

Phytochemicals Derived from Agricultural Residues and Their Valuable Properties and Applications

Marta Oleszek ^{1,*}, Iwona Kowalska ¹, Terenzio Bertuzzi ² and Wiesław Oleszek ¹

- ¹ Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
- ² DIANA, Department of Animal Science, Food and Nutrition, Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122 Piacenza, Italy
- * Correspondence: moleszek@iung.pulawy.pl

Abstract: Billions of tons of agro-industrial residues are produced worldwide. This is associated with the risk of pollution as well as management and economic problems. Simultaneously, non-edible portions of many crops are rich in bioactive compounds with valuable properties. For this reason, developing various methods for utilizing agro-industrial residues as a source of high-value by-products is very important. The main objective of the paper is a review of the newest studies on biologically active compounds included in non-edible parts of crops with the highest amount of waste generated annually in the world. The review also provides the newest data on the chemical and biological properties, as well as the potential application of phytochemicals from such waste. The review shows that, in 2020, there were above 6 billion tonnes of residues only from the most popular crops. The greatest amount is generated during sugar, oil, and flour production. All described residues contain valuable phytochemicals that exhibit antioxidant, antimicrobial and very often anti-cancer activity. Many studies show interesting applications, mainly in pharmaceuticals and food production, but also in agriculture and wastewater remediation, as well as metal and steel industries.

Keywords: bioactive compounds; antioxidants; agricultural residues; fruits; vegetables; mass spectrometry; extraction

1. Introduction

The agricultural industry generates billions of tonnes of waste from the tillage and processing of various crops. The crops with the largest amounts of produced residues are rice, maize, soybean, sugarcane, potato, tomato, and cucumber, as well as some fruits, mainly bananas, oranges, grapes, and apples [1,2]. It has been estimated that European food processing companies generate annually approximately 100 Mt of waste and by-products, mostly during the production of drinks (26%), dairy and ice cream (21.3%), and fruits and vegetables (14.8%) [3].

In Table 1, the amounts of particular wastes generated worldwide are presented. Many of them are rich in biologically active compounds and have the potential to become important raw materials for obtaining valuable phytochemicals. Vegetable and fruit processing by-products are promising sources of valuable phytochemicals having antioxidant, antimicrobial, anti-inflammatory, anti-cancer, and cardiovascular protection activities [4]. The applications of these agro-industrial residues and their bioactive compounds in functional food and cosmetics production were presented in many studies [5–7]. Moreover, due to the potential health risk of some synthetic antioxidants such as BHA, the identification and isolation of natural antioxidants from waste has become increasingly attractive. Important criteria to decide if a product or by-product can be of interest to recover phytochemicals are the absolute concentration and preconcentration factor, as well as the total amount of product or by-product per batch [8].

Citation: Oleszek, M.; Kowalska, I.; Bertuzzi, T.; Oleszek, W. Phytochemicals Derived from Agricultural Residues and Their Valuable Properties and Applications. *Molecules* **2023**, *28*, 342. https:// doi.org/10.3390/molecules28010342

Academic Editors: Stefano Castellani and Massimo Conese

Received: 1 December 2022 Revised: 21 December 2022 Accepted: 25 December 2022 Published: 1 January 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Сгор	Global Crop Production * [Million Ton]	Residue to Crop Ratio	Amount of Residue ** [Million Ton]	References
Sugarcane	1869.7	0.1	189.1	Jiang et al. [9]
Maize	1162.4	2.0	2324.8	Jiang et al. [9]
Wheat	760.9	1.18	897.9	Searle and Malins [10]
Rice	756.7	1.0	756.7	Jiang et al. [9]
Potato	359.1	0.4	143.6	Ben Taher et al. [11]
Soybean	353.5	1.5	530.3	Yanli et al. [12]
Sugar beet	253.0	0.27	68.3	Searle and Malins [10]
Tomato	186.8	3.5	653.8	Oleszek et al. [13]
Barley	157.0	1.18	185.3	Searle and Malins [10]
Banana	119.8	0.6	71.9	Gabhane et al. [14]
Cucumber	91.3	4.5	410.9	Oleszek et al. [13]
Apples	86.4	0.25	21.6	Cruz et al. [15]
Grapes	78.0	0.3	23.4	Muhlack et al. [16]
Oranges	75.5	0.5	37.8	Rezzadori et al. [17]
Olives	23.6	0.12	2.8	Searle and Malins [10]

Table 1. Amount of residues from some crops produced in the world in 2020.

* based on FAOSTAT, 2022, ** calculated based on the global crop production in 2020 and the residue-to-crop ratio according to cited references.

As interest in waste processing has been growing in recent years, many scientific papers have been published on new compounds in agro-industrial waste, new properties of valuable phytochemicals contained in crop residues and their applications. It seems necessary to summarize and collect the latest knowledge on this subject. In this work, an overview of the recent knowledge on the phytochemicals in some of the most popular food by-products, with the highest amount generated in the world, as well as on their properties and potential applications, have been presented in more detail (Figure 1).

Figure 1. Agricultural residues and the properties and applications of their phytochemicals.

2. Phytochemicals from Crop Residues

2.1. Sugarcane Bagasse

Large amounts of waste are generated during the processing of sugarcane. In fact, one metric ton of sugarcane generates 280 kg of bagasse. Sugarcane bagasse is one of the most abundant agro-food by-products and is a very promising raw material available at low cost for recovering bioactive substances [18,19]. Sugarcane bagasse consists mainly of cellulose (35–50%), hemicellulose (26–41%), lignin (11–25%), but also some amount of plant secondary metabolites (PSM), mainly anthocyanins and mineral substances [20–25].

Phenolic compounds are a very important group of natural substances identified in sugarcane waste. Nonetheless, steam explosion and ultrasound-assisted extraction (UAE) pretreatment was applied for the production of valuable phenolic compounds from the lignin included in this residue. Chromatographic analysis revealed that sugarcane bagasse is a good feedstock for the generation of phenolic acids. The concentration of total phenolics with the Folin-Ciocalteau method was between 2.8 and 3.2 g/L. Zhao et al. [26] have identified many phenolics, mainly flavonoids and phenolic acids, in sugarcane bagasse extract (Table 2). The total polyphenol content was detected as higher than 4 mg/g of dry bagasse, with total flavonoid content of 470 mg quercetin/g of polyphenol. The most abundant phenolic acids identified in the sugarcane bagasse extract were gallic acid (4.36 mg/g extract), ferulic acid (1.87 mg/g extract) and coumaric acid (1.66 mg/g extract). Spectroscopic analysis showed that a predominant amount of *p*-coumaric acid is esterlinked to the cell wall components, mainly to lignin. On the other hand, about half of the ferulic acid is esterified to the cell wall hemicelluloses. The purified sugarcane bagasse hydrolysate consisted mainly of *p*-coumaric acid. Besides, the purified products showed the same antioxidant activity, reducing power and free radical scavenging capacity as the standard *p*-coumaric acid. Al Arni et al. [27] stated that the major natural products contained in the lignin fraction were *p*-coumaric acid, ferulic acid, syringic acid, and vanillin.

Name	MW * [g mol ⁻¹]	$C_x H_y O_z$	References	
Pł	nenolic acids—hy	droxybenzoic aci	ds	
<i>p</i> -Hydroxybenzoic acid	138.12	C ₇ H ₆ O ₃	Zheng et al. [19]	
Vanillic acid	168.14	$C_8H_8O_4$	Zheng et al. [19]	
Benzoic acid	122.12	$C_7H_6O_2$	Zheng et al. [19]	
Protocatechuic acid	154.12	$C_7H_6O_4$	Zheng et al. [19]	
Gallic acid	170.12	$C_7H_6O_5$	Zhao et al. [26]	
Syringic acid	198.17	$C_9H_{10}O_5$	Zhao et al. [26]	
Phenolic acids—hydroxycinnamic acids				
<i>p</i> -Coumaric acid	164.04	$C_9H_8O_3$	González–Bautista et al. [28]	
Cinnamic acid	148.16	$C_9H_8O_2$	González–Bautista et al. [28]	
Ferulic acid	194.18	$C_{10}H_{10}O_4$	González–Bautista et al. [28]	
Caffeic acid	180.16	$C_9H_8O_4$	González–Bautista et al. [28]	
Chlorogenic acids	354.31	$C_{16}H_{18}O_9$	Zhao et al. [26]	
Sinapic acid	224.21	$C_{11}H_{12}O_5$	Zhao et al. [26]	
	Flavonoids	—flavonols		
Quercetin	302.24	$C_{15}H_{10}O_7$	Zheng et al. [19]	
	Flavonoids	flavones		
Luteolin	286.24	$C_{15}H_{10}O_{6}$	Zheng et al. [29]	
Tricin	330.29	$C_{17}H_{14}O_7$	Zheng et al. [29]	
	Flavonoid	glycosides		
Diosmetin 6-C-glucoside	462.40	$C_{22}H_{22}O_{11}$	Zheng et al. [29]	
Tricin 7- O - β -glucopyranoside	492.43	$C_{23}H_{24}O_{12}$	Zheng et al. [29]	
	Isofla	ivone		
Genistin	432.37	$C_{21}H_{20}O_{10}$	Zheng et al. [19]	
Genistein	270.24	$C_{15}H_{10}O_5$	Zheng et al. [19]	

Table 2. Phytochemicals derived from sugarcane bagasse.

Cont.				
Name	$ m MW$ * [g mol $^{-1}$]	$C_xH_yO_z$	References	•
	Oth	iers		-
Catechol	110.11	$C_6H_6O_2$	Zheng et al. [19]	
Phenol	94.11	C ₆ H ₆ O	Zheng et al. [19]	
Guaiacol	124.14	$C_7H_8O_2$	Zheng et al. [19]	
Vanillin	152.15	$C_8H_8O_3$	Zheng et al. [19]	
Isovanillin	152.15	$C_8H_8O_3$	Van der Pol et al. [30]	
Syringaldehyde	182.17	$C_9H_{10}O_4$	Zheng et al. [19]	
Piceol	136.15	$C_8H_8O_2$	Van der Pol et al. [30]	
Apocynin	166.17	$C_9H_{10}O_3$	Van der Pol et al. [30]	

C₁₀H₁₂O₄

 $C_9H_{10}O_4$

C₈H₁₀O₂

C₉H₁₂O₂

C₉H₁₀O

C₉H₁₀O₂

C₁₁H₁₄O₃

Table 2. Cont.

Acetosyringone

Syringaldehyde

Creosol

4-Ethylguaiacol

Chavicol

4-Vinylguaiacol

4-Allylsyringol

* MW-molecular weight.

Gallic, coumaric, caffeic, chlorogenic, and cinnamic acids were the main phenolic compounds extracted from raw and alkaline pretreated sugarcane bagasse and identified by high-performance liquid chromatography (HPLC) [28]. The aromatic phenolic compounds (p-coumaric acid, ferulic acid, p-hydroxybenzaldehyde, vanillin, and vanillic acid) were reported in sugarcane bagasse pith. Five phenolic compounds (tricin 4-O-guaiacylglyceryl ether-7-O-glucopyranoside, genistin, p-coumaric acid, quercetin, and genistein) in 30% hydroalcoholic fraction of sugarcane bagasse were identified using ultra-high performance liquid chromatography/high-resolution time of flight mass spectrometry (UHPLC-HR-TOF-MS); (Table 2). The total phenolic content was 170.68 mg gallic acid/g dry extract [19].

196.19

182.17

138.16

152.19

134.17

150.17

194.23

Phenolic compounds derived from sugarcane bagasse exhibited many biological activities, which were used in various applications. The most important biological activities and the newest and most interesting applications have been summarized in Table 3.

Material	Extract/Compound	Biological Activity/Application	References
Sugarcane bagasse	phenolic compounds	- natural antioxidant - used in pharmacology	Al Arni et al. [27]
	- antibacterial agents against the foodborne pathogens Escherichia coli, Listeria monocytogenes, Staphylococcus aureus, Salmonella typhimurium	Zhao et al. [26]	
	gallic and tannic acids	- deactivate cellulolytic and hemicellulolytic enzymes	Michelin et al. [32]
	extract	 antioxidant and radical scavenging activity antimicrobial activity against Sta- phylococcus aureus TISTR029 and Escherichia coli O157:H7 added value for the sugar industry 	Juttuporn et al. [33]
		 antihyperglycemic ability useful therapeutic agents to treat T2D patients used for the low-cost bio-oil production 	Zheng et al. [19]
			Treedet and Suntivarakorn [34]
		- feedstock for ethanol (bioethanol) production	Krishnan et al. [35] Zhu et al. [36]
		 raw material for the production of industrial enzymes, xylose, glucose, methane 	Guilherme et al. [37]
		- raw material for the production of xylitol and organic acids	Chandel et al. [38]
		- used to prepare highly valued succinic acid	Xi et al. [23]
		 used as a reducing agent in synthesizing biogenic platinum nanoparticles 	Ishak et al. [20]
		- used as a fuel to power sugar mills	Mohan et al. [22]

Table 3. Biological activities and potential applications of phytochemicals obtained from sugarcane bagasse.

Van der Pol et al. [30]

Van der Pol et al. [30]

Lv et al. [31]

Lv et al. [31]

Lv et al. [31]

Lv et al. [31] Lv et al. [31]

2.2. Maize Residues

Maize (corn *Zea mays* L.) bran, husk, cobs, tassel, pollen, silk, and fiber are residues of corn production. They contain substantial amounts of phytochemicals, such as phenolic compounds, carotenoid pigments and phytosterols [39] (Table 4).

Tab	le 4.	Phytoc	hemicals	identi	fied	in	corn	waste.
-----	-------	--------	----------	--------	------	----	------	--------

Name	MW [g mol ⁻¹]	Molecular Formula	References
	Phenolic acids—hydrox	ycinnamic acids	
<i>p</i> -Coumaric acid	164.04	$C_9H_8O_3$	Guo et al. [39]
Ferulic acid	194.18	$C_{10}H_{10}O_4$	Guo et al. [39]
trans-ferulic acid	194.18	$C_{10}H_{10}O_4$	Guo et al. [39]
trans-ferulic acid methyl ester	208.21	$C_{11}H_{12}O_4$	Guo et al. [39]
cis-ferulic acid	194.18	$C_{10}H_{10}O_4$	Guo et al. [39]
cis-ferulic acid methyl ester	208.21	$C_{11}H_{12}O_4$	Guo et al. [39]
	Flavonoids—fla	avonols	
Rutin	610.52	C ₂₇ H ₃₀ O ₁₆	Bujang et al. [40]
Quercetin-3-O-glucoside	463.37	$C_{21}H_{19}O_{12}$	Dong et al. [41]
Isorhamnetin-3-O-glucoside	478.41	C ₂₂ H ₂₂ O ₁₂	Dong et al. [41]
Kaempferol-3-O-glucoside	447.37	$C_{21}H_{19}O_{11}$	Li et al. [42]
Maysin	576.50	C ₂₇ H ₂₈ O ₁₄	Haslina and Eva [43]
Isoorientin-2"- O - α -L-rhamnoside	594.50	$C_{27}H_{30}O_{15}$	Haslina and Eva [43]
Maysin-3'-methyl ether	590.50	$C_{28}H_{30}O_{15}$	Tian et al. [44]
ax-4″–OH–3′-Methoxymaysin	592.50	$C_{28}H_{32}O_{14}$	Tian et al. [44]
2"-O-α-L-Rhamnosyl-6-C- fucosylluteolin	578.50	$C_{27}H_{30}O_{14}$	Tian et al. [44]
2	Flavonoids—anth	nocyanins	
Pelargonidin-3-O-glucoside	433.40	C ₂₁ H ₂₁ O ₁₀	Lao and Giusti [45]
Pelargonidin-3-(6"malonylglucoside)	519.23	C ₂₄ H ₂₃ O ₁₃	Chen et al. [46]
Cyanidin-3-O-glucoside	449.39	$C_{21}H_{21}O_{11}$	Barba et al. [47]
Cyanidin 3-(6"-malonylglucoside)	535.11	$C_{24}H_{23}O_{14}$	Fernandez-Aulis et al. [48]
Peonidin-3-O-glucoside	463.41	C ₂₂ H ₂₃ O ₁₁	Barba et al. [47]
Peonidin-3-(6"malonylglucoside)	549.50	C ₂₅ H ₂₅ O ₁₄	Fernandez-Aulis et al. [48]
	Other compo	unds	
<i>p</i> -Hydroxybenzaldehyde	122.12	$C_7H_6O_2$	Guo et al. [39]
β -Sitosterol glucoside	576.85	$C_{35}H_{60}O_{6}$	Guo et al. [39]
Indole-3-acetic acid	175.06	$C_{10}H_9NO_2$	Wille and Berhow [49]
Vanillin	154.05	$C_8H_8O_3$	Guo et al. [39]

Corn bran is produced as a plentiful by-product during the corn dry milling process. Similar to other cereal grains, phenolics in corn bran exist in free insoluble bound and soluble-conjugated forms. Corn bran is a rich source of ferulic acid compared to other cereals, fruits and vegetables. Guo et al. [39] isolated four forms of ferulic acid and its derivates from corn bran. On the other hand, it has been reported that the hexane-derived extract from corn bran contains high levels of ferulate-phytosterol esters, similar in composition and function to oryzanol.

Another corn waste is a husk. It is the outer leafy covering of an ear of *Zea mays* L. The main constituents of the maize husk extracts determined in various phytochemical studies are phenolic compounds, e.g., flavonoids [41,50]. Saponins, glycosides, and al-kaloids are present mainly in the aqueous and methanolic extracts, while phenols and tannins are numerous in methanolic ones [51]. Moreover, corn husk has high contents of anthocyanins [48,52]. Simla et al. [53] reported that anthocyanins concentration in corn husks ranges from 0.003 to 4.9 mg/g. The major anthocyanins of corn husk were identified as malonylation products of cyanidin, pelargonidin, and peonidin derivatives [54].

Important by-products of the corn industry are cobs. For every 100 kg of corn grain, approximately 18 kg of corn cobs are produced. Corn cob is one of the food wastematerial having a phytochemical component that has a healthy benefit [55]. They contain cyanidin-3-glucoside and cyanidin-3-(6"malonylglucoside) as main anthocyanins, as well as pelargonidin-3-glucoside, peonidin-3-glucoside and their malonyl counterparts [48].

Corn tassel is a by-product from hybrid corn seed production and an excellent source of phytochemicals (the flavonol glycosides of quercetin, isorhamnetin and kaempferol) with beneficial properties [56]. In Thailand, purple waxy corn is considered a special corn type because it is rich in phenolics, anthocyanins, and carotenoids in the tassel [57]. Besides, corn tassels could be considered a great source of valuable products such as volatile oils.

Corn pollen is another corn waste. Significant amounts of phytochemicals, including carotenoids, steroids, terpenes and flavonoids, are present in maize pollen [52]. Bujang et al. (2021) showed that maize pollen contains a high total phenolic content and total flavonoid content of 783.02 mg gallic acid equivalent (GAE)/100 g and 1706.83 mg quercetin equivalent (QE)/100 g, respectively. The flavonoid pattern of maize pollen is characterized by an accumulation of the predominant flavonols, quercetin and traces of isorhamnetin diglycosides and rutin. According to Žilić et al. [58], the quercetin values in maize pollen were 324.16 μ g/g and 81.61 to 466.82 μ g/g, respectively.

Corn silk, another by-product from corn processing, contains a wide range of bioactive compounds in the form of volatile oils, steroids, saponins, anthocyanins [59], and other natural antioxidants, such as flavonoids [52] and phenolic compounds [41,58,59]. In the corn silk powder, the high phenolic content (94.10 \pm 0.26 mg GAE/g) and flavonoid content (163.93 \pm 0.83 mg QE/100 g) are responsible for its high antioxidant activity [60]. About 29 flavonoids have been isolated from corn silk. Most of them are C-glycoside compounds and have the same parent nucleus as luteolin [44]. Ren et al. [61] successfully isolated and separated compounds such as 2"-O- α -L-rhamnosyl-6-C-3"-deoxyglucosyl-3'-methoxyluteolin, ax-5'-methane-3'-methoxymaysin, ax-4"-OH-3'-methoxyflavone-2"-O- α -L-rhamnosyl-6-C fucoside from corn silk. Moreover, among flavonoids, Haslina and Eva [43] determined in corn silk: apigmaysin, maysin, isoorientin-2"-O- α -L-rhamnoside, 3-methoxymaysine, and ax-4-OH maysin.

This richness of biologically active compounds results in advantageous properties and applications. The most important properties and the newest studies on the application are listed in Table 5.

Material	Extract/Compound	Biological Activity/Application	References
Corn bran	tocopherols and polyphenolic compounds	 - antioxidant properties - used as bioactive compounds in cosmetics or natural substitutes (antioxidants, preservatives, stabilizers, emulsifiers, and colorings) in foods to prevent potential adverse effects associated with the 	Galanakis [62]
Corn husk	extract	consumption of artificial ingredients - used in the treatment of diabetes because it has shown high: - antidiabetic potential anti-inflammatory offects	Brobbey et al. [51]
Corn stigma	extract	 anti-initiation effects antifungal and antibacterial activities against 23 of the studied microorganisms use as a functional ingredient in the food and pharmaceutical industry 	Boeira et al. [64]
Corn tassel	extract	 used as a traditional medicine in China antioxidant capacity the high ability to inhibit the proliferation of MGC80-3 gastric cancer cells incluiting for principant durities 	Wang et al. [65]
Com a llor	tasselin A	- infibition of melanin production - used as an ingredient in skin care whitener	Wille and Berhow [49]
Corn pollen	extract	- antiradical activity - the source of functional and bioactive compounds for the nutraceutical and pharmaceutical industries - the source of antioxidants and is high in nutrients	Bujang et al. [40] Bujang et al. [40] Žilić et al. [58]

Table 5. Biological activity and potential applications of phytochemicals obtained from corn wastes.

2.3. Potato Waste

Approximately 40–50% of potatoes are not suitable for human consumption. Industrial processing of potatoes (mashed and canned potatoes, chips, fries and ready meals) creates

huge amounts of peel as waste [66,67]. Potato peel is a non-edible residue generated in considerable amounts by food processing plants. Depending on the peeling process, e.g., abrasion, lye or steam peeling, the amount of waste can range between 15 and 40% of the number of processed potatoes [68]. Industrial processing produces between 70 to 140 thousand tons of peels worldwide annually, which are available to be used in other applications [69].

Potato peels differ greatly from other agricultural by-products because they are revalorized as a source of functional and bioactive compounds, including phenolic compounds, glycoalkaloids, vitamins and minerals [70] (Table 6).

Name	MW [g mol ⁻¹]	Molecular Formula	References				
	Phenolic acids—hydroxycinnamic acids						
<i>p</i> -Coumaric acid	164.04	$C_9H_8O_3$	Frontuto et al. [71]				
Ferulic acid	194.18	$C_{10}H_{10}O_4$	Javed et al. [72]				
Caffeic acid	180.16	$C_9H_8O_4$	Samarin et al. [73]				
Chlorogenic acid	354.31	$C_{16}H_{18}O_9$	Javed et al. [72]				
Sinapic acid	224.21	$C_{11}H_{12}O_5$	Mohdaly et al. [67]				
Cinnamic acid	148.16	$C_9H_8O_2$	Mohdaly et al. [67]				
	Phenolic acids—hydrox	ybenzoic acids					
Gallic acid	170.12	$C_7H_6O_5$	Javed et al. [72]				
Vanillic acid	168.15	$C_8H_8O_4$	Javed et al. [72]				
Protocatechic acid	154.12	$C_7H_6O_4$	Frontuto et al. [71]				
<i>p</i> -Hydroxybenzoic acid	138.12	$C_7H_6O_3$	Chamorro et al. [74]				
3-Hydroxybenzoic acid	138.12	$C_7H_6O_3$	Paniagua–García et al. [75]				
4-Hydroxybenzoic acid	138.12	$C_7H_6O_3$	Paniagua–García et al. [75]				
2,5-Dihydroxybenzoic acid	154.12	$C_7H_6O_4$	Paniagua–García et al. [75]				
Syringic acid	198.17	$C_9H_{10}O_5$	Sarwari et al. [76]				
	Cyclohexanecarbo	xylic acids					
Quinic acid	192.17	$C_7 H_{12} O_6$	Wu et al. [77]				
	Flavonoids—fla	vonols					
Rutin	610.52	$C_{27}H_{30}O_{16}$	Silva–Beltran et al. [78]				
Quercetin	302.24	$C_{15}H_{10}O_7$	Silva–Beltran et al. [78]				
	Flavonoids—anth	nocyanin					
Pelargonidin-3-(p-coumaryoly							
rutinoside)-	919.81	$C_{42}H_{47}O_{23}$	Chen et al. [79]				
5-glucoside							
Petunidin-3-(p-coumaroyl rutinoside)-	933 86	CueHusOne	Chan at al [79]				
5-glucoside	955.80	$C_{43} \Gamma_{49} O_{23}$					
	Alkaloids	5					
α-Chaconine	852.06	C ₄₅ H ₇₃ NO ₁₄	Ji et al. [80]				
α-Solanine	868.06	C ₄₅ H ₇₃ NO ₁₅	Ji et al. [80]				
Solanidine	397.64	C ₂₇ H ₄₃ NO	Hossain et al. [81]				
Demissidine	399.65	C ₂₇ H ₄₅ NO	Hossain et al. [81]				
Commersonine	1048.20	C ₅₁ H ₈₅ NO ₂₁	Rodríguez–Martínez et al. [82]				
α-Tomatine	1034.19	C ₅₀ H ₈₃ NO ₂₁	Rodríguez–Martínez et al. [82]				

Table 6. Phytochemicals identified in potato waste.

Potato peel is a good source of phenolic compounds because almost 50% of potato phenolics are located in the peel and adjoining tissues [74,83]. The results obtained by Wu et al. [77] showed that the potato peels contained a higher amount of phenolics than the flesh. Moreover, the polyphenols in potato peel are ten times higher than those in the pulp. Potato peel extract contains 70.82 mg of catechin equivalent (CE)/100 g of phenolic and had a high level of phenolic compounds (2.91 mg GAE/g dry weight) that was found to be greater than carrot (1.52 mg GAE/g dry weight), wheat bran (1.0 mg GAE/g dry weight), and onion (2.5 mg GAE/g dry weight) [67]. The results of Javed et al. [72] showed that the total phenolic content in potato peel ranged from 1.02 to 2.92 g/100 g and

total flavonoids ranged from 0.51 to 0.96 g/100 g. Phenolic acids are the most abundant phenolic compounds in potato peel. They include derivatives of hydroxycinnamic and hydroxybenzoic acids (Table 6). Kumari et al. [84], using UHPLC-MS/MS, showed that chlorogenic and caffeic acids are important components of the free-form phenolics in potato peel. The results show that phenolic acids in potato peals are not only present in their free form but also occur in bound form. Javed et al. [72] showed that the extract of potato peel contains chlorogenic acid (753.0–821.3 mg/100 g), caffeic acid (278.0–296.0 mg/100 g), protocatechuic acid (216.0–256.0 mg/100 g), *p*-hydroxybenzoic acid (82.0–87.0 mg/100 g), gallic acid (58.6–63.0 mg/100 g), vanillic acid (43.0–48.0 mg/100 g), and *p*-coumaric acid (41.8–45.6 mg/100 g). Silva–Beltran et al. [78] showed that flavonoids such as rutin and quercetin were present in potato peel at low concentrations of 5.01 and 11.22 mg/100 g dry weight, respectively.

Many studies have noted that potato peels are excellent untapped source of steroidal alkaloids, e.g., glycoalkaloids (α -solanine and α -chaconine) and aglycone alkaloids (solanidine and demissidine; Table 6) [80,81,85]. α -solanine, α -chaconine, and the glycosides of solanidine constitute about 95% of the total potato peel glycoalkaloid content [86]. Higher amounts of these compounds were found in potato peel, unlike potato flesh [87]. There are various cultural, genetic and storage factors that influence the concentration of glycoalkaloids in potato peel [88]. Concerning cultivars, it was shown that the variety with blue flesh showed the highest concentration (5.68 mg/100 g fresh weight), followed by the red-leaved (5.26 mg/100 g fresh weight), while yellow or cream flesh. In the study of Singh et al. [89] of potato peel, glycoalkaloids were detected as 1.05 mg/100 g. The results of Rytel et al. [88] showed that the glycoalkaloid content of potato peel depends on the potato cultivar and ranges from 181 mg/kg to 3526 mg/kg of fresh potato tubers.

Besides, the peel of pigmented potatoes is an excellent source of anthocyanins, e.g., pelargonidin-3-(*p*-coumaryoly rutinoside)-5-glucoside and petunidin-3-(*p*-coumaroyl rutino side)-5-glucosid e. It has been proven that their content depends on the cultivar [90]. Ji et al. [80] showed that anthocyanidin levels were higher in the peel than in the tuber. The most important beneficial properties and potential applications of phytochemicals identified in potato waste are listed in Table 7.

Material	Extract/Compound	Biological Activity/Application	References
Potato peel	phenolic compounds	- antioxidant activity	Singh et al. [91] Albishi et al. [83]
		 used as a food preservative pharmaceutical ingredient 	Maldonado et al. [92]
	over a at	- natural food additives as an antioxidant	Akyol et al. [93]
	extract	for fresh-cut fruits	Venturi et al. [94]
		 food preservative pharmaceutical ingredient 	Gebrechristos and Chen [95]
		- limit oil oxidation	Amado et al. [96]
		- hepatoprotective effects,	
		- protects erythrocytes against oxidative	
		damage	Heigh at al [97]
		 lowers the toxicity of cholesterol 	i isien et al. [97]
		oxidation products	
		- attenuate diabetic alterations	
		 protects atopic dermatitis 	Yang et al. [98]
		- amylase and feed-stock for bioethanol	Khawla et al. [99]
		- antioxidant antibacterial apontotic	
		chemopreventive and anti-inflammatory	Wu [100]
		- bio-oil production	Liang et al. [101]
		 production of bacterial cellulose biopolymer production 	Abdelraof et al. [102]

Table 7. Biological activity and potential applications of phytochemicals obtained from potato wastes.

Material	Extract/Compound	Biological Activity/Application	References
		- antiobesity properties - used in the production of antiobesity functional food	Elkahoui et al. [103] Chimonyo [104]
		- a source of natural antioxidants against human enteric viruses (antiviral effect on the inhibition of Av-05 and MS2 bacteriophages, which were used as human enteric viral surrogates)	Silva-Beltran et al. [78]
	freeze-dried aqueous extracts	- use as food additives	Singh et al. [91]
	glycoalkaloids	 the potential of being used by the pharmaceutical industry 	Apel et al. [105]
Potato waste	extract	- as additives to biscuit	Khan et al. [106]
	glycoalkaloids	 precursors for the production of hormones, antibiotics and anticancer drugs precursors for neurological and gastrointestinal disorders anti-cancer and anti-proliferative activities in vitro 	Hossain et al. [81] Hossain et al. [87] Ding et al. [107] Alves–Filho et al. [86]
	steroidal alkaloids	 biological properties such as antimicrobial, anti-inflammatory and anticarcinogenic activities 	Kenny et al. [108]

Table 7. Cont.

2.4. Soybean Residues

Soybean waste has the potential as a sustainable source of phytochemicals and functional foods. It includes both leaves, pod pericarp, and twigs, as well as the residues after seeds processing, so-called okara. Okara is the residue of soybean milling after extraction of the aqueous fraction used for producing tofu and soy drink and presents high nutritional value [109]. The results of the last studies showed that an okara contains enough bioactive compounds that make it useful to obtain value-added products for use in food production, oil extraction, nutraceutical, pharmaceutical, and cosmetic formulations. Moreover, it was stated that okara isoflavones have good antioxidant activity. Although some nutrients like protein decrease in okara during soymilk processing, it still has many other phytochemicals and nutrients, making it their least expensive and most excellent source. Since it has good antimicrobial activity, it can be used in pharmaceutical industries, thus opening up new frontiers for drug exploration [109]. Various food enriched with okara, such as biscuits and cookies, have been mentioned in the literature [110,111]. Guimarăes et al. [112] reported that food products enriched with okara contained 0.411 mg/100 mL of β -carotene and 0.15 µm/g isoflavones.

One of the main phytochemicals in soybean waste are isoflavones: daidzein, genistein, glycitein, and their glycosides (e.g., acetyl-, malonyl-, and β -glycosides) [113]. Isoflavones are compounds belonging to the flavonoid group. In addition to the well-established antioxidant effect, isoflavones exhibit estrogenic activity because of their similar structure to estrogen [113,114]. The beneficial effects of isoflavones are the prevention of hormone-dependent cancer, coronary heart disease, osteoporosis, and menopausal symptoms [114]. Kumar et al. [115] proved that daidzein expressed anticancer activity against human breast cancer cells MCF-7. The extract from soybean waste material showed total phenolic content (TPC) in the range of 27.4–167 mg GAE/g, total flavonoids from 10.4 to 63.8 mg QE/g and antioxidant activity (AOA) from 26.5% to 84.7% [114]. Moreover, their values were highest in the leaves, followed by pod pericarp and twigs. As was stated by Šibul et al. [113], soybean roots are also a good source of daidzein and genistein, as well as other phenolic compounds. The concentrations of isoflavones in roots were higher than in herbs, 1584.5 and 93.48 µg/g of dry extract, respectively. The newest study on soybean pods stated that

its ethanolic extract and fractions exhibited anticancer potential against human colorectal carcinoma (HTC-116) and prostate cancer (PC-3) [116]. Moreover, it was the first analysis of this material using ultra-*high-performance liquid chromatography* coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOF-MS), resulting in the identification of 50 polyphenols belonging to phenolic acids, flavonoids and other groups. The authors stated that soybean pods might be useful material as an active food additive or a component in dietary supplements and preparations with anti-radical and anti-cancer properties.

Soybean by-products are a good source of lecithin. Lecithin is a natural emulsifier that stabilizes fat and improves the texture of many food products, such as salad dressings, desserts, margarine, chocolate, and baking and cooking goods [117]. Moreover, it also has health benefits such as lowering cholesterol and low-density lipoprotein level in the human blood, improving digestion, cognitive and immune function, as well as aiding in the prevention of gall bladder and liver diseases.

Saponins are another important group of phytochemicals derived from soybean waste [113]. Soyasaponins have been linked to anti-obesity, antioxidative stress, and anti-inflammatory properties, as well as preventive effects on hepatic triacylglycerol accumulation [118]. One of the latest applications of saponins derived from soybean by-products was as eco-friendly agents for washing pesticide residues in the vegetable and fruit industries [119].

Compounds identified and quantified in soybean waste are specified in Table 8. The newest studies on the applications and properties of soybean waste are presented in Table 9.

Name	Soybean Residue	MW [g mol ⁻¹]	$C_xH_yO_z$	Concentration	References
	Phenolic a	cids—hydroxy	benzoic acids		
	herb			22.2–38.3 ^{a,b}	Šibul et al. [113]
<i>p</i> -Hydroxybenzoic acid	root	138.12	$C_7H_6O_3$	4.1–32.5 ^{a,b}	Šibul et al. [113]
	meal			51 ^a	Freitas et al. [120]
Salicylic acid	meal	138.12	$C_7H_6O_3$	38 ^a	Freitas et al. [120]
Protocatochuic acid	herb	154 12	C-H.O.	4.4–14.4 ^{a,b}	Šibul et al. [113]
r rotocatechuic aciu	root	134.12	$C_{7}I_{6}O_{4}$	2.35–4.71 ^{a,b}	
Contigic agid	herb	154 12	C-H.O.	<0.08–4.78 ^{a,b}	Šibul et al. [113]
Gentisic acid	root	104.12	$C_{7}I_{6}O_{4}$	<0.08–7.17 ^{a,b}	
	herb			<0.4–44.9 ^{a,b}	Šibul et al. [113]
Vanillic acid	root	168.14	$C_8H_8O_4$	43.0–75.2 ^{a,b}	
	meal			91 ^a	Freitas et al. [120]
	herb			12.0–14.2 ^{a,b}	Šibul et al. [113]
Syringic acid	root	198.17	$C_9H_{10}O_5$	20.6–42.0 ^{a,b}	
	meal			81 ^a	Freitas et al. [120]
Gallic acid	meal	170.12	$C_7H_6O_5$	77 ^a	Freitas et al. [120]
	Phenolic ad	cids—hydroxyc	cinnamic acids	_	
	herb			7.45–14.5 ^{a,b}	Šibul et al. [113]
<i>p</i> -Coumaric acid	root	164.04	$C_9H_8O_3$	1.61–2.89 ^{a,b}	
	meal			20 a	Freitas et al. [120]
	herb			5.89–14.0 ^{a,b}	Šibul et al. [113]
Ferulic acid	root	194.18	$C_{10}H_{10}O_4$	4.55–7.66 ^{a,b}	
	meal			3 ^a	Freitas et al. [120]
	herb			14.2–24.9 ^{a,b}	Šibul et al. [113]
Caffeic acid	root	180.16	$C_9H_8O_4$	<0.08 ^a	
	meal			61 ^a	Freitas et al. [120]
Sinapic acid	meal	224.21	$C_{11}H_{12}O_5$	27 ^a	Freitas et al. [120]
	Cycle	hexanecarboxy	/lic acids		~
Quinic acid	herb	192.17	$C_7H_{12}O_6$	399–532 ^{a,b}	Sibul et al. [113]
Quinte acta	root	1/2.1/	0/11/200	111–249 ^{a,b}	

Table 8. Phytochemicals identified and quantified in soybean waste.

Name	Soybean Residue	MW [g mol ⁻¹]	$C_x H_y O_z$	Concentration	References
5-O-Caffeoylquinic acid	herb root	354.31	C ₁₆ H ₁₈ O ₉	<8–235 ^{a,b} <8 ^a	Šibul et al. [113]
	meal	: 1 (1.		35 ^a	Freitas et al. [120]
	FI	avonoids—flav	onois	-16 21 1 a,b	\check{S} ibul et al [112]
Kaempferol	root	286 23	C_{1} H ₁₀ O ₆	<16 ^a	
Tuempreror	meal	200.20	013111006	4 ^a	Freitas et al. [120]
Oregenetic	herb	202.24		<16–278 ^{a,b}	Šibul et al. [113]
Quercetin	root	302.24	$C_{15}H_{10}O_7$	<16 ^a	
Isorhamnetin	herb	316.26	$C_{16}H_{12}O_{7}$	<40–159 ^{a,b}	Šibul et al. [113]
	root	010.20	01611207	<40 a	či i i rijel
Quercitrin	herb	448.38	$C_{21}H_{20}O_{11}$	<0.06 ª	Sibul et al. [113]
	root			$< 0.06^{-1}$	\check{S} ibul et al [112]
Kaempferol 3-O-glucoside	root	448.38	$C_{21}H_{20}O_{11}$	1 50–2 64 ^{a,b}	51001 et al. [115]
	herb			<0.1-825 ^{a,b}	Šibul et al. [113]
Hyperoside	root	464.38	$C_{21}H_{20}O_{12}$	<0.06 ^a	
Querestin 2 Q alussida	herb	464 10	СЧО	<0.06–967 ^{a,b}	Šibul et al. [113]
Quercettit 5-0-grucoside	root	404.10	$C_{21}T_{20}O_{12}$	<0.06 ^{a,b}	
	herb			7.05–4636 ^{a,b}	Šibul et al. [113]
Rutin	root	610.52	$C_{27}H_{30}O_{16}$	<2 ^a	
	meal	lavonoido flav		49 ª	Freitas et al. [120]
	Г. herb	lavonolus—nav	vones	17 1_759 a,b	Šibul et al. [113]
Apigenin	root	270.24	$C_{15}H_{10}O_5$	<8–22.3 ^{a,b}	
Det el tr	herb	070 04		27.8–745 ^{a,b}	Šibul et al. [113]
Balcalein	root	270.24	$C_{15}H_{10}O_5$	<16–24.7 ^{a,b}	
Luteolin	herb	286 24	C_{1} -H ₁₀ O ₆	<40–194 ^{a,b}	Šibul et al. [113]
Eutcom	root	200.21	01511006	<40 a	¥
Chrysoeriol	herb	300.26	C ₁₆ H ₁₂ O ₆	<4–9.57 ^{a,b}	Sibul et al. [113]
2	root			<4 " 1 27 2 26 a.b	Čibul et al [112]
Vitexin	root	432.38	$C_{21}H_{20}O_{10}$	$1.37-2.36^{a,b}$ 1.81-3.57 ^{a,b}	Sibui et al. [115]
	herb			14.3–261 ^{a,b}	Šibul et al [113]
Apigenin 7-O-glucoside	root	432.38	$C_{21}H_{20}O_{10}$	<0.2–1.99 ^{a,b}	
Lutadin 7 O alugasida	herb	449.27	СЧО	<4–145 ^{a,b}	Šibul et al. [113]
Luteolin 7-O-glucoside	root	448.37	$C_{21}H_{20}O_{11}$	<4 ^a	
Apiin	herb	564 49	$C_{26}H_{29}O_{14}$	<0.06–20.8 ^{a,b}	Šibul et al. [113]
	root	.1 0	0201120014	<0.06 ^a	
	Fla	ivonoids—flava	anones	2 AC Q AC ab	Čihul at al [112]
Naringenin	root	272.26	C_{1} H ₁₂ Or	5.40-0.40 ^{a,b}	Sibui et al. [115]
Tvaringerini	meal	272.20	015111205	25^{a}	Freitas et al. [120]
Hesperidin	meal	610.19	C ₂₈ H ₃₄ O ₁₅	91 ^a	Freitas et al. [120]
*	Fl	avonoids—flav	vanols		
Catechin	herb	290.27	C_{1} -H ₁₄ O ₆	<0.4 ^a	Šibul et al. [113]
Cutechin	root	290.27	015111406	<0.4 ^a	×
Epicatechin	herb	290.27	$C_{15}H_{14}O_{6}$	$<0.4^{a}$	Sibul et al. [113]
*	root	Isoflavonos		<0.4-36.3 ""	
	okara	130114 101165	, 	920–1530 ^{b,c}	Anjum et al. [109]
Daidzin	meal	416.38	$C_{21}H_{20}O_9$	350 ^a	Freitas et al. [120]

Table 8. Cont.

Name	Soybean Residue	MW [g mol ⁻¹]	$C_xH_yO_z$	Concentration	References
Daidzein	okara herb root	254.23	C ₁₅ H ₁₀ O ₄	310–639 ^{b,c} 40.7–122 ^{a,b} 40.5–1702 ^{a,b}	Anjum et al. [109] Šibul et al. [113]
	meal okara	100.05		30 ^a 3280–8360 ^{b,c}	Freitas et al. [120] Anjum et al. [109]
Genistin	meal okara	432.37	$C_{21}H_{20}O_{10}$	490 ^a 380–650 ^{b,c}	Freitas et al. [120] Anjum et al. [109]
Genistein	herb root	270.24	$C_{15}H_{10}O_5$	15.1–39.2 ^{a,b} 159–270 ^{a,b}	Šibul et al. [113]
	meal			50 ^a 450 ^c	Freitas et al. [120] Anium et al. [109]
Glycitin	okara	446.40	$C_{22}H_{22}O_{10}$	160 ^a	Freitas et al. [120]
Glycitein	okara meal	284.26	$C_{16}H_{12}O_5$	58 ^c 3 ^a	Anjum et al. [109] Freitas et al. [120]
C		Saponins		2510 6	01
Soyasaponin B I Soyasaponin B II + III	meal	943.12	$C_{48}H_{78}O_{18}$	2510 ° 780 °	Silva et al. [121] Silva et al. [121]

Table 8. Cont.

^a expressed in mg per kg of dry extract, ^b depending on cultivar, ^c expressed in mg per kg of residues.

Table 9. Biological activity and potential applications of phytochemicals obtained from soybean residues.

Material	Extract/Compound	Biological Activity/Application	References
okara	methanolic and ethanolic extracts	- antioxidant activity - antibacterial activity against <i>Bacillus</i> subtilis, Bacillus megaterium, Escherichia coli, and Serratia marcescens - antioxidant activity	Anjum et al. [109]
pod	Ethanolic extract and its 3 fractions	- anticancer activity against human colorectal carcinoma (HCT116) and prostate adenocarcinoma (PC-3)	Pabich et al. [116]
soybean by-product	saponins	- used to remove pesticides residues in fruits and vegetables - anti-cancerous, anti-estrogenic,	Hsu et al. [119]
defatted soy meal	isoflavones	anti-oxidant, anti-inflammatory, and phytoestrogen activities - preventions of cardiovascular and	Wang et al. [122]
soybean by-products	saponins	neurological disorders - insecticidal properties - antioxidant activity	
soybean meal	aqueous extract	 inhibition of lipid peroxidation antimicrobial activity against several foodborne pathogens antitumoral activity towards a human glioblastoma cell line 	Freitas et al. [120]
soybean cake	soyasapogenol A and its microbial transformation products	- application as anti-inflammatory food supplements	Zhou et al. [123]

2.5. Tomato Residues

During the industrial processing of tomatoes, a considerable amount of waste is generated. Tomato waste consists mainly of peel, seeds, stems, leaves, fibrous parts and pulp residues [124]. The wet tomato pomace constitutes the major part of this waste, which

13 of 50

consists of 33% seed, 27% peel and 40% pulp, while the dried pomace contains 44% seed and 56% pulp and peel [125]. When tomatoes are processed into products like ketchup, juice or sauces, 3–7% of their weight becomes waste. The management of tomato by-products is considered an important problem faced by tomato processing companies due to their disposal into the environment [126,127].

Although tomato waste has no commercial value, it is a rich source of nutrients, colorants and highly biologically active compounds such as polyphenols, carotenes, sterols, tocopherols, terpenes, and others (Table 10) [128–132]. The number of these compounds depends on tomato variety, part of the tomato residues (seed, peels, and pulp), time and extraction method, used solvent, as well as fractions gained after the isolation procedure, e.g., alkaline-hydrolyzable, acid-hydrolyzable, and bound phenolics [133]. They reported a total phenolics average of 1229.5 mg GAE/kg, of which flavonoids accounted for 415.3 mg QE/kg. The most abundant phenolic acids quantified in dried tomato waste were ellagic (143.4 mg/kg) and chlorogenic (76.3 mg/kg) acids. Other phenolic acids determined in lower concentrations were gallic, salicylic, coumaric, vanillic and syringic [133]. The levels of vanillic (26.9 mg/kg) and gallic (17.1 mg/kg) was lower than those found by Elbadrawy and Sello [134] in tomato peel (33.1 and 38.5 mg/kg, respectively). Četković et al. [135] identified phenolic acids (chlorogenic, p-coumaric, ferulic, caffeic and rosmarinic acid), flavonols (quercetin and rutin and its derivatives), and flavanone (naringenin derivatives) as the major phenolic compounds in extracts of tomato waste. The results obtained by Aires et al. [136] showed that the major polyphenol found in tomato wastes were kaempferol-3-O-rutinoside and caffeic acid. Several papers [135–138] reported the amounts of caffeic, chlorogenic, p-coumaric acids, kaempferol and quercetin, among other phenolic compounds found in tomato by-products. In the tomato's wastes, Di Donato et al. [139] identified two main flavonoid compunds e.g., kaempferol rutinoside and quercetin rutinoside. Rutin and chlorogenic acid were the most abundant individual phenolics found by García–Valverde et al. [140] in all studied tomato varieties.

Table 10. Phytochemicals identified in tomato wastes.

Name	$MW [g mol^{-1}]$	Molecular Formula	References
	Phenolic acids—hydroxyc	innamic acids	
Chlorogenic acid	354.31	C ₁₆ H ₁₈ O ₉	Bakic et al. [127]
Isochlorogenic acid	354.31	C ₁₆ H ₁₈ O ₉	Szabo et al. [141]
<i>p</i> -Coumaric acid	164.16	$C_9H_8O_3$	Nour et al. [133]
Ferulic acid	194.18	$C_{10}H_{10}O_4$	Perea–Dominguez et al. [131]
Caffeic acid	180.16	$C_9H_8O_4$	Aires et al. [136]
3,4,5-tricaffeoylquinic acid	678.60	C ₃₄ H ₃₀ O ₁₅	Szabo et al. [141]
Cinnamic acid	148.16	$C_9H_8O_2$	Kalogeropoulos et al. [138]
Phloretic acid	166.18	$C_9H_{10}O_3$	Kalogeropoulos et al. [138]
Sinapic acid	224.21	$C_{11}H_{12}O_5$	Kalogeropoulos et al. [138]
Rosmarinic acid	360.31	$C_{18}H_{16}O_8$	Ćetković et al. [135]
	Phenolic acids—hydroxyl	penzoic acids	
Gallic acid	170.12	$C_7H_6O_5$	Nour et al. [133]
Ellagic acid	302.18	$C_{14}H_{6}O_{8}$	Nour et al. [133]
Vanillic acid	168.15	$C_8H_8O_4$	Nour et al. [133]
Syringic acid	198.17	$C_9H_{10}O_5$	Nour et al. [133]
Protocatechic acid	154.12	$C_7H_6O_4$	Elbadrawy and Sello [134]
<i>p</i> -Hydroxybenzoic acid	138.12	$C_7H_6O_3$	Kalogeropoulos et al. [138]
	Flavonoids		
Quercetin	302.24	C ₁₅ H ₁₀ O ₇	Elbadrawy and Sello [134]
Quercetin-3- β -O-glucoside	463.40	$C_{21}H_{19}O_{12}$	Valdez–Morales et al. [142]
Quercetin-3-O-sophorosid	626.50	C ₂₇ H ₃₀ O ₁₇	Kumar et al. [143]
Apigenin-7-O-glucoside	432.40	$C_{21}H_{20}O_{10}$	Concha-Meyer et al. [144]
Isorhamnetin	316.26	C ₁₆ H ₁₂ O ₇	Kumar et al. [143]
Isorhamnetin-3-O-gentiobioside	640.50	$C_{28}H_{32}O_{17}$	Kumar et al. [143]

Name	$MW [g mol^{-1}]$	Molecular Formula	References
Rutin	610.52	C ₂₇ H ₃₀ O ₁₆	Aires et al. [136]
Kaempferol	286.23	$C_{15}H_{10}O_6$	Perea–Dominguez et al. [131]
Kaempferol-3-O-rutinoside	394.52	C ₂₇ H ₃₀ O ₁₅	Aires et al. [136]
Kaempferol-3-O-glucoside	447.37	C ₂₁ H ₁₉ O ₁₁	Kumar et al. [143]
Myricetin	318.24	$C_{15}H_{10}O_8$	Nour et al. [133]
Naringenin	272.26	$C_{15}H_{12}O_5$	Elbadrawy and Sello [134]
Catechin	290.26	$C_{15}H_{14}O_{6}$	Perea–Dominguez et al. [131]
Epicatechin	290.27	$C_{15}H_{14}O_{6}$	Kalogeropoulos et al. [138]
Chrysin	254.24	$C_{15}H_{10}O_4$	Kalogeropoulos et al. [138]
Luteolin	286.24	$C_{15}H_{10}O_{6}$	Kalogeropoulos et al. [138]
Luteolin-7-O-glucoside	448.37	$C_{21}H_{20}O_{11}$	Concha–Meyer et al. [144]
	Isoflavones		
Daidzein	254.23	$C_{15}H_{10}O_4$	Kumar et al. [143]
Genistein	270.24	$C_{15}H_{10}O_5$	Kumar et al. [143]
	Stilbenes		
Resveratrol	228.24	$C_{14}H_{12}O_3$	Kalogeropoulos et al. [138]
	Carotenoids	5	
Lycopene	536.89	$C_{40}H_{56}$	Fritsch et al. [130]
β -Carotene	536.89	$C_{40}H_{56}$	Kalogeropoulos et al. [138]
	Sterols		
β -Sitosterol	414.72	$C_{29}H_{50}O$	Kalogeropoulos et al. [138]
Δ^5 -Avenasterol	412.70	$C_{29}H_{48}O$	Kalogeropoulos et al. [138]
Campesterol	400.69	$C_{28}H_{48}O$	Kalogeropoulos et al. [138]
Cholestanol	388.70	$C_{27}H_{48}O$	Kalogeropoulos et al. [138]
Cholesterol	386.65	$C_{27}H_{46}O$	Kalogeropoulos et al. [138]
24-Oxocholesterol	400.60	$C_{27}H_{44}O_2$	Kalogeropoulos et al. [138]
Stigmasterol	412.69	$C_{29}H_{48}O$	Kalogeropoulos et al. [138]
	Tocopherols	3	
Tocopherol	T		Kalogeropoulos et al. [138]
C la	Ierpenes	C II	
Squalene	410.73	$C_{30}H_{50}$	Kalogeropoulos et al. [138]
Cycloartenol	426.72	$C_{30}H_{50}O$	Kalogeropoulos et al. [138]
β -Amyrin	426.73	$C_{30}H_{50}O$	Kalogeropoulos et al. [138]
Oleanolic acid	456.71	$C_{30}H_{48}O_3$	Kalogeropoulos et al. [138]
Ursolic acid	456.70	$C_{30}H_{48}O_3$	Kalogeropoulos et al. [138]
Palmitic acid	256.43	$C_{16}H_{32}O_2$	Elbadrawy and Sello [134]
Palmitoleic acid	254.41	$C_{16}H_{30}O_2$	Elbadrawy and Sello [134]
Stearic acid	284.48	$C_{18}H_{36}O_2$	Elbadrawy and Sello [134]
Oleic acid	282.47	$C_{18}H_{34}O_2$	Elbadrawy and Sello [134]
Linolenic acid	278.43	$C_{18}H_{30}O_2$	Elbadrawy and Sello [134]
Linoleic acid	280.45	$C_{18}H_{32}O_2$	Elbadrawy and Sello [134]
Myristic acid	228.37	$C_{14}H_{28}O_2$	Elbadrawy and Sello [134]

Table 10. Cont.

Traditionally, the bioactivity of tomatoes and their products has been attributed to carotenoids (β -carotene and lycopene). The results of Nour et al. [133] confirmed that dried tomato wastes contain considerable amounts of lycopene (510.6 mg/kg) and β -carotene (95.6 mg/kg) and exhibited good antioxidant properties. The results obtained by Fărcaş et al. [145] confirmed lycopene as the main carotenoid of tomato waste in a concentration between 42.18 and 70.03 mg/100 g DW (dry weight). Simultaneously, peels contain around 5 times more lycopene compared to tomato pulp [146,147]. The lycopene content in peel was 734 µg/g DW, but significant amounts of β -carotene, cis- β -carotene and lutein were also determined. The study by Górecka et al. [148] showed that tomato waste could be considered a promising source of lycopene for the production of functional foods.

Peels, as one of the main residues of tomato, are a richer source of nutrients and biologically active compounds than the pulp [137,149]. Despite of high concentration

of carotenoids, peels also contain a considerable amount of polyphenols. The results obtained by Hsieh et al. [97] showed that the main flavonoids detected in fresh tomato peel were quercetin, myricetin, apigenin, catechin, puerarin, fisetin, hesperidin, naringin, rutin and their levels were reported as 4.2, 2.9, 1.9, 0.9, 0.8, 0.5, 0.3, 0.2, and 0.2 mg/100 g, respectively. It has been proven that tomato peel extracts contain high amounts of kaemferol-3-*O*-rutinoside (from 8.5 to 142.5 mg/kg) [127], quercetin derivatives, *p*-coumaric acid and chlorogenic acid derivative [150,151]. The main phenolic acids identified in tomato peel are protocatechuic, vanillic, gallic, catechin and caffeic acid. Their corresponding concentrations were 5.52, 3.85, 3.31, 2.98, and 0.50 mg/100 g, respectively [134]. The results of Lucera et al. [152] showed that tomato peels contain 4.90 mg/g DW of total phenolic and 2.21 mg/g DW of total flavonoids. The total polyphenolic content in tomato peels and seeds was higher than in the pulp. On the other hand, tomato peel has a very small amount of anthocyanin [153].

Tomato seeds are considered a potential natural source of antioxidants due to their rich phytochemical profile. Many publications indicate that tomato seeds contain, e.g., carotenoids, proteins, polyphenols, phytosterols, minerals and vitamin E [154]. According to Eller et al. [155], the total content of phenolic compounds in the tomato seed extract was 20.66 mg/100 g. Quercetin-3-*O*-sophoroside, isorhamnetin-3-*O*-sophoroside, and kaempferol-3-*O*-sophoroside were present in the highest concentrations of the total phenolic compounds. Quercetin derivatives contributed approximately 37% of the total flavonoid content. Pellicanò et al. [156] found naringenin (84.04 mg/kg DW) as the most abundant flavonoid identified, followed by caffeic acid (26.60 mg/kg DW). Apart from phenolics, carotenoids are the next class of bioactive compounds present in tomato seeds. Qualitatively, the carotenoid composition (β -carotene and lycopene isoforms: lycopene all *trans*, lycopene *cis* 1, lycopene *cis* 2, lycopene *cis* 3) in tomato seeds is similar to that of the carotenoids in tomato fruit [157].

Tomato waste has attracted great interest due to its biological activity and potential applications of phytochemicals (Table 11).

Material	Extract/Compound	Biological Activity/Application	References
Tomato seeds	polyphenols oil	- antioxidant activity	Zuorro et al. [154]
		- high nutritional quality	Eller et al. [155]
		- natural antioxidants for the formulation of functional	Savatović et al. [158]
		foods or to serve as additives in food systems to	Elbadrawy and Sello [134]
Tomato	over a ct	elongate their shelf-life	Nour et al. [159]
by-products	extract	 oxidative stability of dairy products 	Abid et al. [160]
		 potential nutraceutical resource 	Ćetković et al. [135]
		- animal feed	Trombino et al. [161]
Tomato peel	fiber	- food supplement, improving the different chemical, physical and nutritional properties of foods	Navarro–González et al. [137]
	lycopene	- natural color or bioactive ingredient	Ho et al. [162]
	carotenoids	- natural antioxidants and colorants	Horuz and Belibagli [163]

Table 11. Biological activity and potential applications of phytochemicals obtained from tomato wastes.

2.6. Banana Residues

Banana (*Musa* spp., Musaceae family) is one of the main fruit crops cultivated for its edible fruits in tropical and subtropical regions. The main by-product of bananas is its peels, which represent approx. 30% of the whole fruit [164]. Moreover, banana waste also includes small-sized, damaged, or rotting fruit, leaves, stems, and pseudoparts. Banana peels are sometimes used as feedstock for livestock, goats, monkeys, poultry, rabbits, fish, zebras, and many other species. They are rich in vitamin B6, manganese, vitamin C, fiber, potassium, biotin, and copper [165], but also in phytochemicals with high antioxidant capacity such

as phenolics (flavonols, hydroxycinnamic acids, gallocatechin), anthocyanin (delphinidin, cyanidin), carotenoids (β -carotenoids, α -carotenoids, and xanthophylls), catecholamines, sterols and triterpenes (Table 12). Banana peels are natural antacids and are helpful in acid reflux, heartburn, and diarrhea [165].

 Table 12. Phytochemicals identified in banana wastes and their concentration.

Name	Banana Residues	MW [g mol ⁻¹	C _x H _y O _z	Concentration	References
Total phenolics				53,800 ^a 15,180–31,450 ^{a,c} 29,200 ^a	Kabir et al. [166] Chaudhry et al. [167] Rebello et al. [168]
Total flavonoids				16,440 ^b	Kabir et al. [166]
				10,800–22,110 ^{b,c}	Chaudhry et al. [167]
	Phenolic a	cids—benzo	bic acids	== o f	
Gallic acid	banana peel	170.12	$C_7H_6O_5$	77.3 ¹	Behiry et al. [169]
Ellagic acid	banana peel	302.20	$C_{14}H_6O_8$	161.9 ¹	Behiry et al. [169]
Salicylic acid	banana peel	138.121	$C_7H_6O_3$	2.71	Behiry et al. [169]
Chlorogenic acid	banana pseudostem	-nyaroxyci 354.31	nnamic acids $C_{16}H_{18}O_9$		Kandasamy et al. [170]
0	and mizome			(2 EE ^e	Armona at al [171]
Forulic acid	vellow banana peel	10/ 18	CuaHuaOu	05.55 ° 34.07 °	Avram et al. $[171]$
refunct actu	banana peel	174.10	$C_{10} 11_{10} O_4$	16.8 ^f	Behirv et al [169]
	red banana peel			35.17 ^e	Avram et al. [171]
Sinapic acid	vellow banana peel	224.21	$C_{11}H_{12}O_5$	19.44 ^e	Avram et al. [171]
Cinnamic acid	banana peel	148.16	$C_9H_8O_2$	0.7 ^f	Behiry et al. [169]
o-coumaric acid	banana peel	164.158	$C_9H_8O_3$	11.2 ^f	Behiry et al. [169]
	Flavor	noids—flavo	nols		
Kaompforal	red banana peel	286 230	CH.O.	28.80 ^e	Avram et al. [171]
Raempieror	yellow banana peel	$C_{15} \Gamma_{10} C_{6}$	9.30 ^e	Avram et al. [171]	
Quercetin	red banana peel	302 236	C_{1} -H ₁₀ O ₇	6.14 ^e	Avram et al. [171]
Querectin	yellow banana peel	002.200	01511007	1.14 ^e	Avram et al. [171]
Isoqercitrin	red banana peel	464.096	C ₂₁ H ₂₀ O ₁₂	10.47 e	Avram et al. [171]
P of a	yellow banana peel			14.54 °	Avram et al. [171]
Kutin Mari aatin	banana peel	010.017	$C_{27}H_{30}O_{16}$	9730.8 ⁻	Deniry et al. [169]
Myricetin Municatin 2 mutinosido	banana peel	518.255 626 E1	$C_{15}H_{10}O_8$	115.2^{+}	Behiry et al. [169]
Ouercetin 3 rutinoside 3	banana peer	020.31	$C_{27}\Pi_{30}O_{17}$	22.50	beniry et al. [109]
rhamnoside	banana peel	756.7	$C_{33}H_{40}O_{20}$	12.91 ^d	Rebello et al. [168]
rhamnoside	banana peel	740.7	$C_{33}H_{40}O_{19}$	5.32 ^d	Rebello et al. [168]
Quercetin-7-rutinoside	banana peel	610.5	$C_{27}H_{30}O_{16}$	8.78 ^d	Rebello et al. [168]
Quercetin-3-rutinoside	banana peel	610.5	$C_{27}H_{30}O_{16}$	29.87 ^d	Rebello et al. [168]
Kaempferol-7-rutinoside	banana peel	594.52	$C_{27}H_{30}O_{15}$	4.12 ^d	Rebello et al. [168]
Laricitrin-3-rutinoside	banana peel	640.16	C ₂₈ H ₃₂ O ₁₇	2.22 a	Rebello et al. [168]
Kaempferol-3-rutinoside	banana peel	594.52	$C_{27}H_{30}O_{15}$	12.35 ^d	Rebello et al. [168]
Isorhamnetin-3-rutinoside	banana peel	624.5	$C_{28}H_{32}O_{16}$	1.31 d	Rebello et al. [168]
Syringetin-3-rutinoside	banana peel	654.6	$C_{29}H_{34}O_{17}$	0.63 ^u	Rebello et al. [168]
NT- the second second	Flavon	oids—flavai	nones	o 4 🗖 f	D.1.1
Naringenin	banana peei	noide florra		84.71	Beniry et al. [169]
Catashin	hanana naal	200.27		1 21 d	Dehalla et al [169]
Enicatechin	banana peel	290.27 290.27	$C_{15} H_{14} O_6$	1.54 - 2 55 d	Rebello et al. [100]
Gallocatechin	banana peel	20.27	$C_{15} + 1_{14} + 0_{6}$	2.00 d	Repello et al $[100]$
Procyanidin B1	banana peel	578 1/	$C_{15} H_{14} O_7$	1 27 d	Repello et al $[100]$
Procyanidin B2	banana peel	578 1/	$C_{30} + 126 O_{12}$	1.27 81.95 d	Repello et al $[100]$
1 iocyaniuni D2	Dariaria peer	0.11	C_{30} 126 C_{12}	01.75	

Name	Banana Residues	MW [g mol ⁻¹]	C _x H _y O _z	Concentration	References
Procyanidin B4	banana peel	578.14	$C_{30}H_{26}O_{12}$	7.90 ^d	Rebello et al. [168]
	Othe	r compound	ls		
Cycloeucalenol acetate	banana pseudostem and rhizome	468.77	$C_{32}H_{52}O_2$		Kandasamy et al. [170]
4-epicyclomusalenone	banana pseudostem and rhizome	424.71	C ₃₀ H ₄₈ O		Kandasamy et al. [170]

Table 12. Cont.

^a expressed in mg GAE kg⁻¹ DM, ^b expressed in mg QE kg⁻¹ DM, ^c depending on the method of extraction, ^d expressed in molar proportion (%), ^e expressed in ug/mL of crude extract, ^f expressed in mg kg⁻¹ of dry extract.

Previous studies reported that the banana peel is rich in chemical compounds as antioxidant and antimicrobial activities [167–169,171]. Moreover, ethanoic extract from banana peel exhibited the strongest antihyperglycemic activity in comparison with the extract from pulp, seed, and flower [172]. Phytochemicals derived from banana peel were tested as a biofungicide against *Fusarium culmorum* and *Rhizoctonia solani* and as a bactericide against *Agrobacterium tumefaciens* for the natural preservation of wood during handling or in service. Encapsulation is successfully investigated as the method for stabilizing the banana peel extract and its bioactive compounds during storage [173].

Other phytochemical components present in the banana peel extracts, such as ethanediol and butanediol, were determined as highly reducing agents to synthesize silver nanoparticles, which are significant to the medical and chemical industries [173].

The harvesting of the fruits in the plantation requires the decapitation of the whole; therefore, the valuable banana by-products, in addition to peels, are the pseudostem, leaves, inflorescence, and fruit stalk, but also rhizome, which can also be used as a raw material for the acquisition of phytochemicals [174]. Kandasamy et al. [170] isolated three compounds from the pseudostem and rhizome of bananas, including chlorogenic acids, cycloeucalenol acetate, and 4-epicyclomusalenone. Crude extract and isolated compounds are characterized by strong antibacterial, antifungal, antiplatelet aggregation, and anticancer activities.

Using the inflorescence of bananas, anthocyanins can be obtained as good biocolorants with attractive colors, moderate stability in food systems, water solubility, and benefits for health [175]. Cyanidin-3-rutinoside, as the main compound, could be exploited as a cheap source of natural food colorant.

The newest application and explored properties of biologically active compounds from banana residues are presented in Table 13.

Material	Extract/Compound	Biological Activity/Application	References
Banana peel	extract	 - as additives for formulation of bioactive compounds-rich yogurts - antioxidants activity - DPPH• scavenging activity - ABTS+• scavenging activity - α-glucosidase inhibitory activity 	Kabir et al. [166]
Banana peel	acetonic, ethanoic, and methanolic extracts	- antioxidant activity - antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia Coli, Saccharomyces cerevisiae	Chaudhry et al. [167]

Table 13. Biological activity and potential applications of phytochemicals obtained from banana residues.

Material	Extract/Compound	Biological Activity/Application	References
Banana peel	extract	- application as corrosion inhibitors	Vani et al. [176]
	crude extracts (hexane, chloroform, ethyl	- antioxidant activity	
	acetate, and methanolic)	- platelet aggregation inhibitory	
Banana pseudostem and	Isolates:	activity	Kandasamy et al. [170]
mizome	chlorogenic acid	- antimicrobial activity	-
	4-epicyclomusalenone	- cytotoxicity	
	cycloeucalenol acetate		
Banana peel	extract	- antioxidant activity	Rebello et al. [168]
Yellow and red banana peel	hydroalcoholic extracts	 the antioxidant, cytotoxic, and antimicrobial effects 	Avram et al. [170]
Banana peel	Methanolic extract	- application as biofungicide against the growth of <i>Fusarium culmorum</i> and <i>Rhizoctonia solani</i> , and as a bactericide against <i>Agrobacterium tumefaciens</i> for natural wood preservation during handling or in service.	Behiry et al. [169]
Banana peel, pulp, seed, and flower	Ethanolic extract	 very strong antioxidant activity antihyperglycemic activity at a dose of 350 mg/kg body weight 	Nofianti et al. [172]
Banana peel	Water extract contained ethanediol and butanediol	- highly reducing agent for metals used for the synthesis of silver nanoparticles	Buendía-Otero et al. [174]
Banana inflorescence		- as good biocolorants with attractive colors, moderate stability in food systems, water-solubility, and benefits for health	Padam et al. [175]

Table 13. Cont.

2.7. Apple Residues

Poland is the main producer of apples in the world, with an annual production of over 4 million tons [177]. About 25% of apple biomass was wasted during crop and processing. Apple pomace as a waste from apple juice and cider processing consists mainly of apple skin/flesh, seeds, and stems [178]. Until recently, apple waste was used as livestock feed, bioenergy feedstock, as well as for food supplementation and pectin extraction, but still, it is far from being used at its full potential, particularly considering its application in the pharmaceuticals and cosmetics industry [179,180]. Nonetheless, apple pomace has the potential to become a source of valuable biomaterials for agriculture. It contains numerous phytochemicals in the form of pectin and dietary fibers, but also polyphenols, triterpenoids, and volatiles. Interestingly, apple pomace is a richer source of antioxidants than fresh fruits itself because it has a significantly lower content of water; moreover, many valuable bioactive compounds are found mainly in the peels and seeds [180].

Polyphenols are the main valuable constituents of apple pomace. Waldbauer et al. [181] reported that the total phenolic content in apple pomace is in the range of 262–856 mg of total phenols/100 g. This content differs between studies due to the use of different solvents, extraction conditions, and apple varieties [182,183].

Four major phenolic groups are hydroxycinnamic acids, dihydrochalcone derivatives (phloretin and its glycosides), flavan-3-ols (catechin and procyanidins), and flavonols (quercetin and its glycosides) [184,185].

Although the phytochemical composition of apple pomace has been studied for a long time, new compounds with beneficial properties are still being isolated and identified. Ramirez-Ambrosi et al. [186] identified 52 phenolic compounds using a newly developed, rapid, selective, and sensitive strategy of ultrahigh-performance liquid chromatography with diode array detection coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry (UHPLC-DAD–ESI-Q-ToF-MS) with automatic and si-

multaneous acquisition of exact mass at high and low collision energy. Among new compounds, two dihydrochalcones (two isomers of phloretin-pentosyl-hexosides) and three flavonols (isorhamnetin-3-O-rutinoside, isorhamnetin-3-O-pentosides and isorhamnetin-3-O-arabinofuranoside) have been tentatively identified for the first time in apple pomace.

One of the compounds newly identified in the last few years in apple pomace is monoterpene–pinnatifidanoside D [185]. This compound has been isolated for the first time from *Crataegus pinnatifida* and exhibited small antiplatelet aggregation activity.

Mohammed and Mustafa [187] and Khalil and Mustafa [188] isolated and structurally elucidated novel furanocoumarins from apple seeds. Isolated compounds exhibited promising antimicrobial activity against *Pseudomonas aeruginosa*, *Klebsiella pneumonia*, *Haemophilus influenzae*, *Escherichia coli*, *Candida albicans*, and *Aspergillus niger*.

The main compounds determined in apple by-products with ranges of their concentrations are listed in Table 14.

Table 14. Total phenolic content (TPC), total flavonoid content (TFC), and main phytochemicals identified and quantified in apple pomace.

Name	MW [g mol ⁻¹]	C _x H _y O _z	Concentration [mg/kg dm *]	References
			2620-8560 ^a	Waldbauer [181]
Total phenolic content (TPC)			1590–10,620 ^a	Li et al. [182]
1			4399–8100 ^a	Gorjanović et al. [183]
Total flavonoid content (TFC)			18,600–27,400 ^b	Gorjanović et al. [183]
	Phenolic acid	ls—hydroxybenzoic	acids	
Gallic acid	170.12	$C_7H_6O_5$	2.22–4.80 ^d	Gorjanović et al. [183]
4-hydroxybenzoic acid	137.02	$C_7H_5O_3$	17.66–69.56 ^c	Li et al. [182]
Protocatechuic acid	154.12	$C_7H_6O_4$	2.78–30.50 ^c	Li et al. [182]
<i>p</i> -hudroxybenzoic acid	138.22	$C_7H_6O_3$	1.16–5.80 ^d	Gorjanović et al. [183]
	Cyclohe	xanecarboxylic acid	S	
Quinic acid	192.17	$C_7 H_{12} O_6$	227.4–418 ^c	Uyttebroek et al. [179]
	Phenolic acids	s—hydroxycinnami	c acids	
			41.80 –160.40 ^c	Li et al. [182]
Chlorogenic acid	354 31	$C_{12}H_{10}O_{0}$	89.0–308.3 ^d	Gorjanović et al. [183]
emologenie acid	001.01	01611809	38.9-312.8	Uyttebroek et al. [179]
			960	Pingret et al. [189]
<i>p</i> -coumaroylquinic acid	338.31	$C_{16}H_{18}O_8$	94	Pingret et al. [189]
Sinapic acid	224.212	$C_{11}H_{12}O_5$	2.03–7.20 ^d	Gorjanović et al. [183]
Caffeic acid	180.16	$C_9H_8O_4$	0.12–0.35 ^d	Gorjanović et al. [183]
n-Coumaric acid	164 16	$C_{0}H_{0}O_{2}$	2.52–23.11 ^c	Li et al. [182]
<i>p</i> countaire actu	104.10	C911803	0.32–0.76 ^d	Gorjanović et al. [183]
Ferulic acid	194 18	$C_{10}H_{10}O_4$	1.70–4.21 ^c	Li et al. [182]
i cruite actu	194.10	C101110C4	13.24–23.80 ^d	Gorjanović et al. [183]
	Flavo	onoids—flavonols	,	
			7.99–46.93 ^d	Gorjanović et al. [183]
Rutin	610.52	$C_{27}H_{20}O_{16}$	19.32	Oleszek et al. [185]
	010/02	02/1130010	2.24–3.26 ^c	Uyttebroek et al. [179]
			10 ^b	Pingret et al. [189]
Quercetin	302 24	$C_{15}H_{10}O_7$	7.2–14.2 ^d	Gorjanović et al. [183]
Querceuit	002.21	01311007	25.2 ^e	Oleszek et al. [185]
Quercetin-3-O-galactoside	464.38	$C_{21}H_{20}O_{12}$	80.8–165.2 ^d	Gorjanović et al. [183]
Quercetin-3-O-pentosyl	434.35	$C_{20}H_{18}O_{11}$	44.8 ^e	Oleszek et al. [185]
Hyperoside	464.38	$C_{21}H_{20}O_{12}$	434 ^e	Oleszek et al. [185]
Typerostae	101100	0211120012	122 ^b	Pingret et al. [189]
Isoquercetin	464.38	C21H20O12	70 ^e	Oleszek et al. [185]
hoquereemi	101100	0211120012	42	Pingret et al. [189]
			442.4 ^e	Oleszek et al. [185]
Quercitrin	448.38	$C_{21}H_{20}O_{11}$	70.14–109.5 °	Uyttebroek et al. [179]
			40 6	Pingret et al. [189]

Name	$\frac{MW}{[g \text{ mol}^{-1}]}$	C _x H _y O _z	Concentration [mg/kg dm *]	References
Isoquercitrin	464.0955	$C_{21}H_{20}O_{12}$	10.65–15.5 ^c 285.6 ^e	Uyttebroek et al. [179] Oleszek et al. [185]
Avicularin	434.35	$C_{20}H_{18}O_{11}$	81.6–125.7 24	Uyttebroek et al. [179] Pingret et al. [189]
Reynoutrin	434.35	C ₂₀ H ₁₈ O ₁₁	145.6 ^e 54 ^b	Oleszek et al. [185] Pingret et al. [189]
Isorhamnetin			1.10–17.62 ^d	Gorjanović et al. [183]
Isorhamnetin-3-O-arabinofuranoside	478.41	$C_{22}H_{22}O_{12}$		Ramirez–Ambrosi et al. [186]
isorhamnetin-3-O-pentoside	478.41	$C_{22}H_{22}O_{12}$		Ramirez–Ambrosi et al. [186]
Isorhamnetin-3-O-rutinoside	624.55	$C_{28}H_{32}O_{16}$	0.10–1.11 ^d	Gorjanović et al. [183]
Isorhamnetin-3-O-rhamnoside	462.41	$C_{22}H_{22}O_{11}$		Ramirez–Ambrosi et al. [186]
Kaempferol	286.24	$C_{15}H_{10}O_{6}$	0.62–2.46 ^d	Gorjanović et al. [183]
Kaempferol-7-O-glucoside	448.38	$C_{21}H_{20}O_{11}$	0.03–1.19 ^d	Gorjanović et al. [183]
Quercetin-3-O-rhamnoside	448.38	$C_{21}H_{20}O_{11}$	34.1–121.9 ^d	Gorjanović et al. [183]
Guajavarin	434.353	$C_{20}H_{18}O_{11}$	161 ^b	Pingret et al. [189]
Hyperin	463.371 Flavo	$C_{21}H_{19}O_{12}$	64.02–92.4 ^c	Uyttebroek et al. [179]
Tavifolin	204 254		016016d	Corianoviá et al [183]
laxiloiiii	504.254 Elaw	$C_{15}\Pi_{12}O_7$	0.16-0.46	Gorjanović et al. [165]
	ГldV	onoius—navanois	1 50 –31 70 ^c	Lietal [182]
Catechin	290.27	C1-H1(O)	1.05–7.45 ^c	Livttebroek et al [179]
Cutchin	290.27	$C_{15} + 1_{14} + C_{6}$	52	Pingret et al. [189]
			34.4–166.3 ^c	Uvttebroek et al. [179]
Epicatechin	290.27	$C_{15}H_{14}O_{6}$	244	Pingret et al. [189]
	504 50		2900	Fernandes et al. [178]
Procyanidin	594.53	$C_{30}H_{26}O_{13}$	3408	Pingret et al. [189]
Procyanidin B2	578.52	C ₃₀ H ₂₆ O ₁₂	42.8-208.1	Uyttebroek et al. [179]
Naringenin	272.26	$C_{15}H_{12}O_5$	0.11–0.24 ^d	Gorjanović et al. [183]
Eriodictyol	288.26	$C_{15}H_{12}O_{6}$	0.11–0.21 ^d	Gorjanović et al. [183]
Naringin	580.541	C ₂₇ H ₃₂ O ₁₄	0.22–0.60 ^d	Gorjanović et al. [183]
	Flav	onoids—flavones		
Apigenin	270.24	$C_{15}H_{10}O_5$	0.31–0.48 ^d	Gorjanović et al. [183]
Apigenin-7-O-glucoside	432.38	$C_{21}H_{20}O_{10}$	0.47–1.01 ^d	Gorjanović et al. [183]
Chrysin	254.25	$C_{15}H_{10}O_4$	0.11–0.22 ^d	Gorjanović et al. [183]
Luteolin	286.24	$C_{15}H_{10}O_{6}$	0.10–0.26 ^d	Gorjanović et al. [183]
	Flavonoi	ds—dihydrochalcone	S	
Phloretin	274.26	$C_{15}H_{14}O_5$	0.29–0.98 ^a	Gorjanović et al. [183]
			112–215 ^a	Gorjanović et al. [183]
Phlorizin	436.4	C ₂₁ H ₂₄ O ₁₀	361.2 ⁻¹	Oleszek et al. [185]
		21 21 10	56.8–198.6 °	Uyttebroek et al. [179]
			1008	Pingret et al. [189]
Phloretin 2-O-glucoside	452.41	$C_{21}H_{24}O_{11}$		[186]
Phloretin -xylosyl-glucoside	568.52	$C_{26}H_{32}O_{14}$	142	Pingret et al. [189]
3-hydroxyphloretin-2'-O- xylosylglucoside	584.52	$C_{26}H_{32}O_{15}$		Ramirez–Ambrosi et al. [186]
3-hydroxyphloretin-2'-O-glucoside	452	C ₂₁ H ₂₄ O ₁₁		Ramirez–Ambrosi et al.
~		Coumarins **		[100]
Aesculin	340 282	$C_{15}H_{12}O_{0}$	5.53-10.67	Gorianović et al. [183]
	0777	C II C C	0.00 10.07	Mohammed and
(E)-12-(2'-Chlorovinyl) bergapten	277.5	$C_{14}H_{10}O_4Cl$		Mustafa [187]

Table 14. Cont.

Name	MW [g mol ⁻¹]	$C_xH_yO_z$	Concentration [mg/kg dm *]	References
	Fla	vonoids—flavanones		
12-(1',1'-dihydroxyethyl) bergapten	276	$C_{14}H_{12}O_6$		Mohammed and Mustafa [187]
12-(2'-chloropropan-2'-yl)-8- hydroxybergapten	308.5	C ₁₅ H ₁₃ O ₅ Cl		Mohammed and Mustafa [187]
12-Hydroxy-11- chloromethylbergapten	332.5	C ₁₃ H ₉ O ₅ Cl		Mohammed and Mustafa [187]
officinalin	220	$C_{11}H_8O_5$		Khalil and Mustafa [188]
8-(tert-butyl)officinalin	276	$C_{15}H_{16}O_5$		Khalil and Mustafa [188]
8-Hydroxyofficinalin	236	$C_{11}H_8O_6$		Khalil and Mustafa [188]
Officinalin-8-acetic acid	278	$C_{13}H_{10}O_7$		Khalil and Mustafa [188]
8-(2'-hydroxypropan-2'-yl) officinalin	289	$C_{15}H_{16}O_{6}$		Khalil and Mustafa [188]
		Triterpenoids		
<i>α</i> -amyrin	426.72	$C_{30}H_{50}O$	94.0	Woźniak et al. [190]
β -amyrin	426.72	$C_{30}H_{50}O$	41.4	Woźniak et al. [190]
Uvaol	442.72	$C_{30}H_{50}O_2$	53.9	Woźniak et al. [190]
Erythtodiol	442.72	$C_{30}H_{50}O_2$	18.0	Woźniak et al. [190]
Ursolic aldehyde	440.70	$C_{30}H_{48}O_2$	73.9	Woźniak et al. [190]
Ursolic acid	456.70	$C_{30}H_{48}O_3$	7125.1	Woźniak et al. [190]
Oleanolic acid	456.70	$C_{30}H_{48}O_3$	1591.4	Woźniak et al. [190]
Pomolic acid	472.70	$C_{30}H_{48}O_4$	870.3	Woźniak et al. [190]
		Pigments ***	L	
all-trans-neoxanthin	600.884	$C_{40}H_{56}O_{4}$	1.14–7.11 ^a	Delgado–Pelayo [191]
all- <i>trans</i> -violaxanthin	600.870	$C_{40}H_{56}O_{4}$	1.70–18.26 ^d	Delgado–Pelayo [191]
9-cis-violaxanthin	600.870	$C_{40}H_{56}O_4$	0.23–2.37 ^d	Delgado–Pelayo [191]
9-cis-Neoxanthin	600.884	$C_{40}H_{56}O_4$	0.56–21.92 ^d	Delgado–Pelayo [191]
13-cis-violaxanthin	600.884	$C_{40}H_{56}O_4$	0.10–0.29 ^d	Delgado–Pelayo [191]
all-trans-antheraxanthin	584.885	C40H56O3	0.09–0.57 ^d	Delgado–Pelayo [191]
all-trans-zeaxanthin	568.886	C ₄₀ H ₅₆ O ₂	0.08–0.52 ^d	Delgado–Pelayo [191]
all-trans-lutein	568.871	$C_{40}H_{56}O_2$	1.32–61.53 ^d	Delgado-Pelayo [191]
9-cis-lutein	568.871	$C_{40}H_{56}O_2$	0.06–1.61 ^d	Delgado-Pelayo [191]
13-cis-lutein	568.871	$C_{40}H_{56}O_2$	0.10–2.76 ^d	Delgado–Pelayo [191]
all- <i>trans-β</i> -carotene	536.8726	$C_{40}H_{56}$	1.49–30.31 ^d	Delgado–Pelayo [191]
Monoestrified xanthophylls			3.01–10.18 ^d	Delgado–Pelayo [191]
Diesterified xanthophylls			4.93–38.39 ^d	Delgado–Pelayo [191]
Chlorophyll a	893.509	C55H72MgN4O5	18.39–1049.26 ^d	Delgado–Pelavo [191]
Chlorophyll b	907.492	$C_{55}H_{70}MgN_4O_6$	4 78–309 86 ^d	Delgado–Pelavo [191]
Becontrol	222.24	Other compounds	0.16, 0.90	
Resveratrol	228.24	$C_{14}H_{12}O_3$	0.16-0.89	Gorjanovic et al. [183]
Pterostilbene	256.296	$C_{16}H_{16}O_3$	0.19-0.90	Gorjanovic et al. [183]
Pinocembrin	256.25	$C_{15}H_{12}O_4$	0.22–0.39	Gorjanovic et al. [183]
Palmitic acid	256.4	$C_{16}H_{32}O_2$	7.25 ¹	Walia [192]
Linoleic acid	280.45	$C_{18}H_{32}O_2$	43.81 ¹	Walia [192]
Oleic acid	282.47	$C_{18}H_{34}O_2$	46.50	Walia [192]
Stearic acid	284.48	$C_{18}H_{36}O_2$	1.72 ^r	Walia [192]
Arachidic acid	312.54	$C_{20}H_{40}O_2$	0.72 ^r	Walia [192]
Pinnatifidanoside D	518	$C_{24}H_{38}O_{12}$	344.4	Oleszek et al. [185]

Table 14. Cont.

* dm—dry matter, ^a expressed as mg gallic acid equivalent, ^b expressed as quercetin equivalent, ^c depending on the methods of extraction or apple pressing, ^d depending on apple varieties, ^e expressed as rutin equivalent, ^f expressed in % of the oil extracted from apple seeds, ** determined in seeds, *** determined in peels. Many have been written about the application of apple pomace itself. However, the present work concerns the properties and application of bioactive compounds derived from apple pomace. The newest studies reported valuable activities and interesting applications of phytochemicals from apple pomace are listed in Table 15. Preclinical studies have found apple pomace extracts and isolated compounds improved lipid metabolism, antioxidant status, and gastrointestinal function and had a positive effect on metabolic disorders (e.g., hyperglycemia, insulin resistance, etc.) [193]. As was reported by Gołębiewska et al. [194], despite medicine and cosmetics, apple pomace phytochemicals found recent applications in building and construction industries as green corrosion inhibitors and wood protectors [194].

Material	Extract/Compound	Biological Activity/Application	References
Apple seeds	coumarins	 antioxidant activity antitumor activity 	Khalil and Mustafa [188]
Apple pomace	phenolic-rich fractions: phloridzin, phloretin, quercitrin, and quercetin as major constituents	- anti-inflammatory, cytotoxic activity, anticancer activity (SiHa, KB, and HT-29 cell lines)	Rana et al. [195]
Apple pomace	crude extract and four fractions	- antioxidant activity - antifungal activity against crop pathogens: <i>Neosartorya fischeri, Fusarium</i> oxysporum, Botrytis sp. Petriella setifera	Oleszek et al. [185]
Flour from apple pomace	ethanolic extract	antioxidant, antidiabetic, and antiobesity effects	Gorjanović et al. [183]
Apple pomace	Ursolic acid	antimicrobial, anti-inflammatory, and antitumor activities	Cargnin et al. [196]
Apple peel	ursolic acid	antimalarial activity	Silva et al. [197]
Apple pomace	ethanolic extract: 5-O-caffeoylquinic acid as the major compound	 antioxidant and antimicrobial activity (against <i>Propionibacterium acnes</i>) application in dermal formulations 	Arraibi et al. [198]
Apple pomace	Extracts (boiling water with 1% acetic acid) and fractions (polyphenols and carbohydrates)	- antioxidant activity - anti-inflammatory activity - application as a food ingredient in yogurt formulation	Fernandes et al. [178]
Apple pomace	phloretin, phloridzin	antioxidant and antibacterial activity (Staphylococcus aureus, Escherichia coli)	Zhang et al. [199]
Apple pomace	Phloridzin oxidation products (POP)	application as natural yellow pigments in gelled desserts	Haghighi and Rezaei [200]
Apple pomace	Phloridzin oxidation products (POP)	- strong antioxidant activity - application as a yellow pigment	Liu et al. [201]
Apple peel	extract	- application as corrosion inhibitor for carbon steel	Vera et al. [202]

Table 15. Biological activity and potential applications of phytochemicals obtained from apple residues.

Phenolic content is related to the antioxidant properties of apple pomace, and procyanidins are considered the major contributors to the antioxidant capacity of apples. Despite high concentrations in apples, catechins and procyanidins are very often absent in the extract from apple pomace. The exposure of polyphenols to polyphenoloxidase during apple processing caused, in addition to native apple phytochemicals, their oxidation products also represent a significant part of the overall polyphenolic fraction. Moreover, the polyphenols can interact non-covalently with polysaccharides; thus, they become nonextractable. Fernandes et al. [178] reported that such complexes represented up to 40% of the available polyphenols from apple pomace, potentially relevant for agro-food waste valuation. Moreover, it has been revealed that the use of appropriate extraction procedures, such as microwave-superheated water extraction (MWE) of the hot water/acetone, as well as additional hydrolysis, made it possible to recover these valuable compounds from apple pomace. This knowledge will allow for designing more diversified solutions for agro-food waste valuation [178]. The strong antioxidant in apple pomace is quercetin, which has protective effects against breast and colon cancer, as well as heart and liver diseases [203].

Apple is a unique plant in the *Rosaceae* family due to the high content of phloridzin, a major phenolic compound in commercial varieties of apples [203]. Phloridzin has antidiabetic potential and could be applied as a natural sweetening agent [200]. Phloridzin from apple waste was also tested as the substrate for the production of food dye through its enzymatic oxidation. The yellow product, so-called phloridzin oxidation products (POP), turned out to be a good alternative to tartrazine and other potentially toxic food yellow pigments [200,201].

Interesting phytochemicals of apple pomace are triterpenoids, particularly ursolic acid. It has attracted attention because of its therapeutic potential associated with several functional properties such as antibacterial, antiprotozoal, anti-inflammatory, and antitumor [196]. Woźniak et al. [190] optimized the method of its extraction using supercritical carbon dioxide. The data obtained allowed the prediction of the extraction curve for the process conducted on a larger scale.

As has been mentioned previously, apple pomace contains some amount of seeds. Walia et al. [192] proved that also apple seed oil could be a promising raw material for the production of natural antioxidants and anticancer agents. The authors tested the fatty acid composition and physicochemical and antioxidant properties of oil extracted from apple seeds separated from industrial pomace. The dominant fatty acids were oleic acid (46.50%) and linoleic acid (43.81%).

The major constituent in apple seed is also amygdalin, which may be metabolized to toxic hydrogen cyanide [203,204]. However, in the literature, there are also several reports of the positive pharmacological activity of amygdalin. Luo et al. [205] showed its antifibrotic properties in the case of liver fibrosis. Song and Xu [206] proved that amygdalin exhibits analgesic effects in mice, probably by inhibiting prostaglandins E2 and nitric oxide synthesis. Despite so many above reports, there is still a need for human and animal studies to confirm the protection against the disease's effects of apple pomace.

2.8. Winery Waste

The major winery by-products are grape pomace and marc, including seeds, pulp, skins, stems, and leaves. Bioactive phytochemicals present in residues from wine-making are mainly represented by polyphenols belonging to various groups of compounds, such as phenolic acids (hydroxybenzoic acids and hydroxycinnamic acids), flavonoids (flavanols or flavan-3-ols, anthocyanins, proanthocyanidins, flavones, and flavonols), and stilbenes and anthocyanins. The relative concentrations of the different phenolic compounds are influenced by genotype (red or white grapes), a distinct fraction of residues, as well as agro-climatic conditions [207]. The presence of polyphenolic compounds in grape residues supports the potential of the investigation and valorization of this agro-industrial waste. The compounds identified in grapes by-products with their concentrations are listed in Table 16.

Table 16. Phytochemicals identified and quantified in grape residues.

Name	MW [g mol ⁻¹]	C _x H _y O _z	Concentration [mg/kg dm]	References
Total phenolic content (TPC)			280–7770 ^{b,e,f} 14,200–26,700 ^{a,e}	Pintać et al. [208] Eviz et al. [209]
Total flavonoid content (TFC)			40–1150 ^{b,e,f} 2403–4178 ^{a,e}	Pintać et al. [208] Eviz et al. [209]
Total monomeric anthocyanins			539–1598 ^{a,e}	Eyiz et al. [209]
Total proanthocyanidin			3.23–6.32 ^{a,e}	Eyiz et al. [209]
	Pheno	olic acids—hydr	oxybenzoic acid	

Name	MW [g mol ⁻¹]	C _x H _y O _z	Concentration [mg/kg dm]	References
	-		24–246 ^{a,e}	Farías–Campomanes et al. [210]
			250 ^a	Wang et al. [211]
	150 10		4.86–70 ^{a,e,f}	Pintać et al. [208]
Gallic acid	170.12	$C_7H_6O_5$	75.5 ^a	Daniel et al. [212]
			596.36 ^a	Wittenauer et al. [213]
			3030 ^c	Jara-Palacios et al. [214]
Digalloylquinic acid	496.4	$C_{21}H_{20}O_{14}$	299 ^a	Gonçalves et al. [215]
			620 ^a	Wang et al. [211]
Ellagic acid	302.197	$C_{14}H_{6}O_{8}$	8.37-64.1 ^{b,e,f}	Pintać et al. [208]
Ũ			4.315 ^a	Daniel et al. [212]
Droto osto shuis a sid	154 10	СЧО	9–63 ^{a,e}	Farías–Campomanes et al. [210]
r rotocatechuic aciu	134.12	$C_7 \Pi_6 O_4$	940 ^c	Jara–Palacios et al. [214]
			24–237 ^{a,e}	Farías–Campomanes et al. [210]
Vanillic acid	168.15	$C_8H_8O_4$	0.53–13.0 ^{b,e,f}	Pintać et al. [208]
			10 ^a	Daniel et al. [212]
1 hydroxybonzoic acid	138 100	C-H-O-	9–63 ^{a,e}	Farías–Campomanes et al. [210]
4-Hydroxybenzoic acid	130.122	$C_{7116}O_{3}$	0.16–1.71 ^{b,e,f}	Pintać et al. [208]
Suringia acid	108 17	C.H.O.	48–593 ^{a,e}	Farías–Campomanes et al. [210]
Symple actu	190.17	C91110O5	0.13–20.6 ^{b,e,f}	Pintać et al. [208]
Galloylshikimic acid	326.25	$C_{14}H_{14}O_9$	438.1 ^a	Gonçalves et al. [215]
	Pheno	olic acids—hydro:	xycinnamic acid	
Chlorogonic acid	354 31	C. H.O.	0.14-11.50 ^{b,e,f}	Pintać et al. [208]
Chlorogenic acid	554.51	$C_{16} I_{18} O_{9}$	4.715 ^a	Daniel et al. [212]
			0.41-1.68 ^{b,e,f}	Pintać et al. [208]
Caffeic acid	180.16	$C_9H_8O_4$	9.735 ^a	Daniel et al. [212]
			630 ^c	Jara–Palacios et al. [214]
			735.32 ^a	Wittenauer et al. [213]
Caftaric acid	312.23	$C_{13}H_{12}O_9$	880 ^c	Jara–Palacios et al. [214]
			11–168 ^{a,g}	Jara–Palacios et al. [216]
cis-Coutaric acid	296.23	$C_{13}H_{12}O_8$	5.3–11.8 ^{a,g}	Jara–Palacios et al. [216]
trans-coutaric	296.23	$C_{13}H_{12}O_8$	5.5–20.7 ^{a,g}	Jara–Palacios et al. [216]
			6–39 ^{a,e}	Farías–Campomanes et al. [210]
n Coumaria acid	164 16	C.H.O.	0.13–1.49 ^{b,e,f}	Pintać et al. [208]
p-Countaire actu	104.10	C911803	8.175 ^a	Daniel et al. [212]
			510 ^c	Jara–Palacios et al. [214]
		Flavonoids—fl	avonols	
			3–15 ^{a,e}	Farías–Campomanes et al. [210]
			11.3–78.9 ^{b,e,f}	Pintać et al. [208]
			200 ^a	Wang et al. [211]
Quercetin	302.236	$C_{15}H_{10}O_7$	2.473–15.637 ^c	Balea et al. [217]
			4.7 ^a	Daniel et al. [212]
			2870 ^c	Jara–Palacios et al. [214]
			344–403 ^{c,f}	Drosou et al. [218]
			0.39–38.0 ^{b,e,f}	Pintać et al. [208]
			67.6 ^a	Gonçalves et al. [215]
Quercetin-3-O-glucoside	463.371	$C_{21}H_{19}O_{12}$	2374.32 ^a	Wittenauer et al. [213]
			16,900 ^c	Jara–Palacios et al. [214]
			475–609 ^{c,f}	Drosou et al. [218]
			13.4 ^a	Gonçalves et al. [215]
Quercetin-3-0-glucuronide	478 362	$C_{24}H_{10}O_{12}$	2432.29 ^a	Wittenauer et al. [213]
Quercean o o graculonide	170.002	~211118~13	15,800 ^c	Jara–Palacios et al. [214]
			990–1285 ^{c,t}	Drosou et al. [218]
Quercetin-3-O-pentoside	434.35	$C_{20}H_{18}O_{11}$	52.0 ^a	Gonçalves et al. [215]
Quercetin-3-O-rhamnoside	448.4	$C_{21}H_{20}O_{11}$	49.4 ^a	Gonçalves et al. [215]
Quercetin-3-O-galactoside			2120 °	Jara–Palacios et al. [214]
Hyperoside	464.38	C ₂₁ H ₂₀ O ₁₂	0.17–5.67 ^{b,e,f}	Pintać et al. [208]

Table 16. Cont.

Name	MW [g mol ⁻¹]	$C_xH_yO_z$	Concentration [mg/kg dm]	References
Rutin	610.52	C ₂₇ H ₃₀ O ₁₆	0.11-8.19 ^{b,e,f} 2.136 ^c	Pintać et al. [208] Balea et al. [217] Daniel et al. [212]
			5.3 - 600 s	Daniel et al. [212]
Isorhampatin	316 265	C. H.O.	6 42 72 0 b.e.f	Pintaá ot al [208]
isomanmetin	510.205	$C_{16}\Pi_{12}O_7$	6.42-72.9 -72.9	Concelues et al. [206]
Isorhamnetin 3-O-glucoside	478.406	$C_{22}H_{22}O_{12}$	145 175 cf	Drosou et al. [219]
			140–170 Å	Wang et al. [210]
			0.21-2.31 b,e,f	Pintać et al. $[208]$
Myricetin	318.24	$C_{15}H_{10}O_8$	0.21-2.31	$\begin{bmatrix} 1 & \text{if if a c et al. } [200] \\ Balaa et al. [217] \end{bmatrix}$
			$452-711 c^{f}$	Drosou et al $\begin{bmatrix} 217 \end{bmatrix}$
Myricetin-3-O-beyoside	480 38	$C_{21}H_{20}O_{12}$	184.6 ^a	Concalves et al [215]
Myricetin-3-O-glucoside	480.38	$C_{21}H_{20}O_{13}$	781–1044 ^c	Drosou et al $[218]$
Quercitrin	448 38	$C_{21}H_{20}O_{13}$	0.21_3.99 ^{b,e,f}	Pintać et al $[210]$
Querentin	110.00	0211120011	46.8 ª	Goncalves et al [215]
Laricitrin-O-hexoside	494.405	$C_{22}H_{22}O_{13}$	216–434 ^{c,f}	Drosou et al. [218]
			80 ^a	Wang et al. [211]
			2.45–53.1 ^{b,e,f}	Pintać et al. [208]
Kaemferol	286.239	$C_{15}H_{10}O_{6}$	3.38–5.74 ^c	Balea et al. [217]
			150 ^c	Jara–Palacios et al. [214]
	110.00		0.05–23.0 ^{b,e,f}	Pintać et al. [208]
Kaempferol 3-O-glucoside	448.38	$C_{21}H_{20}O_{11}$	3670 ^c	Jara–Palacios et al. [214]
Kaempferol 3-glucuronide	462.4	C ₂₁ H ₁₈ O ₁₂	310 ^c	Jara–Palacios et al. [214]
Syringetin 3-glucoside	508.432	C ₂₃ H ₂₄ O ₁₃	168–200 ^{c,f}	Drosou et al. [218]
Ouercitrin	448.38	$C_{21}H_{20}O_{11}$	3.272–14.952 ^c	Balea et al. [217]
Isoquercitrin	464.0955	$C_{21}H_{20}O_{12}$	2.429–65.698 ^c	Balea et al. [217]
1		Flavonoids-	–flavanols	
			1460 ^a	Wang et al. [211]
			5.01–193 ^{b,e,f}	Pintać et al. [208]
Catachin	200 27	CH.O.	945 ^a	Gonçalves et al. [215]
Catecrim	270.27	$C_{15}T_{14}O_{6}$	1101.7 ^a	Daniel et al. [212]
			10,496.63 ^a	Wittenauer et al. [213]
			12,200 ^c	Jara–Palacios et al. [214]
			1280 ^a	Wang et al. [211]
			5.80–309 ^{b,e,r}	Pintać et al. [208]
Epicatechin	290.271	C15H14O6	949 a	Gonçalves et al. [215]
I		- 15 - 14 - 0	322.5 ª	Daniel et al. [212]
			8994.93 ª	Wittenauer et al. [213]
	206 27		6340 °	Jara–Palacios et al. [214]
Epigallocatechin	306.27	$C_{15}H_{14}O_7$	900 ª	vvang et al. [211]
Procyanidin dimers	578.1424	$C_{30}H_{26}O_{12}$	3306 ~	Gonçalves et al. [215]
Procyanidin trimers	866.77	C45H38O18	12 020 \$	Gonçalves et al. [215]
2			12,920 °	Jara-Palacios et al. [214]
Procyanidin tetramer	1155.0	$C_{60}H_{50}O_{24}$	16 540 ^c	Gonçalves et al. [215]
			10,340 4858 58 ^c	Wittopauer et al. [213]
Procyanidin B1	578.1424	$C_{30}H_{26}O_{12}$	15 500 °	Jara-Palacios et al. [214]
			4277 04 °	Wittenauer et al [213]
Procyanidin B2	578.1424	$C_{30}H_{26}O_{12}$	4940 °	Jara-Palacios et al [214]
Procyanidin B3	578 1424	$C_{20}H_{26}O_{12}$	4350 °	Jara–Palacios et al. [214]
Procyanidin B4	578 1424	$C_{30}H_{26}O_{12}$	1000	Jara–Palacios et al. [216]
i i cegandani bi	0,0.1121	Flavonoids-	flavones	juru i unicios et un [210]
Apigenin	270.24	$C_{15}H_{10}O_{5}$	0.58 ^b	Pintać et al. [208]
Apigenin 7-0-glucoside	432.38	$C_{21}H_{20}O_{10}$	0.02–12.7 ^{b,e,f}	Pintać et al. [208]
Luteolin	286.24	$C_{15}H_{10}O_{2}$	0.23–1.07 ^{b,e,f}	Pintać et al. [208]
Luteolin-7-O-glucoside	448.38	$C_{21}H_{20}O_{11}$	0.36–4.46 ^{b,e,f}	Pintać et al. [208]
0		21 20 - 11		······································

Table 16. Cont.

Name	$\begin{array}{c} MW \\ [g \ mol^{-1}] \end{array} C_x H_y O_z \end{array}$		Concentration [mg/kg dm]	References
		Flavonoids—	flavanones	
Chrysoeriol	300.27	$C_{16}H_{12}O_{6}$	0.04–0.51 ^{b,e,f}	Pintać et al. [208]
Naringenin	272.26	$C_{15}H_{12}O_5$	0.11–0.83 ^{b,e,f}	Pintać et al. [208]
-		Flavonoids-fl	avanonols	
Astilbin	450.396	$C_{21}H_{22}O_{11}$	3120–4200 ^{b,e}	Negro et al. [219]
		Flavonoids—a	nthocyanins	
			4.68–54.7 ^{b,e,f}	Pintać et al. [208]
Delphinidin 3-O-glucoside	465.387	$C_{21}H_{21}O_{12}$	775–936 ^{c,t}	Drosou et al. [218]
			7–57 ^{a,e}	Negro et al. [219]
Cvanidin 3-O-glucoside	449.388	C21H21O11	2.21–11.3 ^{b,e,f}	Pintać et al. [208]
		-21 21 - 11	3–37 ^{b,e}	Negro et al. [219]
		0 II 0	1.28–35.4 ^{b,e,r}	Pintać et al. [208]
Petunidin-3-O-glucoside	479.41	$C_{22}H_{23}O_{12}$	77.0 a	Gonçalves et al. [215]
			1295-1618 ^{C/I}	Drosou et al. [218]
	460.41		1.51–64.7 ^{0,e,1}	Pintač et al. [208]
Peonidin-3-O-glucoside	463.41	$C_{22}H_{23}O_{11}$	202.2 °	Gonçalves et al. [215]
			1591–2044 ^{c,r}	Drosou et al. [218]
Malaridia 2 aluandida	402 441		0.80–384 0,0,1	Pintac et al. [208]
Marvian 3-glucoside	493.441	$C_{23}H_{25}O_{12}$	443.0 °° 10.190.17.097.0f	Gonçaives et al. [215]
Poopidin 2 O acetyl glucosida	505.4	C + O +	12,182–17,687 °,	Concelues et al. [215]
reoman-s-O-acetyl glucoside	505.4	$C_{24}\Pi_{25}O_{12}$	90.2 °	Concelves et al. [215]
Malvidin 3-O-acetyl glucoside	535.5	$C_{25}H_{27}O_{13}^+$	90.2 °	Drosou et al. $[218]$
Malvidin 3-caffeovl glucoside	655.6	CasHarOre	1079_1450 c ^f	$\frac{1}{210}$
Petunidin 3-coumaroyl glucoside	625 5536	$C_{32}\Gamma_{31}O_{15}$	735 806 cf	Drosou et al. $[218]$
Poonidin 3 coumaroul glucoside	609 5542	$C_{31}T_{29}O_{14}$	706 1221 cf	Drosou et al. [218]
Malvidin 3 coumaroyl glucoside	639.5542	$C_{31}T_{29}O_{13}$	4700 7222 St	Drosou et al. $[218]$
Delphinidin	303.24	$C_{32}T_{31}O_{14}$	5570 a	Wang et al. $[210]$
Cyanidin	287.24	$C_{15} H_{11} O_7$	3620 ^a	Wang et al. [211]
Petunidin	317 27	$C_{15}H_{12}O_7$	15 500 ^a	Wang et al. $[211]$
Peonidin	301.27	$C_{16}H_{13}O_{7}$	25.320 ^a	Wang et al. $[211]$
Malvidin	331.30	$C_{16}T_{15}C_{6}$ $C_{17}H_{15}O_{7}$	10.390 ^a	Wang et al. $[211]$
	001100	Terpen	oids	
Ursolic acid	456.70	C30H48O3	0.96–606 ^{b,e,f}	Pintać et al. [208]
		Couma	rins	
Esculetin	178.14	CoH6O4	0.23–0.66 ^{b,e,f}	Pintać et al. [208]
		Stilber	nes	
		A M A	0.07-3.37 ^{b,e,f}	Pintać et al. [208]
resveratrol	228.243	$C_{14}H_{12}O_3$	5.3–6.2 ^{a,e}	Iora et al. [220]
		Fatty a	cids	
Palmitic acid (16:1)	256.4	$C_{16}H_{32}O_2$	85.43–110.97 ^d	Iora et al. [220]
Palmitoleic acid (16:1 n-7)	254.414	$C_{16}H_{30}O_2$	7.04–13.21 ^d	Iora et al. [220]
Stearic acid (18:0)	284.48	C ₁₈ H ₃₆ O ₂	26.75–38.77 ^d	Iora et al. [220]
Oleic acid (18:1 n-9)	282.47	$C_{18}H_{34}O_2$	118.15–141.54 ^d	Iora et al. [220]
Linoleic acid (18:2 n-6)	280.4472	$C_{18}H_{32}O_2$	627.21–684.47 ^d	Iora et al. [220]
Linolenic acid (18:3 n-3)	278.43	$C_{18}H_{30}O_2$	11.26–19.97 ^d	Iora et al. [220]
Arachidic acid (20:0)	312.5304	$C_{20}H_{40}O_2$	3.12–3.45 ^d	Iora et al. [220]
Eicosenoic acid 20:1 n-9	310.51	C ₂₀ H ₃₈ O ₂	0.89–2.57 ^d	Iora et al. [220]
Behenic acid 22:0	340.58	$C_{22}H_{44}O_2$	1.47–2.42 ^d	Iora et al. [220]
Lignoceric acid 24:0	368.63	$C_{24}H_{48}O_2$	1.03–1.67 ^d	Iora et al. [220]
SFA			117.79–157.07 ^d	Iora et al. [220]
MUFA			131.56–156.95 ^d	Iora et al. [220]
PUFA			647.17–695.73 ^d	Iora et al. [220]
n-6/n-3			31.43–60.80 ^d	Iora et al. [220]
SFA/PUFA			0.17–0.24 ^d	Iora et al. [220]
TFA			938.41–945.08 ^d	Iora et al. [220]

Table 16. Cont.

Name	MW [g mol ⁻¹]	$C_x H_y O_z$	Concentration [mg/kg dm]	References
		Other compo	ounds	
Vanillin	152.15	C ₈ H ₈ O ₃	25.5 ^a	Daniel et al. [212]
trans-piceid	390.388	C20H22Os	7.75 ^a	Daniel et al. [212]

Table 16. Cont.

^a expressed in mg per kg of dry matter (DM), ^b expressed in mg per kg of fresh weight, ^c expressed in mg per kg of the extract, ^d expressed in mg per g of total lipids extracted from grape pomace, ^e depending on methods of extraction, ^f depending on varieties of grapes, ^g depending on the part of the pomace: seeds, skins, stems.

The residues derived from the grape processing contain phytochemicals of interest for the production of preservatives, dyes, enriched foods, medicines, and products aimed at personal care, pharmaceutical, and cosmetic industries. The presence of bioactive compounds with antioxidant, antimicrobial, anti-inflammatory, anti-tumor, and protective activity of the cardiovascular system provides possibilities for many applications [221]. The potential beneficial role of phytochemicals of grape pomace in the prevention of disorders associated with oxidative stress and inflammation, such as endothelial dysfunction, hypertension, hyperglycemia, diabetes, and obesity, is due to the mechanisms concerned especially modulation of antioxidant/prooxidant activity, improvement of nitric oxide bioavailability, reduction of pro-inflammatory cytokines and modulation of antioxidant/inflammatory signal pathways [222].

It has been proven that the antioxidant properties of polyphenols in grape pomace help to prevent radical oxidation of the polyunsaturated fatty acids of low-density lipoproteins (LDL) and hence, are conducive to the prevention of cardiovascular diseases [223]. The compounds derived from grape pomace were also tested for their anti-inflammatory and anti-carcinogenic effect [224]. Álvarez et al. [225] studied the impact of procyanidins from grape pomace as inhibitors of human endothelial NADPH oxidase and stated the decrease in the production of reactive oxygen species. A rich source of procyanidins is grape seeds. They are widely consumed in some countries in the form of powder as a dietary supplement because of several related health benefits associated with procyanidins. They present antitumor-promoting activity, inhibit growth and induce apoptosis in human prostate cancer cells, as well as significantly reducing atherosclerosis in the aorta.

Seeds contain a very broad spectrum of procyanidins, with the dominant compounds being the dimers, trimers, and tetramers of catechin or epicatechin. Higher polymers are also present but at much lower abundance. Besides, every polymer can also be found as a gallic acid ester.

Very important is the anti-microbial activity of bioactive compounds included in grapes wastes. Mendoza et al. [226] demonstrated the antifungal properties of extracts from winery by-products against *Botrytis cinerea*, the causal agent of gray mold, considered the most important pathogen responsible for postharvest decay of fresh fruit and vegetables. Moreover, a few reports are available in the literature about the effective action of polyphenol-rich extracts from vinification by-products against various pathogenic bacteria and insects, e.g., *Listeria monocytogenes, Leptinotarsa decemlineata*, and *Spodoptera littoralis* [1]. The potential health benefits of plant phenolics cause much interest and consideration in a lot of agri-food applications for phenolics extracted from grape wastes [16]. There are a lot of studies on the application of phytochemicals from grape pomace in the meat industry [221].

To facilitate the industrial application of wine waste polyphenols, encapsulation was recently developed to improve the stability of valuable compounds in different conditions of light and temperature [227,228].

The examples of the newest potential applications and valuable properties of phytochemicals derived from winery waste are listed in Table 17.

Material	Extract/Compound	Biological Activity/Application	References
Fresh and fermented grape pomace	Extract	 antioxidant, anti-inflammatory, and antiproliferative activity 	Balea et al. [217]
Grape pomace	Hydroalcoholic extract (saponins, tannins, and flavonoids as active constituents)	- anthelmintic activity	Soares et al. [229]
Grape pomace	Whole apple pomace (phenolic compounds as main constituents)	 reduction of the severity of non-alcoholic hepatic steatosis inhibition of steatohepatitis improvement in insulin sensitivity reduction of ectopic fat deposition in mice 	Daniel et al. [212]
Grape pomace	crude extract and four fractions: the most active free phenolic acids fraction extract: catechin,	- inhibitory effect on collagenase and elastase	Wittenauer et al. [213]
White grape pomace	epicatechin, quercetin, and gallic acid as the main active constituents	- antiproliferative activity against adenocarcinoma cell	Jara–Palacios et al. [214]
Grape pomace	Ethanolic extract	- antioxidant activity - potential application as additives to food enhancing nutritional value and improving storability	Iora et al. [220]
Grape stem	extracts	 prevention of radical oxidation of the polyunsaturated fatty acids of low-density lipoproteins (LDL) reduction of intracellular reactive oxygen species (ROS) prevention of cardiovascular diseases 	Anastasiadi et al. [223]
Grape seeds	procyanidin-rich extract	- antibacterial activity against Helicobacter pylori (H. pylori)	Silvan et al. [230]
Grape seeds Grape pomace	procyanidin-rich extract phenolics	 antihypertensive activity antioxidant properties radical scavenging, enzymatic. 	Quiñones et al. [231] Tournour et al. [232]
Grape pomace	"Enocianina"— anthocyanin-rich extract	antioxidant and anti-inflammatory activity - application as a colorant in the food industry	Della Vedova et al. [233]
Grape pomace	phenolics	 photoprotective activity reduction of the negative effects of UV radiation on the skin, such as 	Hübner et al. [234]
Grape pomace Grape pomace	extracts ethanolic extract	- wastewater remediation - application as additives to yogurt - application as a reducing agent of	Gavrilas et al. [235] Olt et al. [236]
Grape pomace	alcoholic extract	the precursor silver nitrate, a process that has led to the obtaining of silver nanoparticles (NP Ag) by reducing the ions	Asmat–Campos et al. [237]
Grape skin	resveratrol	- as an antioxidant in the meat industry	Andrés et al. [238]
Grape seeds Grape steam	flavonoids procyanidins	 antimicrobial activity in meat inhibition of toxic compounds 	Biniari et al. [239] Bordiga et al. [240]

 Table 17. Biological activity and potential applications of phytochemicals obtained from grape residues.

Material	Extract/Compound	Biological Activity/Application	References
Grape pulp	phenolic compounds	- pigment protection in meat	Chen et al. [241]
Grape pomace	anthocyanins	 modulation of the sensory characteristic of meat 	Crupi et al. [242]
Grape pomace	stilbenes	 modulation of the sensory characteristic of meat 	Mainente et al. [243]
Grape seeds	Unsaturated fatty acids (linoleic and oleic acid)	- substitution nitrate and nitrite	Gárcia–Lomillo and González-San José [244]

Table 17. Cont.

2.9. Citrus Residues

Citrus fruits from the family *Rutaceae* include oranges, lemons, limes, grapefruits, mandarins, and tangerines. They are well known for their nutritional value, as they are good sources of dietary fiber, pectin, vitamin C, vitamin B group, carotenoids, flavonoids, and limonoids (Table 18). It is estimated that approximately 140 chemical components have been isolated and identified from citrus peels, and flavonoids are the main group of phytochemicals with biological activity [245]. Afsharnezhad et al. [165] evaluated the antioxidant potential of extract from various fruit peels and stated that the maximum DPPH radical scavenging activity, total phenols, and total anthocyanins were observed in orange peels.

Table 18. Phytochemicals identified	and quantified in citrus residues.
-------------------------------------	------------------------------------

Name	Citrus Residues	MW [g mol ⁻¹]	$C_xH_yO_z$	Concentration [mg/kg dm]	References
Total phenols	kinnow peel			13,840–27,910 ^{a,c}	Yaqoob et al. [246]
1	lime peel			5.2 ^b	Karetha et al. [247]
	mandarin peel			4.0 ^b	Karetha et al. [247]
	lemon peel			4.7 ^b	Karetha et al. [247]
	pomelo peel			6.4 ^b	Karetha et al. [247]
	rough lemon peel			4.1 ^b	Karetha et al. [247]
	citron peel			6.8 ^b	Karetha et al. [247]
	sour orange peel			30.4–1354.4 ^a	Benayad et al. [248]
	lime and orange peel			3860	Barbosa et al. [249]
	orange peel			7055–19,885 ^a	Liew et al. [250]
	orange seeds oil			4430	Jorge et al. [251]
Total flavonoids	kinnow peel			610–11,770 ^a	Yaqoob et al. [246]
	sour orange peel			2.3-603.6 ^a	Benayad et al. [248]
	orange peel			854.7-2975.4 ^a	Liew et al. [250]
	sour orange peel			589.4	Olfa et al. [252]
	lime peel			95.3	Olfa et al. [252]
	orange peel			132.2	Olfa et al. [252]
	lemon peel			610.5	Olfa et al. [252]
	mandarin peel			275.9	Olfa et al. [252]
Total carotenoids	orange seeds oil			19	Jorge et al. [251]
		Organ	ic acids		
Lactic acid	orange peel	90.08	$C_3H_6O_3$	5463–9861 ^a	Liew et al. [250]
Citric acid	orange peel	192.1	$C_6H_8O_7$	19,587–27,910 ^a	Liew et al. [250]
L-mallic acid	orange peel	134.1	$C_4H_6O_5$	3056–5064 ^a	Liew et al. [250]
Kojic acid	orange peel	141.1	$C_6H_6O_4$	111.2–116.4 ^a	Liew et al. [250]
Ascorbic acid	orange peel	176.1	$C_6H_8O_6$	1.12–7.32 ^a	Liew et al. [250]
	Pher	olic acids—hy	droxybenzoic	acids	
Ellagic acid	lime and orange peel	302.20	$C_{14}H_6O_8$	109.7	Barbosa et al. [249]
	lime and orange peel			5.7	Barbosa et al. [249]
Gallic acid	sour orange peel	170.12	$C_7H_6O_5$	111.3–866.7 ^a	Benayad et al. [249]
	orange peel			8.84–17.81 ^a	Liew et al. [250]
Protocatechuic acid	orange peel	154.12	$C_7H_6O_4$	24.55-65.92 a	Liew et al. [250]

Table 18. Cont.

Name	Citrus Residues	MW [g mol ⁻¹]	$C_x H_y O_z$	Concentration [mg/kg dm]	References
4-hydroxybenzoic acid	orange peel	138.12	C ₇ H ₆ O ₃	26.27–42.50 ^a	Liew et al. [250]
	Phen	olic acids—hy	droxycinnamic	acids	
	sour orange peel			360.0–17,237.7 ^a	Benayad et al. [248]
	orange peel			154.8–477.3 ^a	Liew et al. [250]
	yuzu peel			135	Lee et al. [253]
	sour orange peel			139	Lee et al. [253]
Ferulic acid	mandarin peel	194.18	$C_{10}H_{10}O_4$	101	Lee et al. [253]
	lime peel			18	Lee et al. [253]
	grapefruit peel			29	Lee et al. [253]
	lemon peel			18	Lee et al. [253]
	orange peel			19	Lee et al. [253]
	sour orange peel			242.4	Benayad et al. [248]
	yuzu peel			101	Lee et al. [253]
	sour orange peel			123	Lee et al. [253]
<i>n</i> -coumaric acid	mandarin peel	164 16	CoHoOo	52	Lee et al. [253]
p countaire acta	lime peel	101.10	C911803	76	Lee et al. [253]
	grapefruit peel			16	Lee et al. [253]
	lemon peel			48	Lee et al. [253]
	orange peel			18	Lee et al. [253]
	mandarin peel			0.08–68.58 ^a	Safranko et al. [254]
	sour orange peel			4.494	Benayad et al. [248]
Chlorogenic acid	yuzu peel	354.31	$C_{16}H_{18}O_9$	39	Lee et al. [253]
	sour orange peel			96	Lee et al. [253]
	mandarin peel			40	Lee et al. [253]
	sour orange peel			384.0–1326.1 ^a	Benayad et al. [248]
	orange peel			54.5-210.1 ª	Liew et al. [250]
	yuzu peel	100.17		55	Lee et al. [253]
Caffeic acid	sour orange peel	180.16	$C_9H_8O_4$	27	Lee et al. [253]
	mandarın peel			15	Lee et al. [253]
	lime peel			4	Lee et al. [253]
	lemon peel	F 1 1.	(1 1.	12	Lee et al. [253]
		Flavonoids	-flavonois	0 10 4 07 3	Č. (
Destin	mandarin peel	(10 52		0.18 - 4.27 "	Safranko et al. [254]
Rutin	orange peel	610.52	$C_{27}H_{30}O_{16}$	9.56-10.11 "	Liew et al. [250]
	mandarin peel	Elementida		177	Lee et al. [253]
	cour orange peol	Flavonoids	-navanois	278 2 1206 a	Repayed at al [248]
Catechin	sour orange peer	290.26	$C_{15}H_{14}O_{6}$	40.02 266 8 a	Liouv et al. [250]
Enigallocatashin	orange peel			40.92-300.0 84.32 217.14 a	Liew et al. [250]
Epiganocatecium	orange peer	Flavonoic	le flavonos	04.23-317.14	Liew et al. [250]
	sour orange peel	Playonoic	is-mayones	38 552 1	Benavad et al [248]
Apigenin	orange peel	270.24	$C_{15}H_{10}O_5$	57 91_159 67	I iew et al [250]
Diosmetin	lime and orange peel	300.26	C_{1} $H_{12}O_{2}$	32	Barbosa et al [249]
Vitexin	orange peel	432 38	$C_{16}H_{12}O_{6}$	30 73–117 27 ^a	I jew et al [250]
Luteolin	orange peel	286.24	$C_{15}H_{10}O_{6}$	93.47–275.14 ^a	Liew et al. $[250]$
Tangeretin	lime and orange peel	372.37	$C_{20}H_{20}O_7$	14.1	Barbosa et al. [249]
in gereint	und stunge peer	Flavonoids	flavanones		
	lime and orange peel			4.7	Barbosa et al. [249]
Naringenin	sour orange peel	272.25	$C_{15}H_{12}O_5$	5745.6–96.942 ^a	Benavad et al. [248]
TT	1. 1	000.00		10 -	Barbosa et al. [249]
Hesperetin	lime and orange peel	302.28	$C_{16}H_{14}O_6$	10.5	. 1

Table 18. Cont.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Name	Citrus Residues	MW [g mol ⁻¹]	$C_xH_yO_z$	Concentration [mg/kg dm]	References	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		lime and orange peel mandarin peel			2326.5 0.16–15.07 ^a	Barbosa et al. [249] Šafranko et al. [254]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	** • 1•	yuzu peel			5367	Lee et al. [253]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Hesperidin	mandarın peel	610.57	$C_{28}H_{34}O_{15}$	21,496	Lee et al. [253]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		lime peel			4862	Lee et al. $[253]$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		orange peel			16 299	Lee et al. $[253]$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		lime and orange peel			10.2	Barbosa et al. [249]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		vuzu peel			5255	Lee et al. [253]	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		sour orange peel			19,750	Lee et al. [253]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Naringin	mandarin peel	580.54	C ₂₇ H ₃₂ O ₁₄	146	Lee et al. [253]	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Ū.	lime peel			36	Lee et al. [253]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		grapefruit peel			31,314	Lee et al. [253]	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		lemon peel			41	Lee et al. [253]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		lime and orange peel			293.4	Barbosa et al. [249]	
		mandarin peel			0.03–5.11 ^a	Safranko et al. [254]	
		yuzu peel			4734	Lee et al. [253]	
Natrituin mandarin peel lime peel grapefruit peel orange peel 580:54 $C_{27}H_{32}O_{14}$ 10.642 Lee et al. [253] Lee et al. [253] lime peel orange peel 185 Lee et al. [253] Bergapten lime peel lime peel 64 Lee et al. [253] Bergapten lime peel lime peel 64 Lee et al. [253] Bergamottin grapefruit peel grapefruit peel 38.40 $C_{21}H_{22}O_{4}$ 25 Lee et al. [253] Bergamottin grapefruit peel grapefruit peel 38.40 $C_{21}H_{22}O_{4}$ 25 Lee et al. [253] Bergamottin grapefruit peel grapefruit peel 38.40 $C_{21}H_{22}O_{4}$ 25 Lee et al. [253] Caprylaldehyde sour orange peel 126.27 $C_{10}H_{30}O$ 180.5 b Benayad et al. [248] Decanal sour orange peel 156.27 $C_{10}H_{30}O$ 129.8 b Benayad et al. [248] D-limonene sour orange peel 156.27 $C_{10}H_{10}O$ 282.7 b Benayad et al. [248] J-linalool sour orange peel 156.27 $C_{10}H_{10}O$ 282.7 b Benayad et al. [248] Linalyl acetate sour orange peel	NTenteration	sour orange peel			64 10.(4 2	Lee et al. [253]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Narirutin	mandarın peel	580.54	$C_{27}H_{32}O_{14}$	10,642	Lee et al. [253]	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		mile peer			209	Lee et al. [253]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		lomon pool			2027	Lee et al. $[253]$	
		orange peel			1342	Lee et al. $[253]$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Furanocumarine						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		sour orange peel	i uruno.	cumums	64	Lee et al. [253]	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bergapten	lime peel	216.19	$C_{12}H_8O_4$	196	Lee et al. $[253]$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dergapterr	lemon peel		01211804	3	Lee et al. $[253]$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		lime peel			81	Lee et al. [253]	
Import Import <thimport< th=""> <thimport< <="" td=""><td>Bergamottin</td><td>grapefruit peel</td><td>338.40</td><td>C₂₁H₂₂O₄</td><td>25</td><td>Lee et al. [253]</td></thimport<></thimport<>	Bergamottin	grapefruit peel	338.40	C ₂₁ H ₂₂ O ₄	25	Lee et al. [253]	
Volatile compoundsCaprylaldehydesour orange peel128.21 C_8H_16O 180.5 bBenayad et al. [248]Decanalsour orange peel156.27 $C_{10}H_{20}O$ 167.2 bBenayad et al. [248]Decanolsour orange peel158.28 $C_{10}H_{2O}O$ 129.8 bBenayad et al. [248]Geranyl Acetatesour orange peel196.29 $C_{12}H_{20}O_2$ 172.7 bBenayad et al. [248]D-limonenesour orange peel136.24 $C_{10}H_{16}$ 2038.7 bBenayad et al. [248]Linalool oxidesour orange peel170.25 $C_{10}H_{18}O$ 208.7 bBenayad et al. [248]Linalool oxidesour orange peel196.29 $C_{12}H_{20}O_2$ 589.1 bBenayad et al. [248]Linalool oxidesour orange peel196.29 $C_{12}H_{20}O_2$ 589.1 bBenayad et al. [248] β -myrcenesour orange peel136.23 $C_{10}H_{18}O$ 208.2 bBenayad et al. [248] β -ocimenesour orange peel136.23 $C_{10}H_{16}O$ 197.8 bBenayad et al. [248] β -ocimenesour orange peel136.23 $C_{10}H_{16}O$ 389.5 bBenayad et al. [248] α -pinenesour orange peel136.23 $C_{10}H_{16}O$ 389.5 bBenayad et al. [248] α -pinenesour orange peel136.23 $C_{10}H_{18}O$ 389.5 bBenayad et al. [248] α -pinenesour orange peel136.23 $C_{10}H_{18}O$ 389.5 bBenayad et al. [248] α -pinenesour orange peel	Ū.	lemon peel			16	Lee et al. [253]	
$\begin{array}{c cccc} Caprylaldehyde & sour orange peel & 128.21 & C_8H_{16}O & 180.5^{b} & Benayad et al. [248] \\ Decanal & sour orange peel & 156.27 & C_{10}H_{20}O & 167.2^{b} & Benayad et al. [248] \\ Decanol & sour orange peel & 158.28 & C_{10}H_{20}O & 172.7^{b} & Benayad et al. [248] \\ Geranyl Acetate & sour orange peel & 196.29 & C_{12}H_{20}O_2 & 172.7^{b} & Benayad et al. [248] \\ D-limonene & sour orange peel & 136.24 & C_{10}H_{16} & 3939.4^{b} & Benayad et al. [248] \\ \dot{\beta}-linalool & sour orange peel & 170.25 & C_{10}H_{18}O_2 & 282.0^{b} & Benayad et al. [248] \\ Linalool oxide & sour orange peel & 196.29 & C_{12}H_{20}O_2 & 589.1^{b} & Benayad et al. [248] \\ \dot{\beta}-myrcene & sour orange peel & 136.23 & C_{10}H_{16} & 1972.8^{b} & Benayad et al. [248] \\ \beta-myrcene & sour orange peel & 136.23 & C_{10}H_{16} & 1972.8^{b} & Benayad et al. [248] \\ \beta-ocimene & sour orange peel & 136.23 & C_{10}H_{16} & 465.2^{b} & Benayad et al. [248] \\ \beta-ocimene & sour orange peel & 136.23 & C_{10}H_{16} & 303.1^{b} & Benayad et al. [248] \\ \beta-pinene & sour orange peel & 136.23 & C_{10}H_{16} & 417.6^{b} & Benayad et al. [248] \\ \beta-pinene & sour orange peel & 136.23 & C_{10}H_{16} & 380.1^{b} & Benayad et al. [248] \\ \beta-pinene & sour orange peel & 136.23 & C_{10}H_{16} & 417.6^{b} & Benayad et al. [248] \\ \beta-pinene & sour orange peel & 136.23 & C_{10}H_{16} & 393.1^{b} & Benayad et al. [248] \\ \beta-pinene & sour orange peel & 136.23 & C_{10}H_{16} & 393.1^{b} & Benayad et al. [248] \\ \alpha-riprineol & sour orange peel & 136.23 & C_{10}H_{16} & 417.6^{b} & Benayad et al. [248] \\ \beta-pinene & sour orange peel & 136.23 & C_{10}H_{16} & 393.1^{b} & Benayad et al. [248] \\ \beta-pinene & sour orange peel & 136.23 & C_{10}H_{16} & 393.1^{b} & Benayad et al. [248] \\ \alpha-terpineol & sour orange peel & 136.23 & C_{10}H_{16} & 393.1^{b} & Benayad et al. [248] \\ \beta-pinene & sour orange peel & 136.23 & C_{10}H_{16} & 393.1^{b} & Benayad et al. [248] \\ \beta-pinene & sour orange peel & 136.23 & C_{10}H_{16} & 417.6^{b} & Benayad et al. [248] \\ \beta-pinene & sour orange peel$		*	Volatile c	ompounds			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Caprylaldehyde	sour orange peel	128.21	$C_8H_{16}O$	180.5 ^b	Benayad et al. [248]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Decanal	sour orange peel	156.27	$C_{10}H_{20}O$	167.2 ^b	Benayad et al. [248]	
Geranyl Acetatesour orange peel196.29 $C_{12}H_{20}O_2$ 172.7 bBenayad et al. [248]D-limonenesour orange peel136.24 $C_{10}H_{16}$ 3939.4 bBenayad et al. [248] β -linaloolsour orange peel154.25 $C_{10}H_{18}O$ 2038.7 bBenayad et al. [248]Linalool oxidesour orange peel170.25 $C_{10}H_{18}O_2$ 282.0 bBenayad et al. [248]Linalyl acetatesour orange peel136.23 $C_{10}H_{16}$ 1972.8 bBenayad et al. [248] β -myrcenesour orange peel136.23 $C_{10}H_{16}$ 1972.8 bBenayad et al. [248] β -ocimenesour orange peel136.23 $C_{10}H_{16}$ 1972.8 bBenayad et al. [248] β -ocimenesour orange peel136.23 $C_{10}H_{16}$ 465.2 bBenayad et al. [248] α -pinenesour orange peel136.23 $C_{10}H_{16}$ 350.1 bBenayad et al. [248] α -pinenesour orange peel136.23 $C_{10}H_{16}$ 350.1 bBenayad et al. [248] α -pinenesour orange peel136.23 $C_{10}H_{16}$ 350.1 bBenayad et al. [248] α -pinenesour orange peel136.23 $C_{10}H_{16}$ 350.1 bBenayad et al. [248] α -pinenesour orange peel136.23 $C_{10}H_{16}$ 350.1 bBenayad et al. [248] α -pinenesour orange peel136.23 $C_{10}H_{16}$ 350.1 bBenayad et al. [248] α -creptionalsour orange peel136.23 $C_{10}H_{16}$ 350.1 b<	Decanol	sour orange peel	158.28	$C_{10}H_{22}O$	129.8 ^b	Benayad et al. [248]	
D-limonenesour orange peel136.24C10H163939.4 bBenayad et al. [248]β-linaloolsour orange peel154.25C10H18O2038.7 bBenayad et al. [248]Linalool oxidesour orange peel170.25C10H18O2038.7 bBenayad et al. [248]Linalool oxidesour orange peel196.29C10H18O282.0 bBenayad et al. [248]β-myrcenesour orange peel136.23C10H161972.8 bBenayad et al. [248]β-myrcenesour orange peel136.23C10H161972.8 bBenayad et al. [248]β-ocimenesour orange peel136.23C10H16465.2 bBenayad et al. [248]β-ocimenesour orange peel136.23C10H16455.2 bBenayad et al. [248]β-pinenesour orange peel136.23C10H16455.2 bBenayad et al. [248]β-pinenesour orange peel136.23C10H16417.6 bBenayad et al. [248]α-terpineolsour orange peel1077.7C72H18O2.07Huang	Geranyl Acetate	sour orange peel	196.29	$C_{12}H_{20}O_2$	172.7 ^b	Benayad et al. [248]	
β-linaloolsour orange peel154.25C10H18O2038.7 bBenayad et al. [248]Linalool oxidesour orange peel170.25C10H18O2282.0 bBenayad et al. [248]Linalyl acetatesour orange peel196.29C12H20O2589.1 bBenayad et al. [248]β-myrcenesour orange peel136.23C10H161972.8 bBenayad et al. [248]β-corimenesour orange peel136.23C10H161972.8 bBenayad et al. [248]β-ocimenesour orange peel136.23C10H16465.2 bBenayad et al. [248]β-orimenesour orange peel136.23C10H16465.2 bBenayad et al. [248]β-pinenesour orange peel136.23C10H16417.6 bBenayad et al. [248]β-pinenesour orange peel136.23C10H16399.5 bBenayad et al. [248]α-terpineolsour orange peel154.25C10H18O389.5 bBenayad et al. [248]α-terpineolsour orange peel1077.7C72H116O62.07Huang et al. [255]Violaxanthinmandarin peel965.44C64H100O61.33Huang et al. [255]Violaxanthinmandarin peel568.88C40H56O21.31Huang et al. [255]β-cryptoxanthinmandarin peel552.85C40H56O0.10Huang et al. [255]β-craotenekinnow peel568.87C40H56O20.88Huang et al. [255]β-craotenemandarin peel568.87C40H56O20.88Huang et al. [255]	D-limonene	sour orange peel	136.24	$C_{10}H_{16}$	3939.4 ^b	Benayad et al. [248]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	β -linalool	sour orange peel	154.25	$C_{10}H_{18}O$	2038.7 ^b	Benayad et al. [248]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Linalool oxide	sour orange peel	170.25	$C_{10}H_{18}O_2$	282.0 ^b	Benayad et al. [248]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Linalyl acetate	sour orange peel	196.29	$C_{12}H_{20}O_2$	589.1 ^b	Benayad et al. [248]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	β -myrcene	sour orange peel	136.23	$C_{10}H_{16}$	1972.8 ^b	Benayad et al. [248]	
β-ocimene sour orange peel 136.23 $C_{10}H_{16}$ 465.2 b Benayad et al. [248] α-pinene sour orange peel 136.23 $C_{10}H_{16}$ 350.1 b Benayad et al. [248] β-pinene sour orange peel 136.23 $C_{10}H_{16}$ 417.6 b Benayad et al. [248] α-terpineol sour orange peel 154.25 $C_{10}H_{18}O$ 389.5 b Benayad et al. [248] α-terpineol sour orange peel 154.25 $C_{10}H_{18}O$ 389.5 b Benayad et al. [248] α-terpineol sour orange peel 154.25 $C_{10}H_{18}O$ 389.5 b Benayad et al. [248] α-terpineol mandarin peel 965.44 $C_{64}H_{100}O_6$ 1.33 Huang et al. [255] Violaxanthin mandarin peel 1077.7 $C_{72}H_{116}O_6$ 2.07 Huang et al. [255] Δeaxanthin mandarin peel 568.88 $C_{40}H_{56}O_2$ 1.31 Huang et al. [255] Δ mandarin peel 552.85 $C_{40}H_{56}O_2$ 4.96 Huang et al. [255] Lutein kinnow peel	Nerol	sour orange peel	154.25	$C_{10}H_{18}O$	106.2 ^b	Benayad et al. [248]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	β -ocimene	sour orange peel	136.23	$C_{10}H_{16}$	465.2 ^b	Benayad et al. [248]	
β-pinene sour orange peel 136.23 $C_{10}H_{16}$ 417.6 b Benayad et al. [248] α-terpineol sour orange peel 154.25 $C_{10}H_{18}O$ 389.5 b Benayad et al. [248] Violaxantin dilaurate mandarin peel 965.44 $C_{64}H_{100}O_6$ 1.33 Huang et al. [255] Violaxanthin mandarin peel 1077.7 $C_{72}H_{116}O_6$ 2.07 Huang et al. [255] Zeaxanthin mandarin peel 568.88 $C_{40}H_{56}O_2$ 1.31 Huang et al. [255] α-cryptoxanthin mandarin peel 552.85 $C_{40}H_{56}O_2$ 1.31 Huang et al. [255] β-cryptoxanthin mandarin peel 552.85 $C_{40}H_{56}O_2$ 0.10 Huang et al. [255] Lutein kinnow peel 568.87 $C_{40}H_{56}O_2$ 0.88 Huang et al. [255] β-carotene mandarin peel 568.87 $C_{40}H_{56}O_2$ 0.88 Huang et al. [255] (E/Z)-phytoene mandarin peel 536.87 $C_{40}H_{56}$ 5.87 Huang et al. [255] β-carotene mandarin peel	<i>α</i> -pinene	sour orange peel	136.23	$C_{10}H_{16}$	350.1 ^b	Benayad et al. [248]	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	β -pinene	sour orange peel	136.23	$C_{10}H_{16}$	417.6 ^b	Benayad et al. [248]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	α -terpineol	sour orange peel	154.25	$C_{10}H_{18}O$	389.5 ^b	Benayad et al. [248]	
Violaxantin dilaurate mandarin peel 965.44 $C_{64}H_{100}O_6$ 1.33 Huang et al. [255] Violaxanthin mandarin peel 1077.7 $C_{72}H_{116}O_6$ 2.07 Huang et al. [255] Zeaxanthin mandarin peel 568.88 $C_{40}H_{56}O_2$ 1.31 Huang et al. [255] α -cryptoxanthin mandarin peel 552.85 $C_{40}H_{56}O_2$ 0.10 Huang et al. [255] β -cryptoxanthin mandarin peel 552.85 $C_{40}H_{56}O_2$ 4.96 Huang et al. [255] Lutein kinnow peel 568.87 $C_{40}H_{56}O_2$ 0.88 Huang et al. [255] β -carotene mandarin peel 536.87 $C_{40}H_{56}O_2$ 0.88 Huang et al. [255] β -carotene mandarin peel 536.87 $C_{40}H_{56}O_2$ 0.88 Huang et al. [255] (E/Z) -phytoene mandarin peel 544.94 $C_{40}H_{64}$ 25.07 Huang et al. [255] β -citraurin mandarin peel 542.6 $C_{30}H_{40}O_2$ 1.57 Huang et al. [255]			Carot	tenoids			
Violaxanthin dipalmitatemandarin peel1077.7 $C_{72}H_{116}O_6$ 2.07Huang et al. [255]Zeaxanthinmandarin peel568.88 $C_{40}H_{56}O_2$ 1.31Huang et al. [255] α -cryptoxanthinmandarin peel552.85 $C_{40}H_{56}O$ 0.10Huang et al. [255] β -cryptoxanthinmandarin peel552.85 $C_{40}H_{56}O$ 4.96Huang et al. [255]Luteinkinnow peel mandarin peel568.87 $C_{40}H_{56}O_2$ 9.26–28.89 aSaini et al. [256] β -carotenemandarin peel536.87 $C_{40}H_{56}O_2$ 0.88Huang et al. [255] (E/Z) -phytoenemandarin peel544.94 $C_{40}H_{64}$ 25.07Huang et al. [255] β -citraurinmandarin peel432.6 $C_{30}H_{40}O_2$ 1.57Huang et al. [255]	Violaxantin dilaurate	mandarin peel	965.44	$C_{64}H_{100}O_{6}$	1.33	Huang et al. [255]	
dipalmitatemandarin ped568.88 $C_{40}H_{56}O_2$ 1.31Huang et al. [255] α -cryptoxanthinmandarin peel552.85 $C_{40}H_{56}O_2$ 1.31Huang et al. [255] β -cryptoxanthinmandarin peel552.85 $C_{40}H_{56}O$ 4.96Huang et al. [255] μ -cryptoxanthinmandarin peel568.87 $C_{40}H_{56}O_2$ 9.26–28.89 aSaini et al. [256]Luteinkinnow peel mandarin peel568.87 $C_{40}H_{56}O_2$ 0.88Huang et al. [255] β -carotenemandarin peel536.87 $C_{40}H_{56}$ 5.87Huang et al. [255] (E/Z) -phytoenemandarin peel544.94 $C_{40}H_{64}$ 25.07Huang et al. [255] β -citraurinmandarin peel432.6 $C_{30}H_{40}O_2$ 1.57Huang et al. [255]	Violaxanthin	mandarin peel	1077.7	C72H114O4	2.07	Huang et al. [255]	
Zeaxanthin mandarin peel 568.88 $C_{40}H_{56}O_2$ 1.31 Huang et al. [255] α -cryptoxanthin mandarin peel 552.85 $C_{40}H_{56}O$ 0.10 Huang et al. [255] β -cryptoxanthin mandarin peel 552.85 $C_{40}H_{56}O$ 4.96 Huang et al. [255] Lutein kinnow peel 568.87 $C_{40}H_{56}O_2$ 9.26–28.89 a Saini et al. [256] β -carotene mandarin peel 536.87 $C_{40}H_{56}O_2$ 9.26–28.89 a Saini et al. [255] (E/Z) -phytoene mandarin peel 536.87 $C_{40}H_{56}O_2$ 0.88 Huang et al. [255] β -carotene mandarin peel 544.94 $C_{40}H_{56}$ 5.87 Huang et al. [255] (E/Z) -phytoene mandarin peel 544.94 $C_{40}H_{64}$ 25.07 Huang et al. [255] β -citraurin mandarin peel 432.6 $C_{30}H_{40}O_2$ 1.57 Huang et al. [255]	dipalmitate			C II C			
a -cryptoxanthin mandarin peel 552.85 $C_{40}H_{56}O$ 0.10 Huang et al. [255] β -cryptoxanthin mandarin peel 552.85 $C_{40}H_{56}O$ 4.96 Huang et al. [255] Lutein kinnow peel 568.87 $C_{40}H_{56}O_2$ $9.26-28.89^{-a}$ Saini et al. [256] β -carotene mandarin peel 568.87 $C_{40}H_{56}O_2$ $9.26-28.89^{-a}$ Saini et al. [255] β -carotene mandarin peel 536.87 $C_{40}H_{56}O_2$ $9.26-28.89^{-a}$ Saini et al. [255] β -carotene mandarin peel 536.87 $C_{40}H_{56}O_2$ $9.26-28.89^{-a}$ Huang et al. [255] (E/Z) -phytoene mandarin peel 536.87 $C_{40}H_{56}O_2$ $9.26-28.89^{-a}$ Huang et al. [255] β -catrotene mandarin peel 536.87 $C_{40}H_{56}O_2$ $9.26-28.89^{-a}$ Huang et al. [255] β -catrotene mandarin peel 536.87 $C_{40}H_{56}O_2$ 1.57 Huang et al. [255] β -citraurin mandarin peel 542.6 $C_{30}H_{40}O_2$ 1.57 Huang et al. [255]	Zeaxanthin	mandarin peel	568.88	$C_{40}H_{56}O_2$	1.31	Huang et al. [255]	
p-cryptoxantummandarm peer552.85 $C_{40}H_{56}O$ 4.96Huang et al. [255]Luteinkinnow peel mandarin peel568.87 $C_{40}H_{56}O_2$ 9.26–28.89 aSaini et al. [256] β -carotenemandarin peel536.87 $C_{40}H_{56}O_2$ 0.88Huang et al. [255] (E/Z) -phytoenemandarin peel544.94 $C_{40}H_{64}$ 25.07Huang et al. [255] β -citraurinmandarin peel432.6 $C_{30}H_{40}O_2$ 1.57Huang et al. [255]	α -cryptoxanthin	mandarin peel	552.85 FED 85	$C_{40}H_{56}O$	0.10	Huang et al. [255]	
LuteinKnilow peer mandarin peel568.87 $C_{40}H_{56}O_2$ 9.26–26.89Sami et al. [256] β -carotenemandarin peel568.87 $C_{40}H_{56}O_2$ 0.88Huang et al. [255] β -carotenemandarin peel536.87 $C_{40}H_{56}$ 5.87Huang et al. [255](E/Z)-phytoenemandarin peel544.94 $C_{40}H_{64}$ 25.07Huang et al. [255] β -citraurinmandarin peel432.6 $C_{30}H_{40}O_2$ 1.57Huang et al. [255]	p-cryptoxantnin	kinnow neel	332.83	$C_{40}\Pi_{56}O$	4.70 0.26 20 00 a	Final for all [255]	
β-carotenemandarin peel536.87 $C_{40}H_{56}$ 5.87Huang et al. [255](E/Z)-phytoenemandarin peel544.94 $C_{40}H_{64}$ 25.07Huang et al. [255]β-citraurinmandarin peel432.6 $C_{30}H_{40}O_2$ 1.57Huang et al. [255]	Lutein	mandarin pool	568.87	$C_{40}H_{56}O_2$	9.20-20.09 0.88	Samu et al. [256] Huang et al. [255]	
(E/Z) -phytoenemandarin peel556.57 $C_{40}H_{56}$ 5.57Huang et al. [255] β -citraurinmandarin peel432.6 $C_{30}H_{40}O_2$ 1.57Huang et al. [255]	B-carotono	manuarin peel	536.87	C to H-	5.87	Huang et al. $[255]$	
β -citraurin mandarin peel 432.6 C ₃₀ H ₄₀ O ₂ 1.57 Huang et al. [255]	(E/Z)-phytoene	mandarin peel	544 94	$C_{40}H_{56}$	25.07	Huang et al. $[255]$	
	β -citraurin	mandarin peel	432.6	$C_{30}H_{40}O_{2}$	1.57	Huang et al. [255]	

Name	Citrus Residues	MW [g mol ⁻¹]	C _x H _y O _z	Concentration [mg/kg dm]	References
α-tocopherol	orange seeds oil	430.71	$C_{29}H_{50}O_2$	135.7	Jorge et al. [251]
phytosterol	orange seeds oil	414.72	$C_{29}H_{50}O$	1304.2	Jorge et al. [251]
malic acid	sour orange peel	134.09	$C_4H_6O_5$	122.4–2247 ^a	Benayad et al. [248]

Table 18. Cont.

 a depending on methods of extraction, b expressed in mg kg $^{-1}$ of fresh matter of peel, c expressed in mg kg of the extract.

Citrus peels are widely used by-products for the production of essential oils, which have great commercial importance due to their aroma, antifungal and antimicrobial properties. Citrus essential oil is employed in the food industry, perfumes, cosmetics, domestic household products, and pharmaceuticals [257]. The main ingredient is limonene, accounting for more than 94% of citrus essential oil [258]. It is used as an insect-killing agent in pesticides and a good biodegradable and non-toxic solvent [257]. Furthermore, limonene has shown regulatory effects on neurotransmitters and stimulant-induced changes in dopamine neurotransmission [258].

The citrus waste contained high amounts of organic and phenolic acids, as well as flavonoids. Among flavonoids, the main compounds are flavanones and flavones (such as naringenin, hesperetin, and apigenin glycosides) as well as polymethoxylated flavones (PMFs), not found in other fruit species [259,260]. Okino Delgado and Feuri [258] indicated that polymethoxylated flavones, at a dosage of 250 mg/kg, exhibit an anti-inflammatory effect comparable to ibuprofen. The most widely studied PMFs are tangeretin and nobiletin. They are exclusively derived from citrus peels. Lv et al. [261] stated that nobiletin and its derivatives showed anti-cancer activity. Generally, anticancer activity increases with the increasing number of methoxy groups because PMFs have then higher hydrophobicity for approaching and penetrating cancer cells [244]. Moreover, PMFs exhibit a broad spectrum of other biological activities such as anti-obesity, anti-atherosclerosis, antiviral and antioxidant properties [262,263].

Among flavanones, citrus peel is rich in eriocitrin, hesperidin, diosmin, neohesperidin, didymin, and naringin. Chiechio et al. [264] used red orange and lemon extract rich in flavanones for in vivo assays on male CD1 mice fed with a high-fat diet. The results showed that an 8-week treatment with the extract was able to induce a significant reduction in glucose, cholesterol, and triglyceride levels in the blood, with positive effects on the regulation of hyperglycemia and lipid metabolism. Barbosa et al. [265] tested flavanones obtained from citrus pomace by enzyme-assisted and conventional hydroalcoholic extraction as an agent against *Salmonella enterica* subsp. *enterica*. Tested extracts decreased the expression of genes associated with cell invasion. Moreover, the results suggest that extracts and flagella structures and downregulating fimbrial and virulence genes.

Citrus peels also contained some flavonols, such as rutin, isorhamnetin 3-O-rutinoside, quercetin-O-glucoside, and myricetin, as well as phenolic acids, but at a much lower concentration. It has been proven that *Citrus reticulata* waste extract, mainly including rutin, was the most effective against gram-negative bacteria and the three pathogenesis fungi: *Bacillus subtilis, Candida albicans* and *Aspergillus flavus* [266].

Citrus seeds are also a good source of valuable components, particularly oil rich in carotenoids (19.01 mg/kg), phenolic compounds (4.43 g/kg), tocopherols (135.65 mg/kg) and phytosterols (1304.2 mg/kg) [251]. This oil was characterized by high antioxidant activity ranging from 56.0% to 70.2%.

A summary of the main phytochemical constituents, together with their concentrations in citrus residues, as well as their newest applications and properties, is presented in Tables 18 and 19, respectively.

Material	Extract/Compound	Biological Activity/Application	References
sour orange peel	acetone extract chloroform extract ethanol-water extract naringenin gallic acid	- hypoglycaemic and antidiabetic actions - α-glucosidase inhibition - α-amylase inhibition	Benayad et al. [248]
orange peel	ethanol and methanol extract	- antimicrobial activity against Xanthomonas, Bacillus subtilis, Azotobacter, Pseudomonas, Klebsiella	Gunwantrao et al. [267]
pomelo peel	extract	 antimicrobial and antioxidants activity 	Khan et al. [268]
lemon peel	eriodictoyl, quercetin, and diosmetin	- antiviral activity against SARS-CoV-2	Khan et al. [269]
orange peel	extracts: methanol/water, ethanol/water and acetone/water	- antioxidant activity	Liew et al. [250]
sour orange lime orange lemon mandarin	ethanol/water extracts	- antioxidant activity	Olfa et al. [252]
kinnow peel and pomace	extract (supercritical CO ₂ extraction)	- antioxidant activity - for making functional cookies	Yaqoob et al. [246]
citrus pomace (Persian lime and orange)	extract rich in aglycones of flavanones, mainly naringenin and hesperetin	- activity against <i>Salmonella enterica</i> subsp. enterica serovar Typhimurium	Barbosa et al. [265]
lemon, orange andgrapefruit peel	essential oils (EOs)	- antifungal activity against Rhizoctonia solanii and Sclerotium rolfsii - insecticidal activity against Rhyzopertha dominica, Oryzaephilus sp., and Sitophilus granarius	Achimón et al. [270]
mandarin peel	Extract rich in polyphenols, mainly narirutin and hesperidin	- inhibition of the growth of Aspergillus flavus	Liu et al. [271]
citrus peel	nobiletin	- activity against pancreatic cancer through cell cycle arrest	Jiang et al. [272]
citrus peel	nobiletin	- activity against prostate cancer thanks to its anti-inflammation properties	Ozkan et al. [273]
mandarin peel	polymethoxyflavone-rich extract (PMFE)	- alleviating the metabolic syndrome by regulating the gut microbiome and amino acid metabolism	Zeng et al. [263]
Mandarin peel	polymethoxyflavone-rich extract (PMFE)	- alleviating high-fat diet-induced hyperlipidemia	Gao et al. [262]
Orange and lemon peel	Extract rich in flavanones	triglycerides levels in the blood, with positive effects on the regulation of hyperglycemia and lipid metabolism	Chiechio et al. [264]
Lime and orange peel	Extract rich in flavanones, mainly hesperetin, hesperidin, narirutin, and naringin	- antibacterial activity against Salmonella enterica	Barbosa et al. [265]
Bitter orange peel	Extract rich in luteolin 7-0 glucoside	- antioxidant activity - activity against gram-positive bacteria and <i>Fusarium oxysporum</i>	Lamine et al. [266]

 Table 19. Biological activity and potential applications of phytochemicals obtained from citrus residues.

Material	Extract/Compound	Biological Activity/Application	References
Mandarin peel	Extract rich in rutin	- activity against gram-negative bacteria and the three pathogenesis fungi: <i>Bacillus subtilis, Candida albicans</i> <i>and Aspergillus flavus.</i>	Lamine et al. [266]
Orange peel	Extract rich in polymethoxyflavones	- antifungal activity against Aspergillus niger.	Lamine et al. [266]
Pomegranate peel	Ethanolic and methanolic extract	- activity against gram-positive, gram-negative, and two fungal pathogenic strains - used as a natural food preserver	Hanafy et al. [274]

Table 19. Cont.

2.10. Olive Waste

The cultivation of olive trees is a widespread practice in the Mediterranean region, accounting for about 98% of the world's olive cultivation. A large number of phenolic compounds occur in both olive oil and olive waste that includes both leaves and the residues of oil production [275,276]. Their chemical characterization was reported by Dermeche et al. [277]. The main groups of phenolic compounds in olive mill wastes are phenolic acids, secoiridoids, and flavonoids, and the most abundant polyphenols are oleuropein, hydroxytyrosol, verbascoside, apigenin-7-glucoside, and luteolin-7-glucoside [278] (Table 20). Olive mill wastewater obtained during oil production is a complex mixture of vegetation waters and processing waste of the olive fruit; it is characterized by a dark color, strong odor, a mildly acidic pH, and a very high inorganic and organic load [279]. The organic fraction consists essentially of sugars, tannins, polyphenols, polyalcohols, proteins, organic acids, pectins and lipids [277]. About 30 million m³ of olive mill wastewater are produced annually in the world as a by-product of the olive oil extraction process; because of the high polyphenolic content (0.5–24 g/L), this by-product is difficult to biodegrade and a relevant environmental and economic issue [280].

Table 20. Phytochemicals identified and quantified in olive waste.

Name	Olive Residue	MW [g mol ⁻¹]	$C_x H_y O_z$	Concentration	References		
Phenolic acids							
Cinnamic acid	deffated olives	148.16	$C_9H_8O_2$	2.3 ^a 12–205 ^{b,c}	Alu'datt et al. [281] Zhao et al. [282]		
<i>p</i> -coumaric acid	deffated olives olive pomace	164.04	C ₉ H ₈ O ₃	10.3 ^a 84–884 ^{b,c} 5.01 ^b	Alu'datt et al. [281] Zhao et al. [282] Benincasa et al. [283]		
o-coumaric acid	olive pomace	164.04	$C_9H_8O_3$	70–1562 ^{b,c}	Zhao et al. [282]		
Caffeic acid	deffated olives leaves OMWW * olive pomace	180.16	$C_9H_8O_4$	3.1 ^a 150 ^b 270 ^b 39–420 ^{b,c}	Alu'datt et al. [281] Ladhari et al. [284] Ladhari et al. [284] Zhao et al. [282]		
Protocatechuic acid	deffated olives	154.12	$C_7H_6O_4$	22.2 ^a	Alu'datt et al. [281]		
Hydroxybenzoic acid	deffated olives	138.12	$C_7H_6O_3$	4.2 ^a	Alu'datt et al. [281]		
Vanillic acid	deffated olives olive pomace	168.14	$C_8H_8O_4$	9.0 ^a 203–2530 ^{b,c}	Alu'datt et al. [281] Zhao et al. [282]		
Ferulic acid	deffated olives olive pomace	194.18	$C_{10}H_{10}O_4$	6.9 ^a 23–326 ^{b,c}	Alu'datt et al. [281] Zhao et al. [282]		
Gallic acid	deffated olives olive pomace	170.12	$C_7H_6O_5$	7.1 ^a 7–223 ^{b,c}	Alu'datt et al. [281] Zhao et al. [282]		
Syringic acid	deffated olives	198.17	$C_9H_{10}O_5$	4.1 ^a	Alu'datt et al. [281]		
Sinapic acid	deffated olives	224.21	$C_{11}H_{12}O_5$	14.4 ^a	Alu'datt et al. [281]		

Name

4-hydroxyphenyl acetic

acid

Oleuropein

Oleuropein aglycone

Verbascoside

Ligstroside

Tyrosol

Hydroxytyrosol

Table 20. Cont.				
Olive Residue	MW [g mol ⁻¹]	$C_xH_yO_z$	Concentration	References
olive pomace	152.15	$C_8H_8O_3$	660–4450 ^{b,c}	Zhao et al. [282]
	Secoiridoids an	d derivatives		
leaves OMWW	540.54	C25H32O13	13,050 ^b 9 ^b	Ladhari et al. [284]
OMWW		20 02 10	103 ^b 811–12 231 ^{b,c}	Benincasa et al. [283] Zhao et al. [282]
leaves OMWW	378.4	$C_{19}H_{22}O_8$	3410 ^b 6 ^b	Ladhari et al. [284]
leaves OMWW OMSW **	624.59	C ₂₉ H ₃₆ O ₁₅	$ 1160^{b} \\ 6^{b} \\ 5^{b} \\ 833 10159^{b} \\ 6 $	Ladhari et al. [284]
olive pomace			700 ^b	Benincasa et al. [283]
leaves OMWW OMSW	524.51	C ₂₅ H ₃₂ O ₁₂	360 ^b 21 ^b 56 ^b	Ladhari et al. [284]
leaves			450 ^b 1870 ^b	Ladhari et al. [284]
OMSW OMWW	138.16	$C_8H_{10}O_2$	4 ^b 182 ^b	Poerschmann et al. [285]
OMWW			2043 ^b	Benincasa et al. [283]
leaves			130 b	Ladhari et al. $[202]$

 4450^{b}

225 ^b

Poerschmann et al. [285]

Table 20. Cont

leaves

OMWW

OMWW

 $1481\ ^{\rm b}$ OMWW Benincasa et al. [283] 1356-17,298 a,c Zhao et al. [282] olive pomace Flavonoids 2970^b leaves Ladhari et al. [284] 1010^b OMWW Luteolin **OMSW** 286.24 $C_{15}H_{10}O_{6}$ 4 ^b Zhao et al. [282] olive pomace 10-3515^{b,c} Benincasa et al. [283] **OMWW** 62.38^b 7620^b Ladhari et al. [284] leaves 150 ^b Luteolin 7-O-glucoside OMWW 448.37 $C_{21}H_{20}O_{11}$ 42-4086 b,c Zhao et al. [282] olive pomace 88.55 ^b Benincasa et al. [283] Luteolin 7-O-rutinoside 594.51 C27H30O15 Luteolin 4'-O-glucoside OMWW 448.37 C₂₁H₂₀O₁₁ 11.48 ^b Benincasa et al. [283] 110^b Ladhari et al. [284] leaves 110 ^b OMWW 3.3 ^a Alu'datt et al. [281] Rutin deffated olives 610.52 C27H30O16 770–11,048 ^{b,c} Uribe et al. [286] Zhao et al. [282] olive pomace 48.52 ^b Benincasa et al. [283] $7.4\ ^{\rm a}$ Hesperidin deffated olives 610.56 C28H34O15 Alu'datt et al. [281] 4390^b Ladhari et al. [284] leaves OMWW 1060 ^b Quercetin 302.24 C₁₅H₁₀O₇ 37 ^b OMSW deffated olives 5.7 ^a Alu'datt et al. [281] Benincasa et al. [283] 7-469 b,c 270.24 $C_{15}H_{10}O_5$ Apigenin Zhao et al. [282] Apigenin 7-O-glucoside 432.38 55-1345 b,c Zhao et al. [282] C₂₁H₂₀O₁₀

154.16

C₈H₁₀O₃

* OMWW—olive mill wastewater, ** olive mill solid waste, a percentage of total phenolic content based on peak areas, ^b expressed in mg/g dry weight, ^c depending on the methods of extraction.

Polyphenols also occur in the leaves [287]. These compounds confer bioactive properties on olive leaf extracts, such as antioxidant, antimicrobial, and antitumor activity; the capacity to reduce the risk of coronary heart disease was also reported [288]. Olive leaves can be collected as a by-product during oil processing (about 10% of the total weight of the olives) but can also be a residue of olive tree pruning. Some authors estimated that about 25 kg of by-products (twigs and leaves) could be obtained annually by pruning per tree [289]. To date, this by-product is often used as animal feed, even if this natural resource rich in antioxidant phenolic compounds should be valorized [290].

The qualitative and quantitative content of phenolic compounds is often heterogeneous in olive by-products; however, several studies reported the bioactive properties of these phenolic compounds, promising potential as antioxidant, anti-inflammatory, and antimicrobial agents. The antioxidant activities of olive mill wastewater and olive pomace have been demonstrated by different antioxidant assays as DPPH radical-scavenging activity, superoxide anion scavenging, LDL oxidation, and the protection of catalase against hypochlorous acid [281,291,292]. An overview of the pharmacology of olive oil and its active ingredients has been reported by Visioli et al. [293]. Recently, a novel stable ophthalmic hydrogel containing a polyphenolic fraction obtained from olive mill wastewater was formulated [294]. Among olive polyphenols, hydroxytyrosol is one of the main phenolic compounds; it can occur in its free form or as secoiridoids (oleuropein and its aglycone). For its polarity, it is more abundant in olive mill wastewater and pomace rather than in olive oil. Anticancer, antioxidant, and anti-inflammatory properties have been reported for hydroxytyrosol [295,296]. In vitro antioxidant and skin regenerative properties have been reported by Benincasa et al. [297].

Moreover, the polyphenol fraction obtained from olive mill wastewater showed activities against bacteria, fungi, plants, animals, and human cells; antibacterial activities against several bacterial species (*Staphylococcus aureus*, *Bacillus subtilis*, *Escherichia coli* and *Pseudomonas aeruginosa*) have been reported by Obied et al. [298]. Fungicidal activities have also been reported [299]. Moreover, the effects of phenolic compounds from olive waste on *Aspergillus flavus* growth and aflatoxin B₁ production were investigated [300,301]. The olive mill wastewater polyphenols did not inhibit the *Aspergillus flavus* fungal growth rate but significantly reduced the aflatoxin B₁ production (ranging from 88 to 100%) at 15% concentration [302].

Finally, cytoprotection of brain cells by olive mill wastewater has been studied by Schaffer et al. [303]. The cytoprotective effects were correlated to the content of hydroxytyrosol.

These studies showed the numerous beneficial and bioactive activities of polyphenols fraction obtained by olive by-products; for their use, it is often carried out an appropriate fractionation and/or purification to control their concentration and to avoid some antagonist effects.

Various valuable properties and the newest studies on the application of biologically active compounds derived form olive waste are presented in Table 21.

Material	Extract/Compound	Biological Activity/Application	References
olive leave	extract	- antioxidant, antimicrobial - antitumor activity - reduction of the risk of coronary heart disease	Taamalli et al. [288]
OMWW *	phenolic extract	 antioxidant activity DPPH radical-scavenging activity 	Kreatsouli et al. [291]
pressed olive cake	phenolic compounds	- superoxide anion scavenging - LDL oxidation - the protection of catalase against hypochlorous acid	Alu'datt et al. [281]

Table 21. Biological activity and potential applications of phytochemicals obtained from olive waste.

Material

Olive oil mill waste

OMWW

dried olive mill

wastewater

Table 21. Cont.		
Extract/Compound	Biological Activity/Application	References
SFE extract and ethanol extract (hydroxytyrosol as the main compound)	- antioxidant activity - DPPH radical-scavenging activity - application as an antioxidant act against peroxidation of virgin olive and sunflower oils	Lafka et al. [292]
polyphenolic fraction	 formulation of ophthalmic hydrogel containing a polyphenolic fraction application as ingredients in the food industry for obtaining 	Di Mauro et al. [294]
polyphenols	functional and nutraceutical foods, as well as in the pharmaceutical industry	Benincasa et al. [297]

- antibacterial activities against Staphylococcus aureus, Bacillus subtilis,

Tal	ble	21.	Cont.
-----	-----	-----	-------

OMWW polyphenol fraction Obied et al. [298] Escherichia coli, and Pseudomonas aeruginosa - fungicidal activities Yangui et al. [299] - ability as antimicrobial, antifungal, antitoxigenic to reduce aflatoxigenic olive leaves and olive fungi hazard and its aflatoxins phenolic compounds Abdel-Razek et al. [300] pomace - application as a manufacturing process, like, food supplement or preservatives antiradical activity - antioxidant activity - inhibition of the growth of Aspergillus flavus and production of olive leaves IR extract Abi–Khattar et al. [302] aflatoxin B₁ - inhibition of 20 strains of Staphylococcus aureus **OMWW** cytoprotection of brain cell Schaffer et al. [303] hydroxytyrosol

* OMWW-olive mill wastewater.

3. Conclusions

The ever-increasing amount of processed food raw materials entails an increasing amount of biowaste. Their management has become a growing problem. The consulted literature shows that discussed waste still contains valuable ingredients, medicinally important phytochemicals, and good antioxidants, so it is very important to valorize them. Currently, the recovery of different valuable phytochemicals from agro-industrial waste has become an imperative research area among the scientific community because agro-industrial residues of plant materials are a cheap and natural source of bioactive compounds, which can be used in the prevention and treatment of various diseases. Despite many studies on the valuable properties and potential applications, still, not many solutions are implemented in the industry. This is probably caused by legislation that can affect the valorization of such waste biomass. There are not many regulatory and legal provisions for their use. In the European Union, the use of agricultural residues as food ingredients is regulated by the European Community Regulation (EC) No 178/2002. However, in order to use them as natural additives, proper authorization as a novel food is necessary (Regulation (EC) No 2015/2283) [304]. There is no doubt that the industrial application of the extracts needs to be regulated.

According to the circular bioeconomy and biorefinery concept, food waste should be recycled inside the whole food value chain from field to fork in order to formulate functional foods and nutraceuticals. Nonetheless, it is important to implement environmentally friendly industrial extraction procedures. Moreover, despite so many above reports, there is still a need for human and animal studies, as well as studies in the field in the case of plants, to confirm the protective effect of such phytochemicals against diseases.

Taking into account the European Union's emphasis on the development of a circular economy and reducing the carbon footprint, it is expected that the effective application of these wastes will be carried out and that regulations will be developed in accordance with needs.

Author Contributions: Conceptualization, M.O., I.K. and W.O.; resources, W.O., I.K.; Visualisation, M.O., I.K. and T.B.; writing—original draft preparation, M.O., I.K. and T.B.; writing—review and editing, M.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Santana-Méridas, O.; González-Coloma, A.; Sánchez-Vioque, R. Agricultural residues as a source of bioactive natural products. *Phytochem. Rev.* 2012, 11, 447–466. [CrossRef]
- FAOSTAT (Statistics Division of Food and Agriculture Organization of the United Nations). Available online: https://www.fao. org/faostat/en/#data/QCL (accessed on 28 June 2022).
- Marić, M.; Grassino, A.N.; Zhu, Z.; Barba, F.J.; Brnčić, M.; Brnčić, S.R. An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction. *Trends Food Sci. Technol.* 2018, *76*, 28–37. [CrossRef]
- 4. Kasapidou, E.; Sossidou, E.; Mitlianga, P. Fruit and vegetable co-products as functional feed ingredients in farm animal nutrition for improved product quality. *Agriculture* **2018**, *5*, 1020–1034. [CrossRef]
- Casas-Godoy, L.; Campos-Valdez, A.R.; Alcázar-Valle, M.; Barrera-Martínez, I. Comparison of Extraction Techniques for the Recovery of Sugars, Antioxidant and Antimicrobial Compounds from Agro-Industrial Wastes. *Sustainability* 2022, 14, 5956. [CrossRef]
- Ngwasiri, P.N.; Ambindei, W.A.; Adanmengwi, V.A.; Ngwi, P.; Mah, A.T.; Ngangmou, N.T.; Fonmboh, D.J.; Ngwabie, N.M.; Ngassoum, M.B.; Aba, E.R. Review Paper on Agro-food Waste and Food by-Product Valorization into Value Added Products for Application in the Food Industry: Opportunities and Challenges for Cameroon Bioeconomy. *Asian J. Biotechnol. Bioresour. Technol.* 2022, *8*, 32–61. [CrossRef]
- Rodrigues, F.; Nunes, M.A.; Alves, R.C.; Oliveira, M.B.P. Applications of recovered bioactive compounds in cosmetics and other products. In *Handbook of Coffee Processing By-Products*; Academic Press: London, UK, 2017; pp. 195–220.
- Pestana-Bauer, V.R.; Zambiazi, R.C.; Mendonça, C.R.; Beneito-Cambra, M.; Ramis-Ramos, G. γ-Oryzanol and tocopherol contents in residues of rice bran oil refining. *Food Chem.* 2012, 134, 1479–1483. [CrossRef] [PubMed]
- 9. Jiang, D.; Zhuang, D.; Fu, J.; Huang, Y.; Wen, K. Bioenergy potential from crop residues in China: Availability and distribution. *Renew. Sustain. Energy Rev.* 2012, *16*, 1377–1382. [CrossRef]
- 10. Searle, S.; Malins, C. Availability of Cellulosic Residues and Wastes in the EU 2013; The International Council on Clean Transportation: Washington, DC, USA, 2013; p. 11.
- 11. Ben Taher, I.; Fickers, P.; Chniti, S.; Hassouna, M. Optimization of enzymatic hydrolysis and fermentation conditions for improved bioethanol production from potato peel residues. *Biotechnol. Prog.* **2017**, *33*, 397–406. [CrossRef] [PubMed]
- 12. Yanli, Y.; Peidong, Z.; Wenlong, Z.; Yongsheng, T.; Yonghong, Z.; Lisheng, W. Quantitative appraisal and potential analysis for primary biomass resources for energy utilization in China. *Renew. Sustain. Energy Rev.* **2010**, *14*, 3050–3058. [CrossRef]
- 13. Oleszek, M.; Tys, J.; Wiącek, D.; Król, A.; Kuna, J. The possibility of meeting greenhouse energy and CO₂ demands through utilisation of cucumber and tomato residues. *BioEnergy Res.* **2016**, *9*, 624–632. [CrossRef]
- Gabhane, J.; William, S.P.; Gadhe, A.; Rath, R.; Vaidya, A.N.; Wate, S. Pretreatment of banana agricultural waste for bio-ethanol production: Individual and interactive effects of acid and alkali pretreatments with autoclaving, microwave heating and ultrasonication. *Waste Manag.* 2014, 34, 498–503. [CrossRef] [PubMed]
- 15. Cruz, M.G.; Bastos, R.; Pinto, M.; Ferreira, J.M.; Santos, J.F.; Wessel, D.F.; Coelho, E.; Coimbra, M.A. Waste mitigation: From an effluent of apple juice concentrate industry to a valuable ingredient for food and feed applications. *J. Clean. Prod.* **2018**, *193*, 652–660. [CrossRef]
- Muhlack, R.A.; Potumarthi, R.; Jeffery, D.W. Sustainable wineries through waste valorisation: A review of grape marc utilisation for value-added products. *Waste Manag.* 2018, 72, 99–118. [CrossRef] [PubMed]

- 17. Rezzadori, K.; Benedetti, S.; Amante, E.R. Proposals for the residues recovery: Orange waste as raw material for new products. *Food Bioprod. Process.* **2012**, *90*, 606–614. [CrossRef]
- 18. Kusbiantoro, A.; Embong, R.; Aziz, A.A. Strength and microstructural properties of mortar containing soluble silica from sugarcane bagasse ash. *Key Eng. Mater.* **2018**, *765*, 269–274. [CrossRef]
- Zheng, R.; Su, S.; Zhou, H.; Yan, H.; Ye, J.; Zhao, Z.; You, L.; Fu, X. Antioxidant/antihyperglycemic activity of phenolics from sugarcane (*Saccharum officinarum* L.) bagasse and identification by UHPLC-HR-TOFMS. *Ind. Crops Prod.* 2017, 101, 104–114. [CrossRef]
- Ishak NA, I.M.; Kamarudin, S.K.; Timmiati, S.N.; Sauid, S.M.; Karim, N.A.; Basri, S. Green synthesis of platinum nanoparticles as a robust electrocatalyst for methanol oxidation reaction: Metabolite profiling and antioxidant evaluation. *J. Clean. Prod.* 2023, 382, 135111. [CrossRef]
- Rocha, G.J.; Nascimento, V.M.; Goncalves, A.R.; Silva, V.F.; Martin, C. Influence of mixed sugarcane bagasse samples evaluated by elemental and physical-chemical composition. *Ind. Crops Prod.* 2015, 64, 52–58. [CrossRef]
- 22. Mohan, P.R.; Ramesh, B.; Redyy, O.V. Production and optimization of ethanol from pretreated sugarcane bagasse using *Sac-chromyces bayanus* in simultaneous saccharification and fermentation. *Microbiol. J.* **2012**, *2*, 52–63. [CrossRef]
- Xi, Y.L.; Dai, W.Y.; Xu, R.; Zhang, J.H.; Chen, K.Q.; Jiang, M.; Wei, P.; Ouyang, P.K. Ultrasonic pretreatment and acid hydrolysis of sugarcane bagasse for succinic acid production using *Actinobacillus succinogenes*. *Bioprocess Biosyst. Eng.* 2013, 36, 1779–1785. [CrossRef]
- 24. Zhao, Z.; Yan, H.; Zheng, R.; Khan, M.S.; Fu, X.; Tao, Z.; Zhang, Z. Anthocyanins characterization and antioxidant activities of sugarcane (*Saccharum officinarum* L.) rind extracts. *Ind. Crops Prod.* **2018**, *113*, 38–45. [CrossRef]
- 25. Nieder-Heitmann, M.; Haigh, K.F.; Görgens, J.F. Process design and economic analysis of a biorefinery co-producing itaconic acid and electricity from sugarcane bagasse and trash lignocelluloses. *Bioresour. Technol.* **2018**, *262*, 159–168. [CrossRef] [PubMed]
- Zhao, Y.; Chen, M.; Zhao, Z.; Yu, S. The antibiotic activity and mechanisms of sugarcane (*Saccharum officinarum* L.) bagasse extract against food-borne pathogens. *Food Chem.* 2015, 185, 112–118. [CrossRef]
- Al Arni, S.; Drake, A.F.; Del Borghi, M.; Converti, A. Study of aromatic compounds derived from sugarcane bagasse. Part I: Effect of pH. Chem. Eng. Technol. 2010, 33, 895–901. [CrossRef]
- González-Bautista, E.; Santana-Morales, J.C.; Ríos-Fránquez, F.J.; Poggi-Varaldo, H.M.; Ramos-Valdivia, A.C.; Cristiani-Urbina, E.; Ponce-Noyola, T. Phenolic compounds inhibit cellulase and xylanase activities of Cellulomonas flavigena PR-22 during saccharification of sugarcane bagasse. *Fuel* 2017, 196, 32–35. [CrossRef]
- Zheng, R.; Su, S.; Li, J.; Zhao, Z.; Wei, J.; Fu, X.; Liu, R.H. Recovery of phenolics from the ethanolic extract of sugarcane (*Saccharum officinarum* L.) baggase and evaluation of the antioxidant and antiproliferative activities. *Ind. Crops Prod.* 2017, 107, 360–369. [CrossRef]
- Van der Pol, E.; Bakker, R.; Van Zeeland, A.; Garcia, D.S.; Punt, A.; Eggink, G. Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: Differences between autohydrolysis, alkaline and acid pretreatment. *Bioresour. Technol.* 2015, 181, 114–123. [CrossRef]
- Lv, G.; Wu, S.; Lou, R.; Yang, Q. Analytical pyrolysis characteristics of enzymatic/mild acidolysis lignin from sugarcane bagasse. Cellulose Chemistry and Technology 2010, 44, 335–342.
- 32. Michelin, M.; Ximenes, E.; Polizeli, M.; Ladisch, M.R. Effect of phenolic compounds from pretreated sugarcane bagasse on cellulolytic and hemicellulolytic activities. *Bioresour. Technol.* **2016**, *199*, 275–278. [CrossRef]
- 33. Juttuporn, W.; Thiengkaew, P.; Rodklongtan, A.; Rodprapakorn, M.; Chitprasert, P. Ultrasound-assisted extraction of antioxidant and antibacterial phenolic compounds from steam-exploded sugarcane bagasse. *Sugar Technol.* **2018**, *20*, 599–608. [CrossRef]
- 34. Treedet, W.; Suntivarakorn, R. Design and operation of a low cost bio-oil fast pyrolysis from sugarcane bagasse on circulating fluidized bed reactor in a pilot plant. *Fuel Process. Technol.* **2018**, *179*, 17–31. [CrossRef]
- 35. Krishnan, C.; Sousa, L.C.; Jin, M.; Chang, L.; Dale, B.E.; Balan, V. Alkalibased AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol. *Biotechnol. Bioeng.* **2010**, *107*, 441–450. [CrossRef] [PubMed]
- Zhu, Z.S.; Zhu, M.J.; Xu, W.X.; Liang, L. Production of bioethanol from sugarcane bagasse using NH₄OH-H₂O₂ pretreatment and simultaneous saccharification and co-fermentation. *Biotechnol. Bioprocess Eng.* 2012, 17, 316–325. [CrossRef]
- 37. Guilherme, A.A.; Dantas, P.V.; Santos, E.S.; Fernandes, F.A.; Macedo, G.R. Evaluation of composition, characterization and enzymatic hydrolysis of pretreated sugarcane bagasse. *Braz. J. Chem. Eng.* **2015**, *32*, 23–33. [CrossRef]
- Chandel, A.K.; da Silva, S.S.; Carvalho, W.; Singh, O.V. Sugarcane bagasse and leaves: Foreseeable biomass of biofuel and bio-products. *J. Chem. Technol. Biotechnol.* 2012, 87, 11–20. [CrossRef]
- 39. Guo, J.; Zhang, J.; Wang, W.; Liu, T.; Xin, Z. Isolation and identification of bound compounds from corn bran and their antioxidant and angiotensin I-converting enzyme inhibitory activities. *Eur. Food Res. Technol.* **2015**, 241, 37–47. [CrossRef]
- 40. Bujang, J.S.; Zakaria, M.H.; Ramaiya, S.D. Chemical constituents and phytochemical properties of floral maize pollen. *PLoS ONE* **2021**, *16*, e0247327. [CrossRef]
- 41. Dong, J.; Cai, L.; Zhu, X.; Huang, X.; Yin, T.; Fang, H.; Ding, Z. Antioxidant activities and phenolic compounds of cornhusk, corncob and stigma maydis. *J. Braz. Chem. Soc.* **2014**, *25*, 1956–1964. [CrossRef]
- 42. Li, Q.; Somavat, P.; Singh, V.; Chatham, L.; Gonzalez de Mejia, E. A comparative study of anthocyanin distribution in purple and blue corn coproducts from three conventional fractionation processes. *Food Chem.* **2017**, 231, 332–339. [CrossRef]

- 43. Haslina, H.; Eva, M. Extract corn silk with variation of solvents on yield, total phenolics, total flavonoids and antioxidant activity. *Indones. Food Nutr. Prog.* 2017, 14, 21–28. [CrossRef]
- Tian, S.; Sun, Y.; Chen, Z. Extraction of flavonoids from corn silk and biological activities in vitro. J. Food Qual. 2021, 2021, 1–9. [CrossRef]
- 45. Lao, F.; Giusti, M.M. Extraction of purple corn (*Zea mays* L.) cob pigments and phenolic compounds using food-friendly solvents. *J. Cereal Sci.* **2018**, *80*, 87–93. [CrossRef]
- 46. Chen, L.; Yang, M.; Mou, H.; Kong, Q. Ultrasound-assisted extraction and characterization of anthocyanins from purple corn bran. *J. Food Preserv.* 2017, 42, e13377. [CrossRef]
- 47. Barba, F.J.; Rajha, H.N.; Debs, E.; Abi-Khattar, A.M.; Khabbaz, S.; Dar, B.N.; Simirgiotis, M.J.; Castagnini, J.M.; Maroun, R.G.; Louka, N. Optimization of Polyphenols' Recovery from Purple Corn Cobs Assisted by Infrared Technology and Use of Extracted Anthocyanins as a Natural Colorant in Pickled Turnip. *Molecules* 2022, 27, 5222. [CrossRef] [PubMed]
- 48. Fernandez-Aulis, F.; Hernandez-Vazquez, L.; Aguilar-Osorio, G.; Arrieta-Baez, D.; Navarro-Ocana, A. Extraction and identification of anthocyanins in corn cob and corn husk from Cacahuacintle maize. *J. Food Sci.* **2019**, *84*, 954–962. [CrossRef] [PubMed]
- Wille, J.J.; Berhow, M.A. Bioactives derived from ripe corn tassels: A possible new natural skin whitener, 4-hydroxy-1-oxindole-3acetic acid. *Curr. Bioact. Compd.* 2011, 7, 126–134. [CrossRef]
- Khamphasan, P.; Lomthaisong, K.; Harakotr, B.; Ketthaisong, D.; Scott, M.P.; Lertrat, K.; Suriharn, B. Genotypic variation in anthocyanins, phenolic compounds, and antioxidant activity in cob and husk of purple field corn. *Agronomy* 2018, *8*, 271. [CrossRef]
- 51. Brobbey, A.A.; Somuah-Asante, S.; Asare-Nkansah, S.; Boateng, F.O.; Ayensu, I. Preliminary phytochemical screening and scientific validation of the antidiabetic effect of the dried husk of *Zea mays* L. (Corn, Poaceae). *Int. J. Phytopharm.* 2017, 7, 1–5.
- 52. Thapphasaraphong, S.; Rimdusit, T.; Priprem, A.; Puthongking, P. Crops of waxy purple corn: A valuable source of antioxidative phytochemicals. *Int. J. Adv. Agric. Environ. Eng.* **2016**, *3*, 73–77.
- 53. Simla, S.; Boontang, S.; Harakotr, B. Anthocyanin content, total phenolic content, and antiradical capacity in different ear components of purple waxy corn at two maturation stages. *Aust. J. Crop Sci.* **2016**, *10*, 675–682. [CrossRef]
- 54. Deineka, V.I.; Sidorov, A.N.; Deineka, L.A. Determination of purple corn husk anthocyanins. *J. Anal. Chem.* **2016**, *71*, 1145–1150. [CrossRef]
- 55. Suryanto, E.; Momuat, L.I.; Rotinsulu, H.; Mewengkang, D.S. Anti-photooxidant and photoprotective activities of ethanol extract and solvent fractions from corn cob (*Zea mays*). *Int. J. ChemTech Res.* **2018**, *11*, 25–37.
- 56. Duangpapeng, P.; Lertrat, K.; Lomthaisong, K.; Scott, M.P.; Suriharn, B. Variability in anthocyanins, phenolic compounds and antioxidant capacity in the tassels of collected waxy corn germplasm. *Agronomy* **2019**, *9*, 158. [CrossRef]
- 57. Duangpapeng, P.; Ketthaisong, D.; Lomthaisong, K.; Lertrat, K.; Scott, M.P.; Suriharn, B. Corn tassel: A new source of phytochemicals and antioxidant potential for value-added product development in the agro-industry. *Agronomy* **2018**, *8*, 242. [CrossRef]
- Žilić, S.; Vančetović, J.; Janković, M.; Maksimović, V. Chemical composition, bioactive compounds, antioxidant capacity and stability of floral maize (*Zea mays* L.) pollen. *J. Funct. Foods* 2014, 10, 65–74. [CrossRef]
- Sarepoua, E.; Tangwongchai, R.; Suriharn, B.; Lertrat, K. Influence of variety and harvest maturity on phytochemical content in corn silk. *Food Chem.* 2015, 169, 424–429. [CrossRef] [PubMed]
- 60. Singh, J.; Rasane, P.; Nanda, V.; Kaur, S. Bioactive compounds of corn silk and their role in management of glycaemic response. *J. Food Sci. Technol.* **2022**, 1–16. [CrossRef]
- Ren, S.C.; Qiao, Q.Q.; Ding, X.L. Antioxidative activity of five flavones glycosides from corn silk (*Stigma maydis*). *Czech J. Food Sci.* 2013, 31, 148–155. [CrossRef]
- 62. Galanakis, C.M. Functionality of food components and emerging technologies. Foods 2021, 10, 128. [CrossRef]
- 63. Roh, K.B.; Kim, H.; Shin, S.; Kim, Y.S.; Lee, J.A.; Kim, M.O.; Jung, E.; Lee, J.; Park, D. Anti-inflammatory effects of *Zea mays* L. husk extracts. *BMC Complement. Altern. Med.* **2016**, *16*, 298–306. [CrossRef]
- Boeira, C.P.; Flores, D.C.B.; Lucas, B.N.; Santos, D.; Flores, E.M.M.; Reis, F.L.; Morandini, M.L.B.; Morel, A.F.; Rosa, C.S.D. Extraction of antioxidant and antimicrobial phytochemicals from corn stigma: A promising alternative to valorization of agricultural residues. *Ciência Rural.* 2022, *52*, e20210535. [CrossRef]
- 65. Wang, L.; Yu, Y.; Fang, M.; Zhan, C.; Pan, H.; Wu, Y.; Gong, Z. Antioxidant and antigenotoxic activity of bioactive extracts from corn tassel. *J. Huazhong Univ. Sci. Technol.-Med. Sci.* 2014, *34*, 131–136. [CrossRef] [PubMed]
- 66. Habeebullah, S.F.; Grejsen, H.D.; Jacobsen, C. Potato peel extract as a natural antioxidant in chilled storage of minced horse mackerel (*Trachurus trachurus*): Effect on lipid and protein oxidation. *Food Chem.* **2012**, *131*, 843–851.
- 67. Mohdaly, A.A.; Hassanien, M.F.; Mahmoud, A.; Sarhan, M.A.; Smetanska, I. Phenolics extracted from potato, sugar beet, and sesame processing by-products. *Int. J. Food Prop.* **2013**, *16*, 1148–1168. [CrossRef]
- Lappalainen, K.; Kärkkäinen, J.; Joensuu, P.; Lajunen, M. Modification of potato peel waste with base hydrolysis and subsequent cationization. *Carbohydr. Polym.* 2015, 132, 97–103. [CrossRef]
- Chang, K. Polyphenol antioxidants from potato peels: Extraction optimization and application to stabilizing lipid oxidation in foods. In Proceedings of the National Conference on Undergraduate Research (NCUR) 2019, New York, NY, USA, 11–13 April 2019.

- 70. Wijngaard, H.H.; Ballay, M.; Brunton, N. The optimisation of extraction of antioxidants from potato peel by pressurised liquids. *Food Chem.* **2012**, *133*, 1123–1130. [CrossRef]
- Frontuto, D.; Carullod, D.; Harrison, S.M.; Brunton, N.P.; Ferrari, G.; Lyng, J.G.; Patar, G. Optimization of pulsed electric fields-assisted extraction of polyphenols from potato peels using response surface methodology. *Food Bioprocess Technol.* 2019, 12, 1708–1720. [CrossRef]
- Javed, A.; Ahmad, A.; Tahir, A.; Shabbir, U.; Nouman, M.; Hameed, A. Potato peel waste-its nutraceutical, industrial and biotechnological applacations. *AIMS Agric. Food* 2019, *4*, 807–823. [CrossRef]
- Samarin, A.M.; Poorazarang, H.; Hematyar, N.; Elhamirad, A. Phenolics in potato peels: Extraction and utilization as natural antioxidants. World Appl. Sci. J. 2012, 18, 191–195.
- 74. Chamorro, S.; Cueva-Mestanza, R.; de Pascual-Teresa, S. Effect of spray drying on the polyphenolic compounds present in purple sweet potato roots: Identification of new cinnamoylquinic acids. *Food Chem.* **2021**, *345*, 128679. [CrossRef]
- Paniagua-García, A.I.; Hijosa-Valsero, M.; Garita-Cambronero, J.; Coca, M.; Díez-Antolínez, R. Development and validation of a HPLC-DAD method for simultaneous determination of main potential ABE fermentation inhibitors identified in agro-food waste hydrolysates. *Microchem. J.* 2019, 150, 104147. [CrossRef]
- Sarwari, G.; Sultana, B.; Sarfraz, R.A.; Zia, M.A. Cytotoxicity, antioxidant and antimutagenic potential evaluation of peels of edible roots and tubers. *Int. Food Res. J.* 2019, 26, 1773–1779.
- Wu, Z.G.; Xu, H.Y.; Ma, Q.; Cao, Y.; Ma, J.N.; Ma, C.M. Isolation, identification and quantification of unsaturated fatty acids, amides, phenolic compounds and glycoalkaloids from potato peel. *Food Chem.* 2012, 135, 2425–2429. [CrossRef] [PubMed]
- Silva-Beltran, N.P.; Chaidez-Quiroz, C.; Lopez-Cuevas, O.; Ruiz-Cruz, S.; Lopez-Mata, M.A.; Del-Toro-Sanchez, C.L.; Marquez-Rios, E.; Ornelas-Paz, J. Phenolic compounds of potato peel extracts: Their antioxidant activity and protection against human enteric viruses. J. Microbiol. Biotechnol. 2017, 27, 234–241. [CrossRef]
- 79. Chen, C.C.; Lin, C.; Chen, M.H.; Chiang, P.Y. Stability and quality of anthocyanin in purple sweet potato extracts. *Foods* **2019**, *8*, 393. [CrossRef]
- Ji, X.; Rivers, L.; Zielinski, Z.; Xu, M.; MacDougall, E.; Jancy, S.; Zhang, S.; Wang, Y.; Chapman, R.G.; Keddy, P.; et al. Quantitative analysis of phenolic components and glycoalkaloids from 20 potato clones and in vitro evaluation of antioxidant, cholesterol uptake, and neuroprotective activities. *Food Chem.* 2012, 133, 1177–1187. [CrossRef]
- 81. Hossain, M.B.; Aguilo-Aguayo, I.; Lyng, J.G.; Brunton, N.P.; Rai, D.K. Effect of pulsed electric field and pulsed light pre-treatment on the extraction of steroidal alkaloids from potato peels. *Innov. Food Sci. Emerg. Technol.* 2015, 29, 9–14. [CrossRef]
- Rodríguez-Martínez, B.; Gullón, B.; Yáñez, R. Identification and recovery of valuable bioactive compounds from potato peels: A comprehensive review. *Antioxidants* 2021, 10, 1630. [CrossRef]
- Albishi, T.; John, J.A.; Al-Khalifa, A.S.; Shahidi, F. Phenolic content and antioxidant activities of selected potato varieties and their processing by-products. J. Funct. Foods 2013, 5, 590–600. [CrossRef]
- 84. Kumari, B.; Tiwari, B.K.; Hossain, M.B.; Rai, D.K.; Brunton, N.P. Ultrasound-assisted extraction of polyphenols from potato peels: Profiling and kinetic modelling. *Int. J. Food Sci. Technol.* **2017**, *52*, 1432–1439. [CrossRef]
- Friedman, M.; Kozukue, N.; Kim, H.J.; Choi, S.H.; Mizuno, M. Glycoalkaloid, phenolic, and flavonoid content and antioxidative activities of conventional nonorganic and organic potato peel powders from commercial gold, red and Russet potatoes. J. Food Compos. Anal. 2017, 62, 69–75. [CrossRef]
- 86. Alves-Filho, E.G.; Sousa, V.M.; Ribeiro, P.R.; Rodrigues, S.; de Brito, E.S.; Tiwari, B.K.; Fernandes, F.A. Single-stage ultrasoundassisted process to extract and convert α-solanine and α-chaconine from potato peels into β-solanine and β-chaconine. *Biomass Convers. Biorefinery* **2018**, *8*, 689–697. [CrossRef]
- 87. Hossain, M.B.; Tiwari, B.K.; Gangopadhyay, N.; O'Donnell, C.P.; Brunton, N.P.; Rai, D.K. Ultrasonic extraction of steroidal alkaloids from potato peel waste. *Ultrason. Sonochemistry* **2014**, *21*, 1470–1476. [CrossRef] [PubMed]
- Rytel, E.; Czopek, A.T.; Aniolowska, M.; Hamouz, K. The influence of dehydrated potatoes processing on the glycoalkaloids content in coloured-fleshed potato. *Food Chem.* 2013, 141, 2495–2500. [CrossRef]
- Singh, L.; Kaur, S.; Aggarwal, P. Techno and bio functional characterization of industrial potato waste for formulation of phytonutrients rich snack product. *Food Biosci.* 2022, 49, 101824. [CrossRef]
- Hillebrand, S.; Husing, B.; Schliephake, U.; Trautz, D.; Herrmann, M.E.; Winterhalter, P. Effect of thermal processing on the content of phenols in pigmented potatoes (*Solanum tuberosum* L.). *Ernaehrungs-Umsch.* 2011, 58, 349–353.
- Singh, A.; Sabally, K.; Kubow, S.; Donnelly, D.J.; Gariepy, Y.; Orsat, V.; Raghavan, G.S. Microwave-assisted extraction of phenolic antioxidants from potato peels. *Molecules* 2011, 16, 2218–2232. [CrossRef]
- 92. Maldonado, A.F.; Mudge, E.; Gänzle, M.G.; Scheber, A. Extraction and fractionation of phenolic acids and glycoalkaloids from potato peels using acidified water/ethanol-based solvents. *Food Res. Int.* **2014**, *65*, 27–34. [CrossRef]
- Akyol, H.; Riciputi, Y.; Capanoglu, E.; Caboni, M.F.; Verardo, V. Phenolic compounds in the potato and its by-products: An overview. *Int. J. Mol. Sci.* 2016, 17, 835. [CrossRef]
- Venturi, F.; Bartolini, S.; Sanmartin, C.; Orlando, M.; Taglieri, I.; Macaluso, M.; Lucchesini, M.; Trivellini, A.; Zinnai, A.; Mensuali, A. Potato peels as a source of novel green extracts suitable as antioxidant additives for fresh-cut fruits. *Appl. Sci.* 2019, *9*, 2431. [CrossRef]
- Gebrechristos, H.Y.; Chen, W. Utilization of potato peel as eco-friendly products: A review. *Food Sci. Nutr.* 2018, 6, 1352–1356. [CrossRef] [PubMed]

- 96. Amado, I.R.; Franco, D.; Sanchez, M.; Zapata, C.; Vazques, J.A. Optimisation of antioxidant extraction from *Solanum tuberosum* potato peel waste by surface response methodology. *Food Chem.* **2014**, *165*, 290–299. [CrossRef] [PubMed]
- 97. Hsieh, Y.L.; Yeh, Y.H.; Lee, Y.T.; Huang, C.Y. Dietary potato peel extract reduces the toxicity of cholesterol oxidation products in rats. *J. Funct. Foods* **2016**, *27*, 461–471. [CrossRef]
- Yang, G.; Cheon, S.Y.; Chung, K.S.; Lee, S.J.; Hong, C.H.; Lee, K.T.; Jang, D.S.; Jeong, J.C.; Kwon, O.K.; Nam, J.H.; et al. *Solanum tuberosum* L. young epidermis extract inhibits mite antigen-induced atopic dermatitis in NC/Nga mice by regulating the Th1/Th2 balance and expression of filaggrin. *J. Med. Food* 2015, *18*, 1013–1021. [CrossRef] [PubMed]
- 99. Khawla, B.J.; Sameh, M.; Imen, G.; Donyes, F.; Dhouha, G.; Raoudha, E.G.; Oumèma, N.E. Potato peel as feedstock for bioethanol production: A comparison of acidic and enzymatic hydrolysis. *Ind. Crops Prod.* **2014**, *52*, 144–149. [CrossRef]
- 100. Wu, D. Recycle technology for potato peel waste processing: A review. Procedia Environ. Sci. 2016, 31, 103–107. [CrossRef]
- Liang, S.; Han, Y.; Wei, L.; McDonald, A.G. Production and characterization of bio-oil and bio-char from pyrolysis of potato peel wastes. *Biomass Convers. Biorefin.* 2015, *5*, 237–246. [CrossRef]
- Abdelraof, M.; Hasanin, M.S.; El-Saied, H. Ecofriendly green conversion of potato peel wastes to high productivity bacterial cellulose. *Carbohydr. Polym.* 2019, 211, 75–83. [CrossRef]
- 103. Elkahoui, S.; Levin, C.; Bartley, G.; Yokoyama, W.; Friedman, M. Dietary supplementation of potato peel powders prepared from conventional and organic russet and nonorganic gold and red potatoes reduces weight gain in mice on a high-fat diet. *J. Agric. Food Chem.* 2018, 66, 6064–6072. [CrossRef]
- 104. Chimonyo, M. A review of the utility of potato by-products as a feed resource for smallholder pig production. *Anim. Feed. Sci. Technol.* **2017**, 227, 107–117.
- 105. Apel, C.; Lyng, J.G.; Papoutsis, K.; Harrison, S.M.; Brunton, N.P. Screening the effect of different extraction methods (ultrasoundassisted extraction and solid–liquid extraction) on the recovery of glycoalkaloids from potato peels: Optimization of the extraction conditions using chemometric tools. *Food Bioprod. Process.* 2019, 119, 277–286. [CrossRef]
- 106. Khan, M.T.; Shah, A.S.; Safdar, N.; Rani, S.; Bilal, H.; Hashim, M.M.; Basir, A.; Rahman ZShah, S.A. Polyphenoles extraction from the potato peel and their utilization in biscuit. *Pure Appl. Biol.* **2017**, *6*, 1269–1275. [CrossRef]
- Ding, X.; Zhu, F.; Yang, Y.; Li, M. Purification, antitumor activity in vitro of steroidal glycoalkaloids from black nightshade (Solanum nigrum L.). Food Chem. 2013, 141, 1181–1186. [CrossRef] [PubMed]
- 108. Kenny, O.M.; McCarthy, C.M.; Brunton, N.P.; Hossain, M.B.; Rai, D.K.; Collins, S.G.; Jones, P.W.; Maguire, A.R.; O'Brien, N.M. Anti-inflammatory properties of potato glycoalkaloids in stimulated Jurkat and Raw 264.7 mouse macrophages. *Life Sci.* 2013, 92, 775–782. [CrossRef] [PubMed]
- Anjum, S.; Rana, S.; Dasila, K.; Agnihotri, V.; Pandey, A.; Pande, V. Comparative nutritional and antimicrobial analysis of Himalayan black and yellow soybean and their okara. J. Sci. Food Agric. 2022, 102, 5358–5367. [CrossRef]
- 110. Park, J.; Choi, I.; Kim, Y. Cookies formulated from fresh okara using starch, soy flour and hydroxypropyl methylcellulose have high quality and nutritional value. *LWT-Food Sci. Technol.* **2015**, *63*, 660–666. [CrossRef]
- Ostermann-Porcel, M.V.; Quiroga-Panelo, N.; Rinaldoni, A.N.; Campderrós, M.E. Incorporation of okara into gluten-free cookies with high quality and nutritional value. J. Food Qual. 2017, 2017, 1–8. [CrossRef]
- 112. Guimarães, R.M.; Silva, T.E.; Lemes, A.C.; Boldrin MC, F.; da Silva MA, P.; Silva, F.G.; Egea, M.B. Okara: A soybean by-product as an alternative to enrich vegetable paste. *LWT* **2018**, *92*, 593–599. [CrossRef]
- 113. Šibul, F.; Orčić, D.; Vasić, M.; Anačkov, G.; Nađpal, J.; Savić, A.; Mimica-Dukić, N. Phenolic profile, antioxidant and antiinflammatory potential of herb and root extracts of seven selected legumes. *Ind. Crops Prod.* **2016**, *83*, 641–653. [CrossRef]
- 114. Liu, W.; Zhang, H.X.; Wu, Z.L.; Wang, Y.J.; Wang, L.J. Recovery of isoflavone aglycones from soy whey wastewater using foam fractionation and acidic hydrolysis. *J. Agric. Food Chem.* **2013**, *61*, 7366–7372. [CrossRef]
- 115. Kumar, V.; Chauhan, S.S. Daidzein Induces Intrinsic Pathway of Apoptosis along with ER α/β Ratio Alteration and ROS Production. *Asian Pac. J. Cancer Prev. APJCP* 2021, 22, 603. [CrossRef] [PubMed]
- Pabich, M.; Marciniak, B.; Kontek, R. Phenolic Compound Composition and Biological Activities of Fractionated Soybean Pod Extract. *Appl. Sci.* 2021, 11, 10233. [CrossRef]
- 117. Singh, P.; Krishnaswamy, K. Sustainable zero-waste processing system for soybeans and soy by-product valorization. *Trends Food Sci. Technol.* 2022, 128, 331–344. [CrossRef]
- Bragagnolo, F.S.; Funari, C.S.; Ibáñez, E.; Cifuentes, A. Metabolomics as a tool to study underused soy parts: In search of bioactive compounds. *Foods* 2021, 10, 1308. [CrossRef] [PubMed]
- 119. Hsu, W.H.; Chen, S.Y.; Lin, J.H.; Yen, G.C. Application of saponins extract from food byproducts for the removal of pesticide residues in fruits and vegetables. *Food Control* **2022**, *136*, 108877. [CrossRef]
- 120. Freitas, S.C.; Alves da Silva, G.; Perrone, D.; Vericimo, M.A.; dos S. Baião, D.; Pereira, P.R.; Paschoalin, V.M.F.; Del Aguila, E.M. Recovery of antimicrobials and bioaccessible isoflavones and phenolics from soybean (*Glycine max*) meal by aqueous extraction. *Molecules* 2018, 24, 74. [CrossRef] [PubMed]
- Silva, F.D.O.; Perrone, D. Characterization and Stability of Bioactive Compounds from Soybean Meal. LWT Food Sci. Technol. 2015, 63, 992–1000. [CrossRef]
- Wang, Q.; Ge, X.; Tian, X.; Zhang, Y.; Zhang, J.; Zhang, P. Soy isoflavone: The multipurpose phytochemical (Review). *Biomed. Rep.* 2013, 1, 697–701. [CrossRef]

- 123. Zhou, X.; Shen, P.; Wang, W.; Zhou, J.; Raj, R.; Du, Z.; Xu, S.; Wang, W.; Yu, B.; Zhang, J. Derivatization of Soyasapogenol A through Microbial Transformation for Potential Anti-inflammatory Food Supplements. J. Agric. Food Chem. 2021, 69, 6791–6798. [CrossRef]
- Laranjeira, T.; Costa, A.; Faria-Silva, C.; Ribeiro, D.; de Oliveira, J.M.P.F.; Simões, S.; Ascenso, A. Sustainable valorization of tomato by-products to obtain bioactive compounds: Their potential in inflammation and cancer management. *Molecules* 2022, 27, 1701. [CrossRef]
- 125. Alsuhaibani, A.M. Chemical composition and ameliorative effect of tomato on isoproterenol-induced myocardial infarction in rats. *Asian J. Clin. Nutr.* **2018**, *10*, 1–7. [CrossRef]
- 126. Padalino, L.; Conte, A.; Lecce, L.; Likyova, D.; Sicari, V.; Pellicano, T.M.; Poiana, M.; Del Nobile, M.A. Functional pasta with tomato by-product as a source of antioxidant compounds and dietary fibre. *Czech J. Food Sci.* **2017**, *35*, 48–56.
- 127. Bakic, M.T.; Pedisic, S.; Zoric, Z.; Dragovic-Uzelac, V.; Grassino, A.N. Effect of microwave-assisted extraction on polyphenols recovery from tomato peel waste. *Acta Chim. Slov.* **2019**, *66*, 367–377. [CrossRef]
- 128. Gutiérrez-del-Río, I.; López-Ibáñez, S.; Magadán-Corpas, P.; Fernández-Calleja, L.; Pérez-Valero, Á.; Tuñón-Granda, M.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Plant Nutraceuticals as Natural Antioxidant Agents in Food Preservation. *Antioxidants* 2021, 10, 1264. [CrossRef]
- 129. Valta, K.; Damala, P.; Panaretou, V.; Orli, E.; Moustakas, K.; Loizidou, M. Review and assessment of waste and wastewater treatment from fruits and vegetables processing industries in Greece. *Waste Biomass Valorization* **2017**, *8*, 1629–1648. [CrossRef]
- Fritsch, C.; Staebler, A.; Happel, A.; Cubero Márquez, M.A.; Aguiló-Aguayo, I.; Abadias, M.; Gallur, M.; Cigognini, I.M.; Montanari, A.; López, M.J.; et al. Processing, valorization and application of bio-waste derived compounds from potato, tomato, olive and cereals: A Review. *Sustainability* 2017, *9*, 1492. [CrossRef]
- Perea-Dominguez, X.P.; Hernandez-Gastelum, L.Z.; Olivas-Olguin, H.R.; Espinosa-Alonso, L.G.; Valdez-Morales, M.; Medina-Godoy, S. Phenolic composition of tomato varieties and an industrial tomato by-product: Free, conjugated and bound phenolics and antioxidant activity. J. Food Sci. Technol. 2018, 55, 3453–3461. [CrossRef]
- Coelho, M.; Pereira, R.; Rodrigues, A.S.; Teixeira, J.A.; Pintado, M.E. Extraction of tomato by-products' bioactive compounds using ohmic technology. *Food Bioprod. Process.* 2019, 117, 329–339. [CrossRef]
- 133. Nour, V.; Panaite, T.D.; Ropota, M.; Turcu, R.; Trandafir, I.; Corbu, A.R. Nutritional and bioactive compounds in dried tomato processing waste. *CyTA J. Food* **2018**, *16*, 222–229. [CrossRef]
- 134. Elbadrawy, E.; Sello, A. Evaluation of nutritional value and antioxidant activity of tomato peel extracts. *Arab. J. Chem.* **2016**, *9*, S1010–S1018. [CrossRef]
- Ćetković, G.; Savatović, S.; Čanadović-Brunet, J.; Djilas, S.; Vulić, J.; Mandić, A.; Četojević-Simin, D. Valorisation of phenolic composition, antioxidant and cell growth activities of tomato waste. *Food Chem.* 2012, 133, 938–945. [CrossRef]
- Aires, A.; Carvalho, R.; Saavedra, M.J. Reuse potential of vegetable wastes (broccoli, green bean and tomato) for the recovery of antioxidant phenolic acids and flavonoids. *Int. J. Food Sci. Technol.* 2017, 52, 98–107. [CrossRef]
- Navarro-González, I.; García-Valverde, V.; García-Alonso, M.; Periago, M.J. Chemical profile, functional and antioxidant properties of tomato peel fiber. *Food Res. Int.* 2011, 44, 1528–1535. [CrossRef]
- 138. Kalogeropoulos, N.; Chiou, A.; Pyriochou, V.; Peristeraki, A.; Karathanos, V.T. Bioactive phytochemicals in industrial tomatoes and their processing by-products. *LWT-Food Sci. Technol.* **2012**, *49*, 213–216. [CrossRef]
- 139. Di Donato, P.; Taurisano, V.; Tommonaro, G.; Pasquale, V.; Jimenez, J.M.; de Pascual, T.S.; Poli, A.; Nicolaus, B. Biological properties of polyphenols extracts from agro industry's wastes. *Waste Biomass Valorization* **2018**, *9*, 1567–1578. [CrossRef]
- 140. García-Valverde, V.; Navarro-González, I.; García Alonso, J.; Periago, M. Antioxidant bioactive compounds in selected industrial processing and fresh consumption tomato cultivars. *Food Bioprocess Technol.* **2013**, *6*, 391–402. [CrossRef]
- 141. Szabo, K.; Diaconeasa, Z.; Catoi, A.F.; Vodnar, D.C. Screening of ten tomato varieties processing waste for bioactive components and their related antioxidant and antimicrobial activities. *Antioxidants* **2019**, *8*, 292. [CrossRef]
- Valdez-Morales, M.; Espinosa-Alonso, L.G.; Espinoza-Torres, L.C.; Delgado-Vargas, F.; Medina-Godoy, S. Phenolic content and antioxidant and antimutagenic activities in tomato peel, seeds and by-products. *J. Agric. Food Chem.* 2014, 62, 5281–5289. [CrossRef]
- 143. Kumar, M.; Tomar, M.; Bhuyan, D.J.; Punia, S.; Grasso, S.; Sa, A.G.A.; Carciofi, B.A.M.; Arrutia, F.; Changan, S.; Singh, S.; et al. Tomato (*Solanum lycopersicum* L.) seed: A review on bioactives and biomedical activities. *Biomed. Pharmacother.* 2021, 142, 112018. [CrossRef]
- 144. Concha-Meyer, A.; Palomo, I.; Plaza, A.; Gadioli Tarone, A.; Junior MR, M.; Sáyago-Ayerdi, S.G.; Fuentes, E. Platelet anti-aggregant activity and bioactive compounds of ultrasound-assisted extracts from whole and seedless tomato pomace. *Foods* 2020, 9, 1564. [CrossRef]
- 145. Fărcaş, A.C.; Socaci, S.A.; Michiu, D.; Biriş, S.; Tofană, M. Tomato waste as a source of biologically active compounds. *Bull. UASVM Food Sci. Technol.* **2019**, *76*, 85–88. [CrossRef] [PubMed]
- 146. Markovic, K.; Krbavcic, I.P.; Krpan, M.; Bicanic, D.; Vahcic, N. The lycopene content in pulp and peel of five fresh tomato cultivars. *Acta Aliment.* **2010**, *39*, 90–98. [CrossRef]
- 147. Stoica, R.M.; Tomulescu, C.; Cășărică, A.; Soare, M.G. Tomato by-products as a source of natural antioxidants for pharmaceutical and food industries—A mini-review. *Sci. Bull. Ser. F Biotechnol.* **2018**, *22*, 200–204.

- Górecka, D.; Wawrzyniak, A.; Jędrusek-Golińska, A.; Dziedzic, K.; Hamułka, J.; Kowalczewski, P.Ł.; Walkowiak, J. Lycopene in tomatoes and tomato products. *Open Chem.* 2020, 18, 752–756. [CrossRef]
- 149. Campestrini, L.H.; Melo, P.S.; Peres, L.E.; Calhelha, R.C.; Ferreira, I.C.; Alencar, S.M. A new variety of purple tomato as a rich source of bioactive carotenoids and its potential health benefits. *Heliyon* **2019**, *5*, e02831. [CrossRef] [PubMed]
- Grassino, A.N.; Djakovic, S.; Bosiljkov, T.; Halambek, J.; Zorić, Z.; Dragović-Uzelac, V.; Petrović, M.; Brnčić, S.R. Valorisation of tomato peel waste as a sustainable source for pectin, polyphenols and fatty acids recovery using sequential extraction. *Waste Biomass Valorization* 2019, *11*, 4593–4611. [CrossRef]
- 151. Grassino, A.N.; Pedistić, S.; Dragović-Uzelac, V.; Karlović, S.; Ježek, D.; Bosiljkov, T. Insight into high-hydrostatic pressure extraction of polyphenols from tomato peel waste. *Plant Foods Hum. Nutr.* **2020**, *75*, 427–433. [CrossRef]
- 152. Lucera, A.; Costa, C.; Marinelli, V.; Saccotelli, M.A.; Del Nobile, M.A.; Conte, A. Fruit and vegetable by-products to fortify spreadable cheese. *Antioxidants* 2018, 7, 61. [CrossRef]
- 153. Lim, W.; Li, J. Co-expression of onion chalcone isomerase in Del/Ros1-expressing tomato enhances anthocyanin and flavonol production. *Plant Cell Tissue Organ Cult.* **2017**, *128*, 113–124. [CrossRef]
- 154. Zuorro, A.; Lavecchia, R.; Medici, F.; Piga, L. Enzyme-assisted production of tomato seed oil enriched with lycopene from tomato pomace. *Food Bioprocess Technol.* **2013**, *6*, 3499–3509. [CrossRef]
- 155. Eller, F.J.; Moser, J.K.; Kenar, J.A.; Taylor, S.L. Extraction and analysis of tomato seed oil. J. Am. Oil Chem. Soc. 2010, 87, 755–762. [CrossRef]
- 156. Pellicanò, T.M.; Sicari, V.; Loizzo, M.R.; Leporini, M.; Falco, T.; Poiana, M. Optimizing the supercritical fluid extraction process of bioactive compounds from processed tomato skin by-products. *Food Sci. Technol.* **2019**, *40*, 692–697. [CrossRef]
- 157. Marti, R.; Rosello, S.; Cebolla-Cornejo, J. Tomato as a source of carotenoids and polyphenols targeted to cancer prevention. *Cancers* **2016**, *8*, 58. [CrossRef] [PubMed]
- 158. Savatović, S.; Cetkovic, G.; Canadanovic-Brunet, J.; Djilas, S. Tomato waste: A potential source of hydrophilic antioxidants. *Int. J. Food Sci. Nutr.* **2012**, *63*, 129–137. [CrossRef] [PubMed]
- 159. Nour, V.; Ionica, M.E.; Trandafir, I. Bread enriched in lycopene and other bioactive compounds by addition of dry tomato waste. *J. Food Sci. Technol.* **2015**, *52*, 8260–8267. [CrossRef]
- 160. Abid, Y.; Azabou, S.; Jridi, M.; Khemakhem, I.; Bouaziz, M.; Attia, H. Storage stability of traditional Tunisian butter enriched with antioxidant extract from tomato processing by-products. *Food Chem.* **2017**, *15*, 476–482. [CrossRef]
- 161. Trombino, S.; Cassano, R.; Procopio, D.; Di Gioia, M.L.; Barone, E. Valorization of tomato waste as a source of carotenoids. *Molecules* **2021**, *26*, 5062. [CrossRef]
- 162. Ho, K.K.; Ferruzzi, M.G.; Liceaga, A.M.; San Martin-Gonzales, M.F. Microwave-assisted extraction of lycopene in tomato peels: Effect of extraction conditions on all-trans and cis-isomer yields. *LWT-Food Sci. Technol.* **2015**, *62*, 160–168. [CrossRef]
- Horuz, T.I.; Belibagli, K.B. Encapsulation of tomato peel extract into nanofibers and its application in model food. *Food Process*. *Preserv.* 2019, 43, e14090. [CrossRef]
- Hernández-Carranza, P.; Avila-Sosa, R.; Guerrero-Beltrán, J.A.; Navarro-Cruz, A.R.; Corona-Jiménez, E.; Ochoa-Velasco, C.E. Optimization of antioxidant compounds extraction from fruit by-products: Apple pomace, orange and banana peel. J. Food Process. Preserv. 2016, 40, 103–115. [CrossRef]
- 165. Afsharnezhad, M.; Shahangian, S.S.; Panahi, E.; Sariri, R. Evaluation of the antioxidant activity of extracts from some fruit peels. *Casp. J. Environ. Sci.* **2017**, *15*, 213–222.
- 166. Kabir, M.R.; Hasan, M.M.; Islam, M.R.; Haque, A.R.; Hasan, S.K. Formulation of yogurt with banana peel extracts to enhance storability and bioactive properties. *J. Food Process. Preserv.* **2021**, 45, e15191. [CrossRef]
- Chaudhry, F.; Ahmad, M.L.; Hayat, Z.; Ranjha MM, A.N.; Chaudhry, K.; Elboughdiri, N.; Asmari, M.; Uddin, J. Extraction and Evaluation of the Antimicrobial Activity of Polyphenols from Banana Peels Employing Different Extraction Techniques. *Separations* 2022, 9, 165. [CrossRef]
- 168. Rebello LP, G.; Ramos, A.M.; Pertuzatti, P.B.; Barcia, M.T.; Castillo-Muñoz, N.; Hermosín-Gutiérrez, I. Flour of banana (Musa AAA) peel as a source of antioxidant phenolic compounds. *Food Res. Int.* **2014**, *55*, 397–403. [CrossRef]
- Behiry, S.I.; Okla, M.K.; Alamri, S.A.; El-Hefny, M.; Salem, M.Z.; Alaraidh, I.A.; Ali, H.M.; Al-Ghtani, S.M.; Monroy, J.C.; Salem, A.Z. Antifungal and antibacterial activities of Musa paradisiaca L. peel extract: HPLC analysis of phenolic and flavonoid contents. *Processes* 2019, 7, 215. [CrossRef]
- 170. Kandasamy, S.; Ramu, S.; Aradhya, S.M. In vitro functional properties of crude extracts and isolated compounds from banana pseudostem and rhizome. *J. Sci. Food Agric.* **2016**, *96*, 1347–1355. [CrossRef] [PubMed]
- 171. Avram, I.; Gatea, F.; Vamanu, E. Functional Compounds from Banana Peel Used to Decrease Oxidative Stress Effects. *Processes* 2022, *10*, 248. [CrossRef]
- 172. Nofianti, T.; Ahmad, M.; Irda, F. Comparison of antihyperglycemic activity of different parts of klutuk banana (*Musa balbisiana colla*). *Int. J. Appl. Pharm.* 2021, 13, 57–61. [CrossRef]
- 173. Vu, H.T.; Scarlett, C.J.; Vuong, Q.V. Encapsulation of phenolic-rich extract from banana (*Musa cavendish*) peel. *J. Food Sci. Technol.* **2020**, *57*, 2089–2098. [CrossRef]
- 174. Buendía-Otero, M.J.; Jiménez-Corzo, D.J.; Caamaño De Ávila, Z.I.; Restrepo, J.B. Chromatographic analysis of phytochemicals in the peel of *Musa paradisiaca* to synthesize silver nanoparticles. *Rev. Fac. De Ing. Univ. De Antioq.* 2022, 103, 130–137. [CrossRef]

- 175. Padam, B.S.; Tin, H.S.; Chye, F.Y.; Abdullah, M.I. Banana by-products: An under-utilized renewable food biomass with great potential. *J. Food Sci. Technol.* **2014**, *51*, 3527–3545. [CrossRef] [PubMed]
- 176. Vani, R.; Bhandari, A.; Jain, Y.A. Inhibition Effects Of Banana And Orange Peel Extract On The Corrosion Of Bright Steel In Acidic Media. In *IOP Conference Series: Materials Science and Engineering*; IOP Publishing: Bristol, UK, 2021; Volume 1065, p. 012029. [CrossRef]
- 177. CSO (Central Statistical Office in Poland). Production of Agricultural and Horticultural Crops in 2021. 2022. Available online: https://stat.gov.pl/en/topics/agriculture-forestry/agricultural-and-horticultural-crops/production-of-agricultural-and-horticultural-crops-in-2021,2,6.html (accessed on 29 June 2022).
- 178. Fernandes, P.A.; Ferreira, S.S.; Bastos, R.; Ferreira, I.; Cruz, M.T.; Pinto, A.; Coelho, E.; Passos, C.P.; Coimbra, M.A.; Cardoso, S.M.; et al. Apple pomace extract as a sustainable food ingredient. *Antioxidants* **2019**, *8*, 189. [CrossRef] [PubMed]
- 179. Uyttebroek, M.; Vandezande, P.; Van Dael, M.; Vloemans, S.; Noten, B.; Bongers, B.; Porto-Carrero, M.; Unamunzaga, M.M.; Bulut, M.; Lemmens, B. Concentration of phenolic compounds from apple pomace extracts by nanofiltration at lab and pilot scale with a techno-economic assessment. *J. Food Process Eng.* **2018**, *41*, e12629. [CrossRef]
- 180. Barreira, J.C.; Arraibi, A.A.; Ferreira, I.C. Bioactive and functional compounds in apple pomace from juice and cider manufacturing: Potential use in dermal formulations. *Trends Food Sci. Technol.* **2019**, *90*, 76–87. [CrossRef]
- 181. Waldbauer, K.; McKinnon, R.; Kopp, B. Apple pomace as potential source of natural active compounds. *Planta Med.* **2017**, *83*, 994–1010. [CrossRef]
- 182. Li, W.; Yang, R.; Ying, D.; Yu, J.; Sanguansri, L.; Augustin, M.A. Analysis of polyphenols in apple pomace: A comparative study of different extraction and hydrolysis procedures. *Ind. Crops Prod.* **2020**, *147*, 112250. [CrossRef]
- Gorjanović, S.; Micić, D.; Pastor, F.; Tosti, T.; Kalušević, A.; Ristić, S.; Zlatanović, S. Evaluation of apple pomace flour obtained industrially by dehydration as a source of biomolecules with antioxidant, antidiabetic and antiobesity effects. *Antioxidants* 2020, 9, 413. [CrossRef]
- 184. Perussello, C.A.; Zhang, Z.; Marzocchella, A.; Tiwari, B.K. Valorization of apple pomace by extraction of valuable compounds. *Compr. Rev. Food Sci. Food Saf.* 2017, 16, 776–796. [CrossRef]
- Oleszek, M.; Pecio, Ł.; Kozachok, S.; Lachowska-Filipiuk, Ż.; Oszust, K.; Frąc, M. Phytochemicals of apple pomace as prospect bio-fungicide agents against mycotoxigenic fungal species—In vitro experiments. *Toxins* 2019, 11, 361. [CrossRef]
- 186. Ramirez-Ambrosi, M.; Abad-Garcia, B.; Viloria-Bernal, M.; Garmon-Lobato, S.; Berrueta, L.A.; Gallo, B. A new ultrahigh performance liquid chromatography with diode array detection coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry analytical strategy for fast analysis and improved characterization of phenolic compounds in apple products. *J. Chromatogr. A* 2013, 1316, 78–91.
- 187. Mohammed, E.T.; Mustafa, Y.F. Coumarins from Red Delicious apple seeds: Extraction, phytochemical analysis, and evaluation as antimicrobial agents. *Syst. Rev. Pharm.* **2020**, *11*, 64–70.
- Khalil, R.R.; Mustafa, Y.F. Phytochemical, antioxidant and antitumor studies of coumarins extracted from Granny Smith apple seeds by different methods. *Syst. Rev. Pharm.* 2020, 11, 57–63.
- Pingret, D.; Fabiano-Tixier, A.S.; Le Bourvellec, C.; Renard, C.M.; Chemat, F. Lab and pilot-scale ultrasound-assisted water extraction of polyphenols from apple pomace. J. Food Eng. 2012, 111, 73–81. [CrossRef]
- Woźniak, Ł.; Szakiel, A.; Pączkowski, C.; Marszałek, K.; Skąpska, S.; Kowalska, H.; Jędrzejczak, R. Extraction of triterpenic acids and phytosterols from apple pomace with supercritical carbon dioxide: Impact of process parameters, modelling of kinetics, and scaling-up study. *Molecules* 2018, 23, 2790. [CrossRef]
- 191. Delgado-Pelayo, R.; Gallardo-Guerrero, L.; Hornero-Méndez, D. Chlorophyll and carotenoid pigments in the peel and flesh of commercial apple fruit varieties. *Food Res. Int.* **2014**, *65*, 272–281. [CrossRef]
- 192. Walia, M.; Rawat, K.; Bhushan, S.; Padwad, Y.S.; Singh, B. Fatty acid composition, physicochemical properties, antioxidant and cytotoxic activity of apple seed oil obtained from apple pomace. *J. Sci. Food Agric.* **2014**, *94*, 929–934. [CrossRef]
- Skinner, R.C.; Gigliotti, J.C.; Ku, K.M.; Tou, J.C. A comprehensive analysis of the composition, health benefits, and safety of apple pomace. *Nutr. Rev.* 2018, 76, 893–909. [CrossRef]
- 194. Gołębiewska, E.; Kalinowska, M.; Yildiz, G. Sustainable Use of Apple Pomace (AP) in Different Industrial Sectors. *Materials* 2022, 15, 1788. [CrossRef]
- 195. Rana, S.; Kumar, S.; Rana, A.; Padwad, Y.; Bhushan, S. Biological activity of phenolics enriched extracts from industrial apple pomace. *Ind. Crops Prod.* 2021, *160*, 113158. [CrossRef]
- 196. Cargnin, S.T.; Gnoatto, S.B. Ursolic acid from apple pomace and traditional plants: A valuable triterpenoid with functional properties. *Food Chem.* **2017**, 220, 477–489. [CrossRef]
- 197. Silva, G.N.; Maria, N.R.; Schuck, D.C.; Cruz, L.N.; de Moraes, M.S.; Nakabashi, M.; Graebin, C.; Gosmann, G.; Garcia, C.R.S.; Gnoatto, S.C. Two series of new semisynthetic triterpene derivatives: Differences in anti-malarial activity, cytotoxicity and mechanism of action. *Malar. J.* 2013, *12*, 1–7. [CrossRef] [PubMed]
- 198. Arraibi, A.A.; Liberal, A.; Dias, M.I.; Alves, M.J.; Ferreira, I.C.; Barros, L.; Barreira, J.C. Chemical and bioactive characterization of Spanish and Belgian apple pomace for its potential use as a novel dermocosmetic formulation. *Foods* 2021, 10, 1949. [CrossRef] [PubMed]
- 199. Zhang, T.; Wei, X.; Miao, Z.; Hassan, H.; Song, Y.; Fan, M. Screening for antioxidant and antibacterial activities of phenolics from Golden Delicious apple pomace. *Chem. Cent. J.* **2016**, *10*, 1–9. [CrossRef] [PubMed]

- 200. Haghighi, M.; Rezaei, K. Designing an all-apple-pomace-based functional dessert formulation. *Br. Food J.* **2013**, *115*, 409–424. [CrossRef]
- Liu, B.; Liu, J.; Zhang, C.; Liu, J.; Jiao, Z. Enzymatic preparation and antioxidant activity of the phloridzin oxidation product. *J. Food Biochem.* 2018, 42, e12475. [CrossRef]
- 202. Vera, R.; Figueredo, F.; Díaz-Gómez, A.; Molinari, A. Evaluation of Fuji apple peel extract as a corrosion inhibitor for carbon steel in a saline medium. *Int. J. Electrochem. Sci.* **2018**, *13*, 4139–4159. [CrossRef]
- Kruczek, M.; Gumul, D.; Kačániová, M.; Ivanišhová, E.; Mareček, J.; Gambuś, H. Industrial Apple Pomace By-Products As A Potential Source Of Pro-Health Compounds In Functional Food. J. Microbiol. Biotechnol. Food Sci. 2017, 7, 22–26. [CrossRef]
- Rabetafika, H.N.; Bchir, B.; Blecker, C.; Richel, A. Fractionation of apple by-products as source of new ingredients: Current situation and perspectives. *Trends Food Sci. Technol.* 2014, 40, 99–114. [CrossRef]
- 205. Luo, H.; Li, L.; Tang, J.; Zhang, F.; Zhao, F.; Sun, D.; Zheng, F.; Wang, X. Amygdalin inhibits HSC-T6 cell proliferation and fibrosis through the regulation of TGF-β/CTGF. *Mol. Cell. Toxicol.* **2016**, *12*, 265–271. [CrossRef]
- 206. Song, Z.; Xu, X. Advanced research on anti-tumor effects of amygdalin. J. Cancer Res. Ther. 2014, 10, 3–7.
- 207. Teixeira, A.; Baenas, N.; Dominguez-Perles, R.; Barros, A.; Rosa, E.; Moreno, D.A.; Garcia-Viguera, C. Natural bioactive compounds from winery by-products as health promoters: A review. *Int. J. Mol. Sci.* 2014, 15, 15638–15678. [CrossRef] [PubMed]
- Pintać, D.; Majkić, T.; Torović, L.; Orčić, D.; Beara, I.; Simin, N.; Mimica–Dukić, N.; Lesjak, M. Solvent selection for efficient extraction of bioactive compounds from grape pomace. *Ind. Crops Prod.* 2018, 111, 379–390. [CrossRef]
- 209. Eyiz, V.; Tontul, I.; Turker, S. Optimization of green extraction of phytochemicals from red grape pomace by homogenizer assisted extraction. *J. Food Meas. Charact.* 2020, *14*, 39–47. [CrossRef]
- Farías-Campomanes, A.M.; Rostagno, M.A.; Meireles MA, A. Production of polyphenol extracts from grape bagasse using supercritical fluids: Yield, extract composition and economic evaluation. J. Supercrit. Fluids 2013, 77, 70–78. [CrossRef]
- Wang, X.; Tong, H.; Chen, F.; Gangemi, J.D. Chemical characterization and antioxidant evaluation of muscadine grape pomace extract. *Food Chem.* 2010, 123, 1156–1162. [CrossRef]
- 212. Daniel, T.; Ben-Shachar, M.; Drori, E.; Hamad, S.; Permyakova, A.; Ben-Cnaan, E.; Tam, J.; Kerem, Z.; Rosenzweig, T. Grape pomace reduces the severity of non-alcoholic hepatic steatosis and the development of steatohepatitis by improving insulin sensitivity and reducing ectopic fat deposition in mice. J. Nutr. Biochem. 2021, 98, 108867. [CrossRef] [PubMed]
- 213. Wittenauer, J.; Mäckle, S.; Sußmann, D.; Schweiggert-Weisz, U.; Carle, R. Inhibitory effects of polyphenols from grape pomace extract on collagenase and elastase activity. *Fitoterapia* **2015**, *101*, 179–187. [CrossRef]
- 214. Jara-Palacios, M.J.; Hernanz, D.; Cifuentes-Gomez, T.; Escudero-Gilete, M.L.; Heredia, F.J.; Spencer, J.P. Assessment of white grape pomace from winemaking as source of bioactive compounds, and its antiproliferative activity. *Food Chem.* **2015**, *183*, 78–82. [CrossRef]
- 215. Gonçalves, G.A.; Soares, A.A.; Correa, R.C.; Barros, L.; Haminiuk, C.W.; Peralta, R.M.; Ferreira, I.C.F.R.; Bracht, A. Merlot grape pomace hydroalcoholic extract improves the oxidative and inflammatory states of rats with adjuvant-induced arthritis. *J. Funct. Foods* **2017**, *33*, 408–418. [CrossRef]
- 216. Jara-Palacios, M.J.; Rodríguez-Pulido, F.J.; Hernanz, D.; Escudero-Gilete, M.L.; Heredia, F.J. Determination of phenolic substances of seeds, skins and stems from white grape marc by near-infrared hyperspectral imaging. *Aust. J. Grape Wine Res.* 2016, 22, 11–15. [CrossRef]
- 217. Balea, Ş.S.; Pârvu, A.E.; Pârvu, M.; Vlase, L.; Dehelean, C.A.; Pop, T.I. Antioxidant, Anti-Inflammatory and Antiproliferative Effects of the Vitis vinifera L. var. Fetească Neagră and Pinot Noir Pomace Extracts. *Front. Pharmacol.* 2020, 11, 990. [CrossRef] [PubMed]
- 218. Drosou, C.; Kyriakopoulou, K.; Bimpilas, A.; Tsimogiannis, D.; Krokida, M. A comparative study on different extraction techniques to recover red grape pomace polyphenols from vinification byproducts. *Ind. Crops Prod.* 2015, 75, 141–149. [CrossRef]
- 219. Negro, C.; Aprile, A.; Luvisi, A.; De Bellis, L.; Miceli, A. Antioxidant activity and polyphenols characterization of four monovarietal grape pomaces from Salento (Apulia, Italy). *Antioxidants* **2021**, *10*, 1406. [CrossRef] [PubMed]
- Iora, S.R.; Maciel, G.M.; Zielinski, A.A.; da Silva, M.V.; Pontes PV, D.A.; Haminiuk, C.W.; Granato, D. Evaluation of the bioactive compounds and the antioxidant capacity of grape pomace. *Int. J. Food Sci. Technol.* 2015, 50, 62–69. [CrossRef]
- 221. Silva DS, M.E.; Grisi CV, B.; da Silva, S.P.; Madruga, M.S.; da Silva, F.A.P. The technological potential of agro-industrial residue from grape pulping (*Vitis* spp.) for application in meat products: A review. *Food Biosci.* **2022**, *49*, 101877. [CrossRef]
- 222. Gerardi, G.; Cavia-Saiz, M.; Muniz, P. From winery by-product to healthy product: Bioavailability, redox signaling and oxidative stress modulation by wine pomace product. *Crit. Rev. Food Sci. Nutr.* **2021**, *62*, 1–23. [CrossRef] [PubMed]
- Anastasiadi, M.; Pratsinis, H.; Kletsas, D.; Skaltsounis, A.L.; Haroutounian, S.A. Grape stem extracts: Polyphenolic content and assessment of their *in vitro* antioxidant properties. *LWT-Food Sci. Technol.* 2012, 48, 316–322. [CrossRef]
- 224. Aliakbarian, B.; Fathi, A.; Perego, P.; Dehghani, F. Extraction of antioxidants from winery wastes using subcritical water. J. Supercrit. Fluids 2012, 65, 18–24. [CrossRef]
- 225. Alvarez, E.; Rodiño-Janeiro, B.K.; Jerez, M.; Ucieda-Somoza, R.; Núñez, M.J.; González-Juanatey, J.R. Procyanidins from grape pomace are suitable inhibitors of human endothelial NADPH oxidase. J. Cell. Biochem. 2012, 113, 1386–1396. [CrossRef]
- Mendoza, L.; Yañez, K.; Vivanco, M.; Melo, R.; Cotoras, M. Characterization of extracts from winery by-products with antifungal activity against *Botrytis cinerea*. *Ind. Crops Prod.* 2013, 43, 360–364. [CrossRef]

- 227. Aizpurua-Olaizola, O.; Navarro, P.; Vallejo, A.; Olivares, M.; Etxebarria, N.; Usobiaga, A. Microencapsulation and storage stability of polyphenols from Vitis vinifera grape wastes. *Food Chem.* 2016, 190, 614–621. [CrossRef] [PubMed]
- 228. Alibade, A.; Kaltsa, O.; Bozinou, E.; Athanasiadis, V.; Palaiogiannis, D.; Lalas, S.; Makris, D.P. Stability of microemulsions containing red grape pomace extract obtained with a glycerol/sodium benzoate deep eutectic solvent. OCL 2022, 29, 28. [CrossRef]
- 229. Soares SC, S.; de Lima, G.C.; Laurentiz, A.C.; Féboli, A.; Dos Anjos, L.A.; de Paula Carlis, M.S.; da Silva Filardi, R.; de Laurentiz RD, S. In vitro anthelmintic activity of grape pomace extract against gastrointestinal nematodes of naturally infected sheep. *Int. J. Vet. Sci. Med.* 2018, *6*, 243–247. [CrossRef] [PubMed]
- Silvan, J.M.; Gutiérrez-Docio, A.; Moreno-Fernandez, S.; Alarcón-Cavero, T.; Prodanov, M.; Martinez-Rodriguez, A.J. Procyanidinrich extract from grape seeds as a putative tool against Helicobacter pylori. *Foods* 2020, 9, 1370. [CrossRef]
- Quiñones, M.; Guerrero, L.; Suarez, M.; Pons, Z.; Aleixandre, A.; Arola, L.; Muguerza, B. Low-molecular procyanidin rich grape seed extract exerts antihypertensive effect in males spontaneously hypertensive rats. *Food Res. Int.* 2013, *51*, 587–595. [CrossRef]
- Tournour, H.H.; Segundo, M.A.; Magalhães, L.M.; Barreiros, L.; Queiroz, J.; Cunha, L.M. Valorization of grape pomace: Extraction of bioactive phenolics with antioxidant properties. *Ind. Crops Prod.* 2015, 74, 397–406. [CrossRef]
- Della Vedova, L.; Ferrario, G.; Gado, F.; Altomare, A.; Carini, M.; Morazzoni, P.; Aldini, G.; Baron, G. Liquid Chromatography– High-Resolution Mass Spectrometry (LC-HRMS) Profiling of Commercial Enocianina and Evaluation of Their Antioxidant and Anti-Inflammatory Activity. *Antioxidants* 2022, 11, 1187. [CrossRef]
- Hübner, A.A.; Sarruf, F.D.; Oliveira, C.A.; Neto, A.V.; Fischer, D.C.; Kato, E.T.; Lourenço, F.R.; Baby, A.R.; Bacchi, E.M. Safety and photoprotective efficacy of a sunscreen system based on grape pomace (*Vitis vinifera* L.) phenolics from winemaking. *Pharmaceutics* 2020, 12, 1148. [CrossRef]
- 235. Gavrilaș, S.; Calinovici, I.; Chiș, S.; Ursachi, C.Ş.; Raț, M.; Munteanu, F.D. White Grape Pomace Valorization for Remediating Purposes. *Appl. Sci.* 2022, *12*, 1997. [CrossRef]
- Olt, V.; Báez, J.; Jorcin, S.; López, T.; Fernández, A.; Medrano, A. Development of a potential functional yogurt using bioactive compounds obtained from the by-product of the production of Tannat red wine. *Biol. Life Sci. Forum* 2021, 6, 93.
- 237. Asmat-Campos, D.; Bravo Huivin, E.; Avalos-Vera, V. Valorization of agro-industrial waste in a circular economy environment: Grape pomace as a source of bioactive compounds for its application in nanotechnology. In Proceedings of the 19th LACCEI International Multi-Conference for Engineering, Education, and Technology: "Prospective and Trends in Technology and Skills for Sustainable Social Development" "Leveraging Emerging Technologies to Construct the Future", Buenos Aires, Argentina, 21–23 July 2021. [CrossRef]
- 238. Andrés, A.I.; Petrón, M.J.; Adámez, J.D.; López, M.; Timón, M.L. Food by-products as potential antioxidant and antimicrobial additives in chill stored raw lamb patties. *Meat Sci.* 2017, 129, 62–70. [CrossRef] [PubMed]
- Biniari, K.; Xenaki, M.; Daskalakis, I.; Rusjan, D.; Bouza, D.; Stavrakaki, M. Polyphenolic compounds and antioxidants of skin and berry grapes of Greek Vitis vinifera cultivars in relation to climate conditions. *Food Chem.* 2020, 307, 125518. [CrossRef] [PubMed]
- 240. Bordiga, M.; Travaglia, F.; Locatelli, M. Valorisation of grape pomace: An approach that is increasingly reaching its maturity–a review. *Int. J. Food Sci. Technol.* **2019**, *54*, 933–942. [CrossRef]
- 241. Chen, Y.; Wen, J.; Deng, Z.; Pan, X.; Xie, X.; Peng, C. Effective utilization of food wastes: Bioactivity of grape seed extraction and its application in food industry. *J. Funct. Foods* **2020**, *73*, 104113. [CrossRef]
- Crupi, P.; Dipalmo, T.; Clodoveo, M.L.; Toci, A.T.; Coletta, A. Seedless table grape residues as a source of polyphenols: Comparison and optimization of non-conventional extraction techniques. *Eur. Food Res. Technol.* 2018, 244, 1091–1100. [CrossRef]
- 243. Mainente, F.; Menin, A.; Alberton, A.; Zoccatelli, G.; Rizzi, C. Evaluation of the sensory and physical properties of meat and fish derivatives containing grape pomace powders. *Int. J. Food Sci. Technol.* **2019**, *54*, 952–958. [CrossRef]
- 244. Gárcia-Lomillo, J.; González-SanJosé, M. Applications of wine pomace in the food industry: Approaches and functions. *Compr. Rev. Food Sci. Food Saf.* 2017, 16, 3–22. [CrossRef] [PubMed]
- Liu, N.; Li, X.; Zhao, P.; Zhang, X.; Qiao, O.; Huang, L.; Gao, W. A review of chemical constituents and health-promoting effects of citrus peels. *Food Chem.* 2021, 365, 130585. [CrossRef]
- 246. Yaqoob, M.; Aggarwal, P.; Rasool, N.; Baba, W.N.; Ahluwalia, P.; Abdelrahman, R. Enhanced functional properties and shelf stability of cookies by fortification of kinnow derived phytochemicals and residues. *J. Food Meas. Charact.* 2021, 15, 2369–2376. [CrossRef]
- Karetha, K.; Gadhvi, K.; Vyas, S. Peelings of citrus fruits as a precious resource of phytochemical and vital bioactive medicines during Covid: 19 periods. Int. J. Bot. Stud. 2020, 5, 342–344.
- 248. Benayad, O.; Bouhrim, M.; Tiji, S.; Kharchoufa, L.; Addi, M.; Drouet, S.; Hano, C.; Lorenzo, J.M.; Bendaha, H.; Bnouham, M.; et al. Phytochemical profile, α-glucosidase, and α-amylase inhibition potential and toxicity evaluation of extracts from *Citrus aurantium* (L) peel, a valuable by-product from Northeastern Morocco. *Biomolecules* **2021**, *11*, 1555. [CrossRef] [PubMed]
- 249. Barbosa, P.D.P.M.; Ruviaro, A.R.; Macedo, G.A. Comparison of different Brazilian citrus by-products as source of natural antioxidants. *Food Sci. Biotechnol.* 2018, 27, 1301–1309. [CrossRef] [PubMed]
- Liew, S.S.; Ho, W.Y.; Yeap, S.K.; Sharifudin SA, B. Phytochemical composition and in vitro antioxidant activities of Citrus sinensis peel extracts. *PeerJ* 2018, 6, e5331. [CrossRef] [PubMed]
- Jorge, N.; Silva AC, D.; Aranha, C.P. Antioxidant activity of oils extracted from orange (*Citrus sinensis*) seeds. An. Da Acad. Bras. De Ciên. 2016, 88, 951–958. [CrossRef]

- 252. Olfa, T.; Gargouri, M.; Akrouti, A.; Brits, M.; Gargouri, M.; Ben Ameur, R.; Pieters, L.; Foubert, K.; Magné, C.; Soussi, A.; et al. A comparative study of phytochemical investigation and antioxidative activities of six citrus peel species. *Flavour Fragr. J.* 2021, *36*, 564–575. [CrossRef]
- Lee, G.J.; Lee, S.Y.; Kang, N.G.; Jin, M.H. A multi-faceted comparison of phytochemicals in seven citrus peels and improvement of chemical composition and antioxidant activity by steaming. LWT 2022, 160, 113297. [CrossRef]
- 254. Šafranko, S.; Ćorković, I.; Jerković, I.; Jakovljević, M.; Aladić, K.; Šubarić, D.; Jokić, S. Green extraction techniques for obtaining bioactive compounds from mandarin peel (Citrus unshiu var. Kuno): Phytochemical analysis and process optimization. *Foods* 2021, 10, 1043. [CrossRef]
- 255. Huang, Q.; Liu, J.; Hu, C.; Wang, N.; Zhang, L.; Mo, X.; Li, G.; Liao, H.; Huang, H.; Ji, S.; et al. Integrative analyses of transcriptome and carotenoids profiling revealed molecular insight into variations in fruits color of Citrus Reticulata Blanco induced by transplantation. *Genomics* 2022, 114, 110291. [CrossRef]
- Saini, A.; Panesar, P.S.; Bera, M.B. Valuation of Citrus reticulata (kinnow) peel for the extraction of lutein using ultrasonication technique. *Biomass Convers. Biorefinery* 2021, 11, 2157–2165. [CrossRef]
- Lopresto, C.G.; Petrillo, F.; Casazza, A.A.; Aliakbarian, B.; Perego, P.; Calabrò, A. A non-conventional method to extract Dlimonene from waste lemon peels and comparison with traditional Soxhlet extraction. *Sep. Purif. Technol.* 2014, 137, 13–20. [CrossRef]
- 258. Okino Delgado, C.H.; Fleuri, L.F. Orange and mango by-products: Agro-industrial waste as source of bioactive compounds and botanical versus commercial description—A review. *Food Rev. Int.* **2016**, *32*, 1–14. [CrossRef]
- Yang, X.; Kang, S.M.; Jeon, B.T.; Kim, Y.D.; Ha, J.H.; Kim, Y.T.; Jeon, Y.J. Isolation and identification of an antioxidant flavonoid compound from citrus-processing by-product. J. Sci. Food Agric. 2011, 91, 1925–1927. [CrossRef] [PubMed]
- 260. Fava, F.; Zanaroli, G.; Vannini, L.; Guerzoni, E.; Bordoni, A.; Viaggi, D.; Robertson, J.; Waldron, K.; Bald, C.; Esturo, A.; et al. New advances in the integrated management of food processing by-products in Europe: Sustainable exploitation of fruit and cereal processing by-products with the production of new food products (NAMASTE EU). *New Biotechnol.* 2013, 30, 647–655. [CrossRef] [PubMed]
- Lv, K.; Zhang, L.; Zhao, H.; Ho, C.T.; Li, S. Recent study on the anticancer activity of nobiletin and its metabolites. *J. Food Bioact.* 2021, 14. [CrossRef]
- 262. Gao, Z.; Wang, Z.Y.; Guo, Y.; Chu, C.; Zheng, G.D.; Liu, E.H.; Li, F. Enrichment of polymethoxyflavones from Citrus reticulata 'Chachi'peels and their hypolipidemic effect. *J. Chromatogr. B* **2019**, 1124, 226–232. [CrossRef]
- 263. Zeng, S.-L.; Li, S.-Z.; Xiao, P.-T.; Cai, Y.-Y.; Chu, C.; Chen, B.-Z.; Li, P.; Li, J.; Liu, E.-H. Citrus polymethoxyflavones attenuate metabolic syndrome by regulating gut microbiome and amino acid metabolism. *Sci. Adv.* **2020**, *6*, eaax6208. [CrossRef]
- Chiechio, S.; Zammataro, M.; Barresi, M.; Amenta, M.; Ballistreri, G.; Fabroni, S.; Rapisarda, P. A standardized extract prepared from red orange and lemon wastes blocks high-fat diet-induced hyperglycemia and hyperlipidemia in mice. *Molecules* 2021, 26, 4291. [CrossRef]
- 265. Barbosa PD, P.M.; Ruviaro, A.R.; Martins, I.M.; Macedo, J.A.; LaPointe, G.; Macedo, G.A. Enzyme-assisted extraction of flavanones from citrus pomace: Obtention of natural compounds with anti-virulence and anti-adhesive effect against Salmonella enterica subsp. enterica serovar Typhimurium. *Food Control* 2021, 120, 107525. [CrossRef]
- Lamine, M.; Gargouri, M.; Rahali, F.Z.; Mliki, A. Recovering and characterizing phenolic compounds from citrus by-product: A way towards agriculture of subsistence and sustainable bioeconomy. *Waste Biomass Valorization* 2021, 12, 4721–4731. [CrossRef]
- 267. Gunwantrao, B.B.; Bhausaheb, S.K.; Ramrao, B.S.; Subhash, K.S. Antimicrobial activity and phytochemical analysis of orange (*Citrus aurantium* L.) and pineapple (*Ananas comosus* (L.) Merr.) peel extract. *Ann. Phytomed.* **2016**, *5*, 156–160. [CrossRef]
- Khan, N.H.; Qian, C.J.; Perveen, N. Phytochemical screening, antimicrobial and antioxidant activity determination of citrus maxima peel. *Pharm. Pharmacol. Int. J.* 2018, 6, 279–285.
- Khan, J.; Sakib, S.A.; Mahmud, S.; Khan, Z.; Islam, M.N.; Sakib, M.A.; Emran, T.B.; Simal-Gandara, J. Identification of potential phytochemicals from Citrus limon against main protease of SARS-CoV-2: Molecular docking, molecular dynamic simulations and quantum computations. J. Biomol. Struct. Dyn. 2021, 40, 1–12. [CrossRef] [PubMed]
- Achimón, F.; Leal, L.E.; Pizzolitto, R.P.; Brito, V.D.; Alarcón, R.; Omarini, A.B.; Zygadlo, J.A. Insecticidal and antifungal effects of lemon, orange, and grapefruit peel essential oils from Argentina. *Agriscientia* 2022, 39, 71–82.
- 271. Liu, Y.; Benohoud, M.; Yamdeu JH, G.; Gong, Y.Y.; Orfila, C. Green extraction of polyphenols from citrus peel by-products and their antifungal activity against Aspergillus flavus. *Food Chem.* X **2021**, *12*, 100144. [CrossRef] [PubMed]
- 272. Jiang, H.; Chen, H.; Jin, C.; Mo, J.; Wang, H. Nobiletin flavone inhibits the growth and metastasis of human pancreatic cancer cells via induction of autophagy, G0/G1 cell cycle arrest, and inhibition of NF-kB signalling pathway. J. Buon 2020, 25, 1070–1075.
- 273. Ozkan, A.D.; Kaleli, S.; Onen, H.I.; Sarihan, M.; Eskiler, G.G.; Yigin, A.K.; Akdogan, M. Anti-inflammatory effects of nobiletin on TLR4/TRIF/IRF3 and TLR9/IRF7 signaling pathways in prostate cancer cells. *Immunopharmacol. Immunotoxicol.* 2020, 42, 93–100. [CrossRef] [PubMed]
- Hanafy, S.M.; El-Shafea, A.; Mohamed, Y.; Saleh, W.D.; Fathy, H.M. Chemical profiling, in vitro antimicrobial and antioxidant activities of pomegranate, orange and banana peel-extracts against pathogenic microorganisms. *J. Genet. Eng. Biotechnol.* 2021, 19, 1–10. [CrossRef] [PubMed]
- 275. Abbattista, R.; Ventura, G.; Calvano, C.D.; Cataldi, T.R.; Losito, I. Bioactive compounds in waste by-products from olive oil production: Applications and structural characterization by mass spectrometry techniques. *Foods* **2021**, *10*, 1236. [CrossRef]

- 276. Martakos, I.; Katsianou, P.; Koulis, G.; Efstratiou, E.; Nastou, E.; Nikas, S.; Dasenaki, M.; Pentogennis, M.; Thomaidis, N. Development of Analytical Strategies for the Determination of Olive Fruit Bioactive Compounds Using UPLC-HRMS and HPLC-DAD. Chemical Characterization of Kolovi Lesvos Variety as a Case Study. *Molecules* **2021**, *26*, 7182. [CrossRef]
- 277. Dermeche, S.; Nadour, M.; Larroche, C.; Moulti-Mati, F.; Michaud, P. Olive mill wastes: Biochemical characterizations and valorization strategies. *Process Biochem.* 2013, 48, 1532–1552. [CrossRef]
- 278. Darvishzadeh, P.; Orsat, V. Microwave-assisted extraction of antioxidant compounds from Russian olive leaves and flowers: Optimization, HPLC characterization and comparison with other methods. J. Appl. Res. Med. Aromat. Plants 2022, 27, 100368. [CrossRef]
- 279. Russo, E.; Spallarossa, A.; Comite, A.; Pagliero, M.; Guida, P.; Belotti, V.; Caviglia, D.; Schito, A.M. Valorization and Potential Antimicrobial Use of Olive Mill Wastewater (OMW) from Italian Olive Oil Production. *Antioxidants* 2022, 11, 903. [CrossRef] [PubMed]
- D'Antuono, I.; Kontogianni, V.G.; Kotsiou, K.; Linsalata, V.; Logrieco, A.F.; Tasioula-Margari, M.; Cardinali, A. Polyphenolic characterization of Olive Mill Waste Waters, coming from Italian and Greek olive cultivars, after membrane technology. *Food Res. Int.* 2014, 65, 301–310. [CrossRef]
- Alu'datt, M.H.; Alli, I.; Ereifej, K.; Alhamad, M.; Al-Tawaha, A.R.; Rababah, T. Optimisation, characterisation and quantification of phenolic compounds in olive cake. *Food Chem.* 2010, 123, 117–122. [CrossRef]
- 282. Zhao, H.; Avena-Bustillos, R.J.; Wang, S.C. Extraction, Purification and In Vitro Antioxidant Activity Evaluation of Phenolic Compounds in California Olive Pomace. *Foods* 2022, *11*, 174. [CrossRef]
- Benincasa, C.; Pellegrino, M.; Romano, E.; Claps, S.; Fallara, C.; Perri, E. Qualitative and Quantitative Analysis of Phenolic Compounds in Spray-Dried Olive Mill Wastewater. *Front. Nutr.* 2022, *8*, 782693. [CrossRef]
- Ladhari, A.; Zarrelli, A.; Ghannem, M.; Ben Mimoun, M. Olive wastes as a high-potential by-product: Variability of their phenolic profiles, antioxidant and phytotoxic properties. *Waste Biomass Valorization* 2021, 12, 3657–3669. [CrossRef]
- 285. Poerschmann, J.; Weiner, B.; Baskyr, I. Organic compounds in olive mill wastewater and in solutions resulting from hydrothermal carbonization of the wastewater. *Chemosphere* **2013**, *92*, 1472–1482. [CrossRef]
- Uribe, E.; Pasten, A.; Lemus-Mondaca, R.; Vega-Gálvez, A.; Quispe-Fuentes, I.; Ortiz, J.; Di Scala, K. Comparison of Chemical Composition, Bioactive Compounds and Antioxidant Activity of Three Olive-Waste Cakes. J. Food Biochem. 2015, 39, 189–198. [CrossRef]
- Akli, H.; Grigorakis, S.; Kellil, A.; Loupassaki, S.; Makris, D.P.; Calokerinos, A.; Mati, A.; Lydakis-Simantiris, N. Extraction of Polyphenols from Olive Leaves Employing Deep Eutectic Solvents: The Application of Chemometrics to a Quantitative Study on Antioxidant Compounds. *Appl. Sci.* 2022, 12, 831. [CrossRef]
- 288. Taamalli, A.; Arraez-Roman, D.; Barrajon-Catalan, E.; Ruiz-Torres, V.; Perez-Sanchez, A.; Herrero, M.; Ibanñez, E.; Micol, V.; Zarrouk, M.; Segura-Carretero, A.; et al. Use of advanced techniques for the extraction of phenolic compounds from Tunisian olive leaves: Phenolic composition and cytotoxicity against human breast cancer cells. *Food Chem. Toxicol.* 2012, *50*, 1817–1825. [CrossRef] [PubMed]
- Servian-Rivas, L.D.; Pachón, E.R.; Rodríguez, M.; González-Miquel, M.; González, E.J.; Díaz, I. Techno-economic and environmental impact assessment of an olive tree pruning waste multiproduct biorefinery. *Food Bioprod. Process.* 2022, 134, 95–108. [CrossRef]
- 290. Yeniçeri, M.; Filik, A.G.; Filik, G. The Effect of Some Selected Fruit Wastes for Poultry Feed on Growth Performance of Broilers. *Palandöken J. Anim. Sci. Technol. Econ.* **2022**, *1*, 33–41.
- 291. Kreatsouli, K.; Fousteri, Z.; Zampakas, K.; Kerasioti, E.; Veskoukis, A.S.; Mantas, C.; Gkoutsidis, P.; Ladas, D.; Petrotos, K.; Kouretas, D.; et al. A Polyphenolic Extract from Olive Mill Wastewaters Encapsulated in Whey Protein and Maltodextrin Exerts Antioxidant Activity in Endothelial Cells. *Antioxidants* 2019, *8*, 280. [CrossRef] [PubMed]
- 292. Lafka, T.I.; Lazou, A.E.; Sinanoglou, V.J.; Lazos, E.S. Phenolic and antioxidant potential of olive oil mill wastes. *Food Chem.* 2011, 125, 92–98. [CrossRef]
- Visioli, F.; Romani, A.; Mulinacci, N.; Zarini, S.; Conte, D.; Vincieri, F.F.; Galli, G. Antioxidant and other biological activities of olive mill waste waters. J. Agric. Food Chem. 1999, 47, 3397–3401. [CrossRef]
- 294. Di Mauro, M.D.; Fava, G.; Spampinato, M.; Aleo, D.; Melilli, B.; Saita, M.G.; Centonze, G.; Maggiore, R.; D'Antona, N. Polyphenolic Fraction from Olive MillWastewater: Scale-Up and in Vitro Studies for Ophthalmic Nutraceutical Applications. *Antioxidants* 2019, 8, 462. [CrossRef]
- Robles-Almazan, M.; Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Rodriguez-Garcia, C.; Quiles, J.L.; Ramirez-Tortosa, M.C. Hydroxytyrosol: Bioavailability, toxicity, and clinical applications. *Food Res. Int.* 2018, 105, 654–667. [CrossRef]
- Bernini, R.; Merendino, N.; Romani, A.; Velotti, F. Naturally occurring hydroxytyrosol: Synthesis and anticancer potential. *Curr. Med. Chem.* 2013, 20, 655–670. [CrossRef]
- 297. Benincasa, C.; La Torre, C.; Plastina, P.; Fazio, A.; Perri, E.; Caroleo, M.C.; Gallelli, L.; Cannataro, R.; Cione, E. Hydroxytyrosyl Oleate: Improved Extraction Procedure from Olive Oil and By-Products, and In Vitro Antioxidant and Skin Regenerative Properties. *Antioxydants* 2019, *8*, 233. [CrossRef]
- Obied, H.K.; Allen, M.S.; Bedgood, D.R. Bioscreening of Australian olive mill waste extracts: Biophenol content, antioxidant, antimicrobial and molluscicidal activities. *Food Chem. Toxicol.* 2007, 45, 1238–1248. [CrossRef] [PubMed]

- Yangui, T.; Sayadi, S.; Gargoubi, A.; Dhouib, A. Fungicidal effect of hydroxytyrosol rich preparations from olive mill wastewater against Verticillium dahliae. Crop Prot. 2010, 29, 1208–1213. [CrossRef]
- Abdel-Razek, A.G.; Badr, A.; Shehata, G. Characterization of Olive Oil By-products: Antioxidant Activity, Its Ability to Reduce Aflatoxigenic Fungi Hazard and Its Aflatoxins. *Annu. Res. Rev. Biol.* 2017, 14, 1–14. [CrossRef]
- Abi-Khattar, A.M.; Rajha, N.; Abdel-Massih, M.; Maroun, G.; Louka, N.; Debs, E. Intensification of Polyphenol Extraction from Olive Leaves Using Ired-Irrad, an Environmentally-Friendly Innovative Technology. *Antioxidants* 2019, 8, 227. [CrossRef]
- 302. Bavaro, S.L.; D'Antuono, I.; Cozzi, G.; Haidukowski, M.; Cardinali, A.; Logrieco, A.F. Inhibition of aflatoxin B₁ production by verbascoside and other olive polyphenols. *World Mycotoxin J.* **2016**, *9*, 545–553. [CrossRef]
- Schaffer, S.; Müller, W.E.; Eckert, G.P. Cytoprotective effects of olive mill waste water extract and its main constituent hydroxytyrosol in PC12 cells. *Pharmacol. Res.* 2010, 62, 322–327. [CrossRef]
- Palos-Hernández, A.; Fernández MY, G.; Burrieza, J.E.; Pérez-Iglesias, J.L.; González-Paramás, A.M. Obtaining green extracts rich in phenolic compounds from underexploited food by-products using natural deep eutectic solvents. Opportunities and challenges. Sustain. Chem. Pharm. 2022, 29, 100773. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.