.6, 120.3, 110.3,
52.1, 38.0, 36.9, 34.2, 31.2, 26.7, 25.9. HRMS m/z calcd for C17H20N3O3 [M+H]+: 314.1505;
found: 314.1498.

Methyl 2-(9,9-dimethyl-6-oxo-6,7,8,9-tetrahydropyrido[1,2-a]indol -10-yl) acetate (20j):
colorless oil; Yield: 32%; 1H NMR (400 MHz, CDCl3) δ 1.52 (s, 6H), 1.97 (t, J = 6.7 Hz, 2H),
2.83 (dd, J = 7.1, 6.2 Hz, 2H), 3.70 (s, 3H), 3.86 (s, 2H), 7.26–7.35 (m, 2H), 7.44–7.49 (m, 1H),
8.47–8.53 (m, 1H). 13C NMR (100 MHz, CDCl3) δ 171.6, 169.4, 142.1, 134.4, 130.8, 125.0,
124.1, 117.9, 116.8, 109.9, 52.3, 36.9, 32.6, 30.9, 30.7, 28.2. HRMS m/z calcd for C17H20NO3
[M+H]+: 286.1443; found: 286.1449.

1,1-Dimethyl-1,2,3,9-tetrahydro-4H-carbazol-4-one (23): white solid; Yield: 33%; M.p.
240–241 °C; 1H NMR (400 MHz, CDCl3) δ 1.48 (s, 6H), 2.10 (dd, J = 7.0, 6.0 Hz, 2H), 2.68
(dd, J = 7.0, 6.0 Hz, 2H), 7.21–7.26 (m, 2H), 7.34–7.40 (m, 1H), 8.21–8.29 (m, 1H), 8.65 (s, 1H).
13C NMR (100 MHz, CDCl3) δ 194.2, 158.1, 135.7, 125.1, 123.5, 122.8, 121.9, 111.6, 111.1, 38.7,
35.6, 32.2, 27.5. HRMS m/z calcd for C14H16NO [M+H]+: 214.1232; found: 214.1227.
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Methyl 2-(6-(1H-benzo[d][1,2,3]triazol-1-yl)-8-oxospiro[4.5]dec-6-en-7-yl)acetate (15k):
light yellow oil; Yield: 66%; 1H NMR (400 MHz, CDCl3) δ 1.19–1.29 (m, 2H), 1.37–1.58 (m,
2H), 1.60–1.70 (m, 2H), 1.96 (ddd, J = 12.9, 7.7, 4.3 Hz, 1H), 2.20 (t, J = 6.3 Hz, 2H), 2.38–2.51
(m, 2H), 2.77 (td, J = 6.9, 5.9, 4.1 Hz, 2H), 3.00 (d, J = 16.8 Hz, 1H), 3.49 (s, 3H), 7.38–7.48 (m,
2H), 7.49–7.56 (m, 1H), 8.11 (d, J = 8.3 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ 197.6, 170.4,
156.6, 145.1, 134.2, 133.3, 128.7, 124.6, 120.3, 110.3, 52.1, 48.7, 36.8, 34.8, 34.8, 33.9, 31.2, 24.6,
24.5. HRMS m/z calcd for C19H22N3O3 [M+H]+: 340.1661; found: 340.1653.

Methyl 2-(6′-oxo-7′,8′-dihydro-6′H-spiro[cyclopentane-1,9′-pyrido[1,2-a]indol]-10′-
yl)acetate (20k): light yellow oil; Yield: 18%; 1H NMR (400 MHz, CDCl3) δ 1.81–1.96 (m,
6H), 2.02 (t, J = 6.5 Hz, 2H), 2.15–2.24 (m, 2H), 2.78 (dd, J = 7.0, 6.0 Hz, 2H), 3.71 (s, 3H), 3.80
(s, 2H), 7.27–7.35 (m, 2H), 7.40–7.47 (m, 1H), 8.43–8.53 (m, 1H). 13C NMR (100 MHz, CDCl3)
δ 171.6, 169.7, 142.9, 134.4, 130.8, 124.9, 124.0, 118.0, 116.8, 109.4, 52.4, 43.2, 39.3, 34.7, 31.8,
30.7, 25.9. HRMS m/z calcd for C19H22NO3 [M+H]+: 312.16; found: 312.1588.

2,3-Dihydrospiro[carbazole-1,1′-cyclopentan]-4(9H)-one (24): white solid; Yield: 45%;
M.p. 229–230 ◦C; 1H NMR (400 MHz, CDCl3) δ 1.84–1.93 (m, 4H), 1.93–2.08 (m, 4H), 2.14
(dd, J = 7.0, 5.9 Hz, 2H), 2.65 (dd, J = 7.0, 5.9 Hz, 2H), 7.20–7.26 (m, 2H), 7.32–7.41 (m, 1H),
8.21–8.29 (m, 1H), 8.89 (s, 1H). 13C NMR (100 MHz, CDCl3) δ 194.5, 158.3, 135.8, 125.1,
123.4, 122.7, 121.7, 112.3, 111.1, 43.3, 38.2, 36.6, 36.2, 25.5. HRMS m/z calcd for C16H18NO
[M+H]+: 240.1388; found: 240.1386.

4. Conclusions

In summary, we systematically explored the photo-induced denitrogenative trans-
formations of various 1-alkenylbenzotrizoles. Through rationally manipulating the struc-
tures of 1-alkenylbenzotrizole precursors, we could access two different types of poly-
cyclic skeletons associated with monoterpene indole alkaloids. Specifically, starting from
1-alkenylbenzotrizoles bearing a suitable nucleophile (e.g., OH and COOH) on their
side chains, the 4a,9a-heterocycle-fused tetrahydrocarbazole skeleton could be assem-
bled through a photo-induced denitrogenative annulation followed by the cyclization
of the nucleophilic side chain onto the indolenine intermediate. Comparably, for 1-
alkenylbenzotrizoles with a masked side chain, the resulting indolenine intermediate
will divert to the other tricyclic skeleton, namely dihydropyrido[1,2-a]indolone, through
further skeletal rearrangement reaction. Taken together, the results of the present study
clearly showcase the appealing pottnial of photo-induced denitrogenative transformations
of 1-alkenylbenzotrizoles, which, as we anticipated, may find considerable application in
the total synthesis of complex natural products.
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and C NMR spectra of synthesized compounds are shown [42–50].
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