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Abstract: Billions of tons of agro-industrial residues are produced worldwide. This is associated
with the risk of pollution as well as management and economic problems. Simultaneously, non-
edible portions of many crops are rich in bioactive compounds with valuable properties. For this
reason, developing various methods for utilizing agro-industrial residues as a source of high-value
by-products is very important. The main objective of the paper is a review of the newest studies
on biologically active compounds included in non-edible parts of crops with the highest amount of
waste generated annually in the world. The review also provides the newest data on the chemical
and biological properties, as well as the potential application of phytochemicals from such waste. The
review shows that, in 2020, there were above 6 billion tonnes of residues only from the most popular
crops. The greatest amount is generated during sugar, oil, and flour production. All described
residues contain valuable phytochemicals that exhibit antioxidant, antimicrobial and very often
anti-cancer activity. Many studies show interesting applications, mainly in pharmaceuticals and food
production, but also in agriculture and wastewater remediation, as well as metal and steel industries.

Keywords: bioactive compounds; antioxidants; agricultural residues; fruits; vegetables; mass spec-
trometry; extraction

1. Introduction

The agricultural industry generates billions of tonnes of waste from the tillage and
processing of various crops. The crops with the largest amounts of produced residues
are rice, maize, soybean, sugarcane, potato, tomato, and cucumber, as well as some fruits,
mainly bananas, oranges, grapes, and apples [1,2]. It has been estimated that European food
processing companies generate annually approximately 100 Mt of waste and by-products,
mostly during the production of drinks (26%), dairy and ice cream (21.3%), and fruits and
vegetables (14.8%) [3].

In Table 1, the amounts of particular wastes generated worldwide are presented. Many
of them are rich in biologically active compounds and have the potential to become impor-
tant raw materials for obtaining valuable phytochemicals. Vegetable and fruit processing
by-products are promising sources of valuable phytochemicals having antioxidant, antimi-
crobial, anti-inflammatory, anti-cancer, and cardiovascular protection activities [4]. The
applications of these agro-industrial residues and their bioactive compounds in functional
food and cosmetics production were presented in many studies [5–7]. Moreover, due to the
potential health risk of some synthetic antioxidants such as BHA, the identification and
isolation of natural antioxidants from waste has become increasingly attractive. Important
criteria to decide if a product or by-product can be of interest to recover phytochemicals
are the absolute concentration and preconcentration factor, as well as the total amount of
product or by-product per batch [8].
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Table 1. Amount of residues from some crops produced in the world in 2020.

Crop Global Crop Production *
[Million Ton]

Residue
to Crop Ratio

Amount
of Residue **
[Million Ton]

References

Sugarcane 1869.7 0.1 189.1 Jiang et al. [9]
Maize 1162.4 2.0 2324.8 Jiang et al. [9]
Wheat 760.9 1.18 897.9 Searle and Malins [10]

Rice 756.7 1.0 756.7 Jiang et al. [9]
Potato 359.1 0.4 143.6 Ben Taher et al. [11]

Soybean 353.5 1.5 530.3 Yanli et al. [12]
Sugar beet 253.0 0.27 68.3 Searle and Malins [10]

Tomato 186.8 3.5 653.8 Oleszek et al. [13]
Barley 157.0 1.18 185.3 Searle and Malins [10]
Banana 119.8 0.6 71.9 Gabhane et al. [14]

Cucumber 91.3 4.5 410.9 Oleszek et al. [13]
Apples 86.4 0.25 21.6 Cruz et al. [15]
Grapes 78.0 0.3 23.4 Muhlack et al. [16]

Oranges 75.5 0.5 37.8 Rezzadori et al. [17]
Olives 23.6 0.12 2.8 Searle and Malins [10]

* based on FAOSTAT, 2022, ** calculated based on the global crop production in 2020 and the residue-to-crop ratio
according to cited references.

As interest in waste processing has been growing in recent years, many scientific
papers have been published on new compounds in agro-industrial waste, new properties
of valuable phytochemicals contained in crop residues and their applications. It seems
necessary to summarize and collect the latest knowledge on this subject. In this work, an
overview of the recent knowledge on the phytochemicals in some of the most popular food
by-products, with the highest amount generated in the world, as well as on their properties
and potential applications, have been presented in more detail (Figure 1).
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2. Phytochemicals from Crop Residues
2.1. Sugarcane Bagasse

Large amounts of waste are generated during the processing of sugarcane. In fact,
one metric ton of sugarcane generates 280 kg of bagasse. Sugarcane bagasse is one of the
most abundant agro-food by-products and is a very promising raw material available at
low cost for recovering bioactive substances [18,19]. Sugarcane bagasse consists mainly of
cellulose (35–50%), hemicellulose (26–41%), lignin (11–25%), but also some amount of plant
secondary metabolites (PSM), mainly anthocyanins and mineral substances [20–25].

Phenolic compounds are a very important group of natural substances identified
in sugarcane waste. Nonetheless, steam explosion and ultrasound-assisted extraction
(UAE) pretreatment was applied for the production of valuable phenolic compounds from
the lignin included in this residue. Chromatographic analysis revealed that sugarcane
bagasse is a good feedstock for the generation of phenolic acids. The concentration of total
phenolics with the Folin-Ciocalteau method was between 2.8 and 3.2 g/L. Zhao et al. [26]
have identified many phenolics, mainly flavonoids and phenolic acids, in sugarcane bagasse
extract (Table 2). The total polyphenol content was detected as higher than 4 mg/g of
dry bagasse, with total flavonoid content of 470 mg quercetin/g of polyphenol. The
most abundant phenolic acids identified in the sugarcane bagasse extract were gallic acid
(4.36 mg/g extract), ferulic acid (1.87 mg/g extract) and coumaric acid (1.66 mg/g extract).
Spectroscopic analysis showed that a predominant amount of p-coumaric acid is ester-
linked to the cell wall components, mainly to lignin. On the other hand, about half of the
ferulic acid is esterified to the cell wall hemicelluloses. The purified sugarcane bagasse
hydrolysate consisted mainly of p-coumaric acid. Besides, the purified products showed
the same antioxidant activity, reducing power and free radical scavenging capacity as
the standard p-coumaric acid. Al Arni et al. [27] stated that the major natural products
contained in the lignin fraction were p-coumaric acid, ferulic acid, syringic acid, and
vanillin.

Table 2. Phytochemicals derived from sugarcane bagasse.

Name MW *
[g mol−1] CxHyOz References

Phenolic acids—hydroxybenzoic acids
p-Hydroxybenzoic acid 138.12 C7H6O3 Zheng et al. [19]

Vanillic acid 168.14 C8H8O4 Zheng et al. [19]
Benzoic acid 122.12 C7H6O2 Zheng et al. [19]

Protocatechuic acid 154.12 C7H6O4 Zheng et al. [19]
Gallic acid 170.12 C7H6O5 Zhao et al. [26]

Syringic acid 198.17 C9H10O5 Zhao et al. [26]
Phenolic acids—hydroxycinnamic acids

p-Coumaric acid 164.04 C9H8O3 González–Bautista et al. [28]
Cinnamic acid 148.16 C9H8O2 González–Bautista et al. [28]

Ferulic acid 194.18 C10H10O4 González–Bautista et al. [28]
Caffeic acid 180.16 C9H8O4 González–Bautista et al. [28]

Chlorogenic acids 354.31 C16H18O9 Zhao et al. [26]
Sinapic acid 224.21 C11H12O5 Zhao et al. [26]

Flavonoids—flavonols
Quercetin 302.24 C15H10O7 Zheng et al. [19]

Flavonoids—flavones
Luteolin 286.24 C15H10O6 Zheng et al. [29]

Tricin 330.29 C17H14O7 Zheng et al. [29]
Flavonoid glycosides

Diosmetin 6-C-glucoside 462.40 C22H22O11 Zheng et al. [29]
Tricin 7-O-β-glucopyranoside 492.43 C23H24O12 Zheng et al. [29]

Isoflavone
Genistin 432.37 C21H20O10 Zheng et al. [19]
Genistein 270.24 C15H10O5 Zheng et al. [19]
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Table 2. Cont.

Name MW *
[g mol−1] CxHyOz References

Others
Catechol 110.11 C6H6O2 Zheng et al. [19]
Phenol 94.11 C6H6O Zheng et al. [19]

Guaiacol 124.14 C7H8O2 Zheng et al. [19]
Vanillin 152.15 C8H8O3 Zheng et al. [19]

Isovanillin 152.15 C8H8O3 Van der Pol et al. [30]
Syringaldehyde 182.17 C9H10O4 Zheng et al. [19]

Piceol 136.15 C8H8O2 Van der Pol et al. [30]
Apocynin 166.17 C9H10O3 Van der Pol et al. [30]

Acetosyringone 196.19 C10H12O4 Van der Pol et al. [30]
Syringaldehyde 182.17 C9H10O4 Van der Pol et al. [30]

Creosol 138.16 C8H10O2 Lv et al. [31]
4-Ethylguaiacol 152.19 C9H12O2 Lv et al. [31]

Chavicol 134.17 C9H10O Lv et al. [31]
4-Vinylguaiacol 150.17 C9H10O2 Lv et al. [31]
4-Allylsyringol 194.23 C11H14O3 Lv et al. [31]

* MW—molecular weight.

Gallic, coumaric, caffeic, chlorogenic, and cinnamic acids were the main phenolic
compounds extracted from raw and alkaline pretreated sugarcane bagasse and identified by
high-performance liquid chromatography (HPLC) [28]. The aromatic phenolic compounds
(p-coumaric acid, ferulic acid, p-hydroxybenzaldehyde, vanillin, and vanillic acid) were
reported in sugarcane bagasse pith. Five phenolic compounds (tricin 4-O-guaiacylglyceryl
ether-7-O-glucopyranoside, genistin, p-coumaric acid, quercetin, and genistein) in 30%
hydroalcoholic fraction of sugarcane bagasse were identified using ultra-high performance
liquid chromatography/high-resolution time of flight mass spectrometry (UHPLC-HR-
TOF-MS); (Table 2). The total phenolic content was 170.68 mg gallic acid/g dry extract [19].

Phenolic compounds derived from sugarcane bagasse exhibited many biological
activities, which were used in various applications. The most important biological activities
and the newest and most interesting applications have been summarized in Table 3.

Table 3. Biological activities and potential applications of phytochemicals obtained from sugarcane
bagasse.

Material Extract/Compound Biological Activity/Application References

Sugarcane bagasse phenolic compounds - natural antioxidant
- used in pharmacology Al Arni et al. [27]

- antibacterial agents against the foodborne pathogens
Escherichia coli, Listeria monocytogenes, Staphylococcus

aureus, Salmonella typhimurium
Zhao et al. [26]

gallic and tannic
acids - deactivate cellulolytic and hemicellulolytic enzymes Michelin et al. [32]

extract

- antioxidant and radical scavenging activity
- antimicrobial activity against Sta-

phylococcus aureus TISTR029 and
Escherichia coli O157:H7

- added value for the sugar industry

Juttuporn et al. [33]

- antihyperglycemic ability
- useful therapeutic agents to treat T2D patients Zheng et al. [19]

- used for the low-cost bio-oil production Treedet and Suntivarakorn [34]

- feedstock for ethanol (bioethanol) production Krishnan et al. [35]
Zhu et al. [36]

- raw material for the production of industrial
enzymes, xylose, glucose, methane Guilherme et al. [37]

- raw material for the production of xylitol and organic
acids Chandel et al. [38]

- used to prepare highly valued succinic acid Xi et al. [23]
- used as a reducing agent in synthesizing biogenic

platinum nanoparticles Ishak et al. [20]

- used as a fuel to power sugar mills Mohan et al. [22]
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2.2. Maize Residues

Maize (corn Zea mays L.) bran, husk, cobs, tassel, pollen, silk, and fiber are residues of
corn production. They contain substantial amounts of phytochemicals, such as phenolic
compounds, carotenoid pigments and phytosterols [39] (Table 4).

Table 4. Phytochemicals identified in corn waste.

Name MW [g mol−1] Molecular Formula References

Phenolic acids—hydroxycinnamic acids
p-Coumaric acid 164.04 C9H8O3 Guo et al. [39]

Ferulic acid 194.18 C10H10O4 Guo et al. [39]
trans-ferulic acid 194.18 C10H10O4 Guo et al. [39]

trans-ferulic acid methyl ester 208.21 C11H12O4 Guo et al. [39]
cis-ferulic acid 194.18 C10H10O4 Guo et al. [39]

cis-ferulic acid methyl ester 208.21 C11H12O4 Guo et al. [39]
Flavonoids—flavonols

Rutin 610.52 C27H30O16 Bujang et al. [40]
Quercetin-3-O-glucoside 463.37 C21H19O12 Dong et al. [41]

Isorhamnetin-3-O-glucoside 478.41 C22H22O12 Dong et al. [41]
Kaempferol-3-O-glucoside 447.37 C21H19O11 Li et al. [42]

Maysin 576.50 C27H28O14 Haslina and Eva [43]
Isoorientin-2′′-O-α-L-rhamnoside 594.50 C27H30O15 Haslina and Eva [43]

Maysin-3′-methyl ether 590.50 C28H30O15 Tian et al. [44]
ax-4′′–OH–3′-Methoxymaysin 592.50 C28H32O14 Tian et al. [44]

2′′-O-α-L-Rhamnosyl-6-C-
fucosylluteolin 578.50 C27H30O14 Tian et al. [44]

Flavonoids—anthocyanins
Pelargonidin-3-O-glucoside 433.40 C21H21O10 Lao and Giusti [45]

Pelargonidin-3-(6′′malonylglucoside) 519.23 C24H23O13 Chen et al. [46]
Cyanidin-3-O-glucoside 449.39 C21H21O11 Barba et al. [47]

Cyanidin 3-(6′′-malonylglucoside) 535.11 C24H23O14 Fernandez-Aulis et al. [48]
Peonidin-3-O-glucoside 463.41 C22H23O11 Barba et al. [47]

Peonidin-3-(6′′malonylglucoside) 549.50 C25H25O14 Fernandez-Aulis et al. [48]
Other compounds

p-Hydroxybenzaldehyde 122.12 C7H6O2 Guo et al. [39]
β-Sitosterol glucoside 576.85 C35H60O6 Guo et al. [39]
Indole-3-acetic acid 175.06 C10H9NO2 Wille and Berhow [49]

Vanillin 154.05 C8H8O3 Guo et al. [39]

Corn bran is produced as a plentiful by-product during the corn dry milling process.
Similar to other cereal grains, phenolics in corn bran exist in free insoluble bound and
soluble-conjugated forms. Corn bran is a rich source of ferulic acid compared to other
cereals, fruits and vegetables. Guo et al. [39] isolated four forms of ferulic acid and
its derivates from corn bran. On the other hand, it has been reported that the hexane-
derived extract from corn bran contains high levels of ferulate-phytosterol esters, similar in
composition and function to oryzanol.

Another corn waste is a husk. It is the outer leafy covering of an ear of Zea mays L.
The main constituents of the maize husk extracts determined in various phytochemical
studies are phenolic compounds, e.g., flavonoids [41,50]. Saponins, glycosides, and al-
kaloids are present mainly in the aqueous and methanolic extracts, while phenols and
tannins are numerous in methanolic ones [51]. Moreover, corn husk has high contents of
anthocyanins [48,52]. Simla et al. [53] reported that anthocyanins concentration in corn
husks ranges from 0.003 to 4.9 mg/g. The major anthocyanins of corn husk were identified
as malonylation products of cyanidin, pelargonidin, and peonidin derivatives [54].

Important by-products of the corn industry are cobs. For every 100 kg of corn grain,
approximately 18 kg of corn cobs are produced. Corn cob is one of the food waste-
material having a phytochemical component that has a healthy benefit [55]. They contain
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cyanidin-3-glucoside and cyanidin-3-(6′′malonylglucoside) as main anthocyanins, as well
as pelargonidin-3-glucoside, peonidin-3-glucoside and their malonyl counterparts [48].

Corn tassel is a by-product from hybrid corn seed production and an excellent source
of phytochemicals (the flavonol glycosides of quercetin, isorhamnetin and kaempferol)
with beneficial properties [56]. In Thailand, purple waxy corn is considered a special corn
type because it is rich in phenolics, anthocyanins, and carotenoids in the tassel [57]. Besides,
corn tassels could be considered a great source of valuable products such as volatile oils.

Corn pollen is another corn waste. Significant amounts of phytochemicals, including
carotenoids, steroids, terpenes and flavonoids, are present in maize pollen [52]. Bujang
et al. (2021) showed that maize pollen contains a high total phenolic content and total
flavonoid content of 783.02 mg gallic acid equivalent (GAE)/100 g and 1706.83 mg quercetin
equivalent (QE)/100 g, respectively. The flavonoid pattern of maize pollen is characterized
by an accumulation of the predominant flavonols, quercetin and traces of isorhamnetin
diglycosides and rutin. According to Žilić et al. [58], the quercetin values in maize pollen
were 324.16 µg/g and 81.61 to 466.82 µg/g, respectively.

Corn silk, another by-product from corn processing, contains a wide range of bioactive
compounds in the form of volatile oils, steroids, saponins, anthocyanins [59], and other
natural antioxidants, such as flavonoids [52] and phenolic compounds [41,58,59]. In the
corn silk powder, the high phenolic content (94.10 ± 0.26 mg GAE/g) and flavonoid
content (163.93 ± 0.83 mg QE/100 g) are responsible for its high antioxidant activity [60].
About 29 flavonoids have been isolated from corn silk. Most of them are C-glycoside
compounds and have the same parent nucleus as luteolin [44]. Ren et al. [61] successfully
isolated and separated compounds such as 2′′-O-α-L-rhamnosyl-6-C-3′′-deoxyglucosyl-
3′-methoxyluteolin, ax-5′-methane-3′-methoxymaysin, ax-4′′-OH-3′-methoxymaysin, 6,4′-
dihydroxy-3′-methoxyflavone-7-O-glucoside, and 7,4′-dihydroxy-3′-methoxyflavone-2′′-
O-α-L-rhamnosyl-6-C fucoside from corn silk. Moreover, among flavonoids, Haslina and
Eva [43] determined in corn silk: apigmaysin, maysin, isoorientin-2′′-O-α-L-rhamnoside,
3-methoxymaysine, and ax-4-OH maysin.

This richness of biologically active compounds results in advantageous properties and
applications. The most important properties and the newest studies on the application are
listed in Table 5.

Table 5. Biological activity and potential applications of phytochemicals obtained from corn wastes.

Material Extract/Compound Biological Activity/Application References

Corn bran tocopherols and polyphenolic
compounds

- antioxidant properties
- used as bioactive compounds in cosmetics or
natural substitutes (antioxidants, preservatives,

stabilizers, emulsifiers, and colorings) in foods to
prevent potential adverse effects associated with the

consumption of artificial ingredients

Galanakis [62]

Corn husk extract
- used in the treatment of diabetes because it has

shown high:
- antidiabetic potential

Brobbey et al. [51]

- anti-inflammatory effects Roh et al. [63]

Corn stigma extract

- antifungal and antibacterial activities against 23 of
the studied microorganisms

- use as a functional ingredient in the food and
pharmaceutical industry

Boeira et al. [64]

Corn tassel extract

- used as a traditional medicine in China
- antioxidant capacity

- the high ability to inhibit the proliferation of
MGC80-3 gastric cancer cells

Wang et al. [65]

tasselin A - inhibition of melanin production
- used as an ingredient in skin care whitener Wille and Berhow [49]

Corn pollen phenolic compounds - antiradical activity Bujang et al. [40]

extract - the source of functional and bioactive compounds
for the nutraceutical and pharmaceutical industries Bujang et al. [40]

- the source of antioxidants and is high in nutrients Žilić et al. [58]

2.3. Potato Waste

Approximately 40–50% of potatoes are not suitable for human consumption. Industrial
processing of potatoes (mashed and canned potatoes, chips, fries and ready meals) creates
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huge amounts of peel as waste [66,67]. Potato peel is a non-edible residue generated in
considerable amounts by food processing plants. Depending on the peeling process, e.g.,
abrasion, lye or steam peeling, the amount of waste can range between 15 and 40% of
the number of processed potatoes [68]. Industrial processing produces between 70 to
140 thousand tons of peels worldwide annually, which are available to be used in other
applications [69].

Potato peels differ greatly from other agricultural by-products because they are reval-
orized as a source of functional and bioactive compounds, including phenolic compounds,
glycoalkaloids, vitamins and minerals [70] (Table 6).

Table 6. Phytochemicals identified in potato waste.

Name MW
[g mol−1]

Molecular
Formula References

Phenolic acids—hydroxycinnamic acids
p-Coumaric acid 164.04 C9H8O3 Frontuto et al. [71]

Ferulic acid 194.18 C10H10O4 Javed et al. [72]
Caffeic acid 180.16 C9H8O4 Samarin et al. [73]

Chlorogenic acid 354.31 C16H18O9 Javed et al. [72]
Sinapic acid 224.21 C11H12O5 Mohdaly et al. [67]

Cinnamic acid 148.16 C9H8O2 Mohdaly et al. [67]
Phenolic acids—hydroxybenzoic acids

Gallic acid 170.12 C7H6O5 Javed et al. [72]
Vanillic acid 168.15 C8H8O4 Javed et al. [72]

Protocatechic acid 154.12 C7H6O4 Frontuto et al. [71]
p-Hydroxybenzoic acid 138.12 C7H6O3 Chamorro et al. [74]
3-Hydroxybenzoic acid 138.12 C7H6O3 Paniagua–García et al. [75]
4-Hydroxybenzoic acid 138.12 C7H6O3 Paniagua–García et al. [75]

2,5-Dihydroxybenzoic acid 154.12 C7H6O4 Paniagua–García et al. [75]
Syringic acid 198.17 C9H10O5 Sarwari et al. [76]

Cyclohexanecarboxylic acids
Quinic acid 192.17 C7H12O6 Wu et al. [77]

Flavonoids—flavonols
Rutin 610.52 C27H30O16 Silva–Beltran et al. [78]

Quercetin 302.24 C15H10O7 Silva–Beltran et al. [78]
Flavonoids—anthocyanin

Pelargonidin-3-(p-coumaryoly
rutinoside)-
5-glucoside

919.81 C42H47O23 Chen et al. [79]

Petunidin-3-(p-coumaroyl rutinoside)-
5-glucoside 933.86 C43H49O23 Chen et al. [79]

Alkaloids
α-Chaconine 852.06 C45H73NO14 Ji et al. [80]
α-Solanine 868.06 C45H73NO15 Ji et al. [80]
Solanidine 397.64 C27H43NO Hossain et al. [81]

Demissidine 399.65 C27H45NO Hossain et al. [81]
Commersonine 1048.20 C51H85NO21 Rodríguez–Martínez et al. [82]

α-Tomatine 1034.19 C50H83NO21 Rodríguez–Martínez et al. [82]

Potato peel is a good source of phenolic compounds because almost 50% of potato
phenolics are located in the peel and adjoining tissues [74,83]. The results obtained by
Wu et al. [77] showed that the potato peels contained a higher amount of phenolics than
the flesh. Moreover, the polyphenols in potato peel are ten times higher than those in the
pulp. Potato peel extract contains 70.82 mg of catechin equivalent (CE)/100 g of phenolic
and had a high level of phenolic compounds (2.91 mg GAE/g dry weight) that was found
to be greater than carrot (1.52 mg GAE/g dry weight), wheat bran (1.0 mg GAE/g dry
weight), and onion (2.5 mg GAE/g dry weight) [67]. The results of Javed et al. [72]
showed that the total phenolic content in potato peel ranged from 1.02 to 2.92 g/100 g and
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total flavonoids ranged from 0.51 to 0.96 g/100 g. Phenolic acids are the most abundant
phenolic compounds in potato peel. They include derivatives of hydroxycinnamic and
hydroxybenzoic acids (Table 6). Kumari et al. [84], using UHPLC-MS/MS, showed that
chlorogenic and caffeic acids are important components of the free-form phenolics in potato
peel. The results show that phenolic acids in potato peals are not only present in their
free form but also occur in bound form. Javed et al. [72] showed that the extract of potato
peel contains chlorogenic acid (753.0–821.3 mg/100 g), caffeic acid (278.0–296.0 mg/100 g),
protocatechuic acid (216.0–256.0 mg/100 g), p-hydroxybenzoic acid (82.0–87.0 mg/100 g),
gallic acid (58.6–63.0 mg/100 g), vanillic acid (43.0–48.0 mg/100 g), and p-coumaric acid
(41.8–45.6 mg/100 g). Silva–Beltran et al. [78] showed that flavonoids such as rutin and
quercetin were present in potato peel at low concentrations of 5.01 and 11.22 mg/100 g dry
weight, respectively.

Many studies have noted that potato peels are excellent untapped source of steroidal
alkaloids, e.g., glycoalkaloids (α-solanine and α-chaconine) and aglycone alkaloids (solani-
dine and demissidine; Table 6) [80,81,85]. α-solanine, α-chaconine, and the glycosides of
solanidine constitute about 95% of the total potato peel glycoalkaloid content [86]. Higher
amounts of these compounds were found in potato peel, unlike potato flesh [87]. There
are various cultural, genetic and storage factors that influence the concentration of gly-
coalkaloids in potato peel [88]. Concerning cultivars, it was shown that the variety with
blue flesh showed the highest concentration (5.68 mg/100 g fresh weight), followed by the
red-leaved (5.26 mg/100 g fresh weight), while yellow or cream flesh. In the study of Singh
et al. [89] of potato peel, glycoalkaloids were detected as 1.05 mg/100 g. The results of
Rytel et al. [88] showed that the glycoalkaloid content of potato peel depends on the potato
cultivar and ranges from 181 mg/kg to 3526 mg/kg of fresh potato tubers.

Besides, the peel of pigmented potatoes is an excellent source of anthocyanins, e.g.,
pelargonidin-3-(p-coumaryoly rutinoside)-5-glucoside and petunidin-3-(p-coumaroyl rutino
side)-5-glucosid e. It has been proven that their content depends on the cultivar [90]. Ji
et al. [80] showed that anthocyanidin levels were higher in the peel than in the tuber.
The most important beneficial properties and potential applications of phytochemicals
identified in potato waste are listed in Table 7.

Table 7. Biological activity and potential applications of phytochemicals obtained from potato wastes.

Material Extract/Compound Biological Activity/Application References

Potato peel phenolic compounds - antioxidant activity Singh et al. [91]
Albishi et al. [83]

- used as a food preservative
- pharmaceutical ingredient Maldonado et al. [92]

extract - natural food additives as an antioxidant
for fresh-cut fruits

Akyol et al. [93]
Venturi et al. [94]

- food preservative
- pharmaceutical ingredient Gebrechristos and Chen [95]

- limit oil oxidation Amado et al. [96]
- hepatoprotective effects,

- protects erythrocytes against oxidative
damage

- lowers the toxicity of cholesterol
oxidation products

- attenuate diabetic alterations

Hsieh et al. [97]

- protects atopic dermatitis Yang et al. [98]
- amylase and feed-stock for bioethanol

production Khawla et al. [99]

- antioxidant, antibacterial, apoptotic,
chemopreventive and anti-inflammatory Wu [100]

- bio-oil production Liang et al. [101]
- production of bacterial cellulose

- biopolymer production Abdelraof et al. [102]
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Table 7. Cont.

Material Extract/Compound Biological Activity/Application References

- antiobesity properties
- used in the production of antiobesity

functional food

Elkahoui et al. [103]
Chimonyo [104]

- a source of natural antioxidants against
human enteric viruses (antiviral effect on

the inhibition of Av-05 and MS2
bacteriophages, which were used as

human enteric viral surrogates)

Silva-Beltran et al. [78]

freeze-dried aqueous
extracts - use as food additives Singh et al. [91]

glycoalkaloids - the potential of being used by the
pharmaceutical industry Apel et al. [105]

Potato waste extract - as additives to biscuit Khan et al. [106]

glycoalkaloids

- precursors for the production of
hormones, antibiotics and anticancer

drugs
- precursors for neurological and

gastrointestinal disorders
- anti-cancer and anti-proliferative

activities in vitro

Hossain et al. [81]
Hossain et al. [87]
Ding et al. [107]

Alves–Filho et al. [86]

steroidal alkaloids
- biological properties such as

antimicrobial, anti-inflammatory and
anticarcinogenic activities

Kenny et al. [108]

2.4. Soybean Residues

Soybean waste has the potential as a sustainable source of phytochemicals and func-
tional foods. It includes both leaves, pod pericarp, and twigs, as well as the residues after
seeds processing, so-called okara. Okara is the residue of soybean milling after extraction
of the aqueous fraction used for producing tofu and soy drink and presents high nutritional
value [109]. The results of the last studies showed that an okara contains enough bioactive
compounds that make it useful to obtain value-added products for use in food production,
oil extraction, nutraceutical, pharmaceutical, and cosmetic formulations. Moreover, it was
stated that okara isoflavones have good antioxidant activity. Although some nutrients like
protein decrease in okara during soymilk processing, it still has many other phytochemicals
and nutrients, making it their least expensive and most excellent source. Since it has good
antimicrobial activity, it can be used in pharmaceutical industries, thus opening up new
frontiers for drug exploration [109]. Various food enriched with okara, such as biscuits and
cookies, have been mentioned in the literature [110,111]. Guimarăes et al. [112] reported
that food products enriched with okara contained 0.411 mg/100 mL of β-carotene and
0.15 µm/g isoflavones.

One of the main phytochemicals in soybean waste are isoflavones: daidzein, genistein,
glycitein, and their glycosides (e.g., acetyl-, malonyl-, and β-glycosides) [113]. Isoflavones
are compounds belonging to the flavonoid group. In addition to the well-established
antioxidant effect, isoflavones exhibit estrogenic activity because of their similar structure
to estrogen [113,114]. The beneficial effects of isoflavones are the prevention of hormone-
dependent cancer, coronary heart disease, osteoporosis, and menopausal symptoms [114].
Kumar et al. [115] proved that daidzein expressed anticancer activity against human breast
cancer cells MCF-7. The extract from soybean waste material showed total phenolic content
(TPC) in the range of 27.4–167 mg GAE/g, total flavonoids from 10.4 to 63.8 mg QE/g and
antioxidant activity (AOA) from 26.5% to 84.7% [114]. Moreover, their values were highest
in the leaves, followed by pod pericarp and twigs. As was stated by Šibul et al. [113],
soybean roots are also a good source of daidzein and genistein, as well as other phenolic
compounds. The concentrations of isoflavones in roots were higher than in herbs, 1584.5
and 93.48 µg/g of dry extract, respectively. The newest study on soybean pods stated that
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its ethanolic extract and fractions exhibited anticancer potential against human colorectal
carcinoma (HTC-116) and prostate cancer (PC-3) [116]. Moreover, it was the first analysis
of this material using ultra-high-performance liquid chromatography coupled with electrospray
ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOF-MS), resulting
in the identification of 50 polyphenols belonging to phenolic acids, flavonoids and other
groups. The authors stated that soybean pods might be useful material as an active food
additive or a component in dietary supplements and preparations with anti-radical and
anti-cancer properties.

Soybean by-products are a good source of lecithin. Lecithin is a natural emulsifier
that stabilizes fat and improves the texture of many food products, such as salad dressings,
desserts, margarine, chocolate, and baking and cooking goods [117]. Moreover, it also
has health benefits such as lowering cholesterol and low-density lipoprotein level in the
human blood, improving digestion, cognitive and immune function, as well as aiding in
the prevention of gall bladder and liver diseases.

Saponins are another important group of phytochemicals derived from soybean
waste [113]. Soyasaponins have been linked to anti-obesity, antioxidative stress, and
anti-inflammatory properties, as well as preventive effects on hepatic triacylglycerol ac-
cumulation [118]. One of the latest applications of saponins derived from soybean by-
products was as eco-friendly agents for washing pesticide residues in the vegetable and
fruit industries [119].

Compounds identified and quantified in soybean waste are specified in Table 8. The
newest studies on the applications and properties of soybean waste are presented in Table 9.

Table 8. Phytochemicals identified and quantified in soybean waste.

Name Soybean Residue MW
[g mol−1] CxHyOz Concentration References

Phenolic acids—hydroxybenzoic acids

p-Hydroxybenzoic acid
herb
root
meal

138.12 C7H6O3

22.2–38.3 a,b

4.1–32.5 a,b

51 a

Šibul et al. [113]
Šibul et al. [113]

Freitas et al. [120]
Salicylic acid meal 138.12 C7H6O3 38 a Freitas et al. [120]

Protocatechuic acid herb
root 154.12 C7H6O4

4.4–14.4 a,b

2.35–4.71 a,b
Šibul et al. [113]

Gentisic acid herb
root 154.12 C7H6O4

<0.08–4.78 a,b

<0.08–7.17 a,b
Šibul et al. [113]

Vanillic acid
herb
root
meal

168.14 C8H8O4

<0.4–44.9 a,b

43.0–75.2 a,b

91 a

Šibul et al. [113]

Freitas et al. [120]

Syringic acid
herb
root
meal

198.17 C9H10O5

12.0–14.2 a,b

20.6–42.0 a,b

81 a

Šibul et al. [113]

Freitas et al. [120]
Gallic acid meal 170.12 C7H6O5 77 a Freitas et al. [120]

Phenolic acids—hydroxycinnamic acids

p-Coumaric acid
herb
root
meal

164.04 C9H8O3

7.45–14.5 a,b

1.61–2.89 a,b

20 a

Šibul et al. [113]

Freitas et al. [120]

Ferulic acid
herb
root
meal

194.18 C10H10O4

5.89–14.0 a,b

4.55–7.66 a,b

3 a

Šibul et al. [113]

Freitas et al. [120]

Caffeic acid
herb
root
meal

180.16 C9H8O4

14.2–24.9 a,b

<0.08 a

61 a

Šibul et al. [113]

Freitas et al. [120]
Sinapic acid meal 224.21 C11H12O5 27 a Freitas et al. [120]

Cyclohexanecarboxylic acids

Quinic acid herb
root 192.17 C7H12O6

399–532 a,b

111–249 a,b
Šibul et al. [113]
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Table 8. Cont.

Name Soybean Residue MW
[g mol−1] CxHyOz Concentration References

5-O-Caffeoylquinic acid
herb
root
meal

354.31 C16H18O9

<8–235 a,b

<8 a

35 a

Šibul et al. [113]

Freitas et al. [120]
Flavonoids—flavonols

Kaempferol
herb
root
meal

286.23 C15H10O6

<16–21.1 a,b

<16 a

4 a

Šibul et al. [113]

Freitas et al. [120]

Quercetin herb
root 302.24 C15H10O7

<16–278 a,b

<16 a
Šibul et al. [113]

Isorhamnetin herb
root 316.26 C16H12O7

<40–159 a,b

<40 a
Šibul et al. [113]

Quercitrin herb
root 448.38 C21H20O11

<0.06 a

<0.06 a
Šibul et al. [113]

Kaempferol 3-O-glucoside herb
root 448.38 C21H20O11

59.3–140 a,b

1.50–2.64 a,b
Šibul et al. [113]

Hyperoside herb
root 464.38 C21H20O12

<0.1–825 a,b

<0.06 a
Šibul et al. [113]

Quercetin 3-O-glucoside herb
root 464.10 C21H20O12

<0.06–967 a,b

<0.06 a,b
Šibul et al. [113]

Rutin
herb
root
meal

610.52 C27H30O16

7.05–4636 a,b

<2 a

49 a

Šibul et al. [113]

Freitas et al. [120]
Flavonoids—flavones

Apigenin herb
root 270.24 C15H10O5

17.4–759 a,b

<8–22.3 a,b
Šibul et al. [113]

Baicalein herb
root 270.24 C15H10O5

27.8–745 a,b

<16–24.7 a,b
Šibul et al. [113]

Luteolin herb
root 286.24 C15H10O6

<40–194 a,b

<40 a
Šibul et al. [113]

Chrysoeriol herb
root 300.26 C16H12O6

<4–9.57 a,b

<4 a
Šibul et al. [113]

Vitexin herb
root 432.38 C21H20O10

1.37–2.36 a,b

1.81–3.57 a,b
Šibul et al. [113]

Apigenin 7-O-glucoside herb
root 432.38 C21H20O10

14.3–261 a,b

<0.2–1.99 a,b
Šibul et al. [113]

Luteolin 7-O-glucoside herb
root 448.37 C21H20O11

<4–145 a,b

<4 a
Šibul et al. [113]

Apiin herb
root 564.49 C26H28O14

<0.06–20.8 a,b

<0.06 a
Šibul et al. [113]

Flavonoids—flavanones

Naringenin
herb
root
meal

272.26 C15H12O5

3.46–8.46 a,b

6.52–15.9 a,b

25 a

Šibul et al. [113]

Freitas et al. [120]
Hesperidin meal 610.19 C28H34O15 91 a Freitas et al. [120]

Flavonoids—flavanols

Catechin herb
root 290.27 C15H14O6

<0.4 a

<0.4 a
Šibul et al. [113]

Epicatechin herb
root 290.27 C15H14O6

<0.4 a

<0.4–36.3 a,b
Šibul et al. [113]

Isoflavones

Daidzin okara
meal 416.38 C21H20O9

920–1530 b,c

350 a
Anjum et al. [109]
Freitas et al. [120]
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Table 8. Cont.

Name Soybean Residue MW
[g mol−1] CxHyOz Concentration References

Daidzein

okara
herb
root
meal

254.23 C15H10O4

310–639 b,c

40.7–122 a,b

40.5–1702 a,b

30 a

Anjum et al. [109]
Šibul et al. [113]

Freitas et al. [120]

Genistin okara
meal 432.37 C21H20O10

3280–8360 b,c

490 a
Anjum et al. [109]
Freitas et al. [120]

Genistein

okara
herb
root
meal

270.24 C15H10O5

380–650 b,c

15.1–39.2 a,b

159–270 a,b

50 a

Anjum et al. [109]
Šibul et al. [113]

Freitas et al. [120]

Glycitin okara 446.40 C22H22O10
450 c

160 a
Anjum et al. [109]
Freitas et al. [120]

Glycitein okara
meal 284.26 C16H12O5

58 c

3 a
Anjum et al. [109]
Freitas et al. [120]

Saponins
Soyasaponin B I meal 943.12 C48H78O18 2510 c Silva et al. [121]

Soyasaponin B II + III meal 780 c Silva et al. [121]
a expressed in mg per kg of dry extract, b depending on cultivar, c expressed in mg per kg of residues.

Table 9. Biological activity and potential applications of phytochemicals obtained from soybean
residues.

Material Extract/Compound Biological Activity/Application References

okara methanolic and ethanolic
extracts

- antioxidant activity
- antibacterial activity against Bacillus
subtilis, Bacillus megaterium, Escherichia

coli, and Serratia marcescens

Anjum et al. [109]

pod Ethanolic extract and its 3
fractions

- antioxidant activity
- anticancer activity against human

colorectal
carcinoma (HCT116) and prostate

adenocarcinoma (PC-3)

Pabich et al. [116]

soybean by-product saponins - used to remove pesticides residues in
fruits and vegetables Hsu et al. [119]

defatted soy meal isoflavones

- anti-cancerous, anti-estrogenic,
anti-oxidant,

anti-inflammatory, and phytoestrogen
activities

- preventions of cardiovascular and
neurological disorders

Wang et al. [122]

soybean by-products saponins - insecticidal properties

soybean meal aqueous extract

- antioxidant activity
- inhibition of lipid peroxidation

- antimicrobial activity against several
foodborne pathogens

- antitumoral activity towards a human
glioblastoma cell line

Freitas et al. [120]

soybean cake
soyasapogenol A and its
microbial transformation

products

- application as anti-inflammatory food
supplements Zhou et al. [123]

2.5. Tomato Residues

During the industrial processing of tomatoes, a considerable amount of waste is
generated. Tomato waste consists mainly of peel, seeds, stems, leaves, fibrous parts and
pulp residues [124]. The wet tomato pomace constitutes the major part of this waste, which
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consists of 33% seed, 27% peel and 40% pulp, while the dried pomace contains 44% seed
and 56% pulp and peel [125]. When tomatoes are processed into products like ketchup, juice
or sauces, 3–7% of their weight becomes waste. The management of tomato by-products
is considered an important problem faced by tomato processing companies due to their
disposal into the environment [126,127].

Although tomato waste has no commercial value, it is a rich source of nutrients, col-
orants and highly biologically active compounds such as polyphenols, carotenes, sterols,
tocopherols, terpenes, and others (Table 10) [128–132]. The number of these compounds
depends on tomato variety, part of the tomato residues (seed, peels, and pulp), time
and extraction method, used solvent, as well as fractions gained after the isolation pro-
cedure, e.g., alkaline-hydrolyzable, acid-hydrolyzable, and bound phenolics [133]. They
reported a total phenolics average of 1229.5 mg GAE/kg, of which flavonoids accounted for
415.3 mg QE/kg. The most abundant phenolic acids quantified in dried tomato waste were
ellagic (143.4 mg/kg) and chlorogenic (76.3 mg/kg) acids. Other phenolic acids determined
in lower concentrations were gallic, salicylic, coumaric, vanillic and syringic [133]. The
levels of vanillic (26.9 mg/kg) and gallic (17.1 mg/kg) was lower than those found by
Elbadrawy and Sello [134] in tomato peel (33.1 and 38.5 mg/kg, respectively). Ćetković
et al. [135] identified phenolic acids (chlorogenic, p-coumaric, ferulic, caffeic and rosmarinic
acid), flavonols (quercetin and rutin and its derivatives), and flavanone (naringenin deriva-
tives) as the major phenolic compounds in extracts of tomato waste. The results obtained
by Aires et al. [136] showed that the major polyphenol found in tomato wastes were
kaempferol-3-O-rutinoside and caffeic acid. Several papers [135–138] reported the amounts
of caffeic, chlorogenic, p-coumaric acids, kaempferol and quercetin, among other phenolic
compounds found in tomato by-products. In the tomato’s wastes, Di Donato et al. [139]
identified two main flavonoid compunds e.g., kaempferol rutinoside and quercetin ruti-
noside. Rutin and chlorogenic acid were the most abundant individual phenolics found by
García–Valverde et al. [140] in all studied tomato varieties.

Table 10. Phytochemicals identified in tomato wastes.

Name MW [g mol−1] Molecular
Formula References

Phenolic acids—hydroxycinnamic acids
Chlorogenic acid 354.31 C16H18O9 Bakic et al. [127]

Isochlorogenic acid 354.31 C16H18O9 Szabo et al. [141]
p-Coumaric acid 164.16 C9H8O3 Nour et al. [133]

Ferulic acid 194.18 C10H10O4 Perea–Dominguez et al. [131]
Caffeic acid 180.16 C9H8O4 Aires et al. [136]

3,4,5-tricaffeoylquinic acid 678.60 C34H30O15 Szabo et al. [141]
Cinnamic acid 148.16 C9H8O2 Kalogeropoulos et al. [138]
Phloretic acid 166.18 C9H10O3 Kalogeropoulos et al. [138]
Sinapic acid 224.21 C11H12O5 Kalogeropoulos et al. [138]

Rosmarinic acid 360.31 C18H16O8 Ćetković et al. [135]
Phenolic acids—hydroxybenzoic acids

Gallic acid 170.12 C7H6O5 Nour et al. [133]
Ellagic acid 302.18 C14H6O8 Nour et al. [133]
Vanillic acid 168.15 C8H8O4 Nour et al. [133]
Syringic acid 198.17 C9H10O5 Nour et al. [133]

Protocatechic acid 154.12 C7H6O4 Elbadrawy and Sello [134]
p-Hydroxybenzoic acid 138.12 C7H6O3 Kalogeropoulos et al. [138]

Flavonoids
Quercetin 302.24 C15H10O7 Elbadrawy and Sello [134]

Quercetin-3-β-O-glucoside 463.40 C21H19O12 Valdez–Morales et al. [142]
Quercetin-3-O-sophorosid 626.50 C27H30O17 Kumar et al. [143]
Apigenin-7-O-glucoside 432.40 C21H20O10 Concha-Meyer et al. [144]

Isorhamnetin 316.26 C16H12O7 Kumar et al. [143]
Isorhamnetin-3-O-gentiobioside 640.50 C28H32O17 Kumar et al. [143]
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Table 10. Cont.

Name MW [g mol−1] Molecular
Formula References

Rutin 610.52 C27H30O16 Aires et al. [136]
Kaempferol 286.23 C15H10O6 Perea–Dominguez et al. [131]

Kaempferol-3-O-rutinoside 394.52 C27H30O15 Aires et al. [136]
Kaempferol-3-O-glucoside 447.37 C21H19O11 Kumar et al. [143]

Myricetin 318.24 C15H10O8 Nour et al. [133]
Naringenin 272.26 C15H12O5 Elbadrawy and Sello [134]

Catechin 290.26 C15H14O6 Perea–Dominguez et al. [131]
Epicatechin 290.27 C15H14O6 Kalogeropoulos et al. [138]

Chrysin 254.24 C15H10O4 Kalogeropoulos et al. [138]
Luteolin 286.24 C15H10O6 Kalogeropoulos et al. [138]

Luteolin-7-O-glucoside 448.37 C21H20O11 Concha–Meyer et al. [144]
Isoflavones

Daidzein 254.23 C15H10O4 Kumar et al. [143]
Genistein 270.24 C15H10O5 Kumar et al. [143]

Stilbenes
Resveratrol 228.24 C14H12O3 Kalogeropoulos et al. [138]

Carotenoids
Lycopene 536.89 C40H56 Fritsch et al. [130]

β-Carotene 536.89 C40H56 Kalogeropoulos et al. [138]
Sterols

β-Sitosterol 414.72 C29H50O Kalogeropoulos et al. [138]
∆5-Avenasterol 412.70 C29H48O Kalogeropoulos et al. [138]

Campesterol 400.69 C28H48O Kalogeropoulos et al. [138]
Cholestanol 388.70 C27H48O Kalogeropoulos et al. [138]
Cholesterol 386.65 C27H46O Kalogeropoulos et al. [138]

24-Oxocholesterol 400.60 C27H44O2 Kalogeropoulos et al. [138]
Stigmasterol 412.69 C29H48O Kalogeropoulos et al. [138]

Tocopherols
Tocopherol Kalogeropoulos et al. [138]

Terpenes
Squalene 410.73 C30H50 Kalogeropoulos et al. [138]

Cycloartenol 426.72 C30H50O Kalogeropoulos et al. [138]
β-Amyrin 426.73 C30H50O Kalogeropoulos et al. [138]

Oleanolic acid 456.71 C30H48O3 Kalogeropoulos et al. [138]
Ursolic acid 456.70 C30H48O3 Kalogeropoulos et al. [138]
Palmitic acid 256.43 C16H32O2 Elbadrawy and Sello [134]

Palmitoleic acid 254.41 C16H30O2 Elbadrawy and Sello [134]
Stearic acid 284.48 C18H36O2 Elbadrawy and Sello [134]
Oleic acid 282.47 C18H34O2 Elbadrawy and Sello [134]

Linolenic acid 278.43 C18H30O2 Elbadrawy and Sello [134]
Linoleic acid 280.45 C18H32O2 Elbadrawy and Sello [134]
Myristic acid 228.37 C14H28O2 Elbadrawy and Sello [134]

Traditionally, the bioactivity of tomatoes and their products has been attributed to
carotenoids (β-carotene and lycopene). The results of Nour et al. [133] confirmed that dried
tomato wastes contain considerable amounts of lycopene (510.6 mg/kg) and β-carotene
(95.6 mg/kg) and exhibited good antioxidant properties. The results obtained by Fărcaş
et al. [145] confirmed lycopene as the main carotenoid of tomato waste in a concentration
between 42.18 and 70.03 mg/100 g DW (dry weight). Simultaneously, peels contain around
5 times more lycopene compared to tomato pulp [146,147]. The lycopene content in peel
was 734 µg/g DW, but significant amounts of β-carotene, cis-β-carotene and lutein were
also determined. The study by Górecka et al. [148] showed that tomato waste could be
considered a promising source of lycopene for the production of functional foods.

Peels, as one of the main residues of tomato, are a richer source of nutrients and
biologically active compounds than the pulp [137,149]. Despite of high concentration
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of carotenoids, peels also contain a considerable amount of polyphenols. The results
obtained by Hsieh et al. [97] showed that the main flavonoids detected in fresh tomato
peel were quercetin, myricetin, apigenin, catechin, puerarin, fisetin, hesperidin, naringin,
rutin and their levels were reported as 4.2, 2.9, 1.9, 0.9, 0.8, 0.5, 0.3, 0.2, and 0.2 mg/100 g,
respectively. It has been proven that tomato peel extracts contain high amounts of kaemferol-
3-O-rutinoside (from 8.5 to 142.5 mg/kg) [127], quercetin derivatives, p-coumaric acid
and chlorogenic acid derivative [150,151]. The main phenolic acids identified in tomato
peel are protocatechuic, vanillic, gallic, catechin and caffeic acid. Their corresponding
concentrations were 5.52, 3.85, 3.31, 2.98, and 0.50 mg/100 g, respectively [134]. The results
of Lucera et al. [152] showed that tomato peels contain 4.90 mg/g DW of total phenolic
and 2.21 mg/g DW of total flavonoids. The total polyphenolic content in tomato peels and
seeds was higher than in the pulp. On the other hand, tomato peel has a very small amount
of anthocyanin [153].

Tomato seeds are considered a potential natural source of antioxidants due to their
rich phytochemical profile. Many publications indicate that tomato seeds contain, e.g.,
carotenoids, proteins, polyphenols, phytosterols, minerals and vitamin E [154]. According
to Eller et al. [155], the total content of phenolic compounds in the tomato seed extract
was 20.66 mg/100 g. Quercetin-3-O-sophoroside, isorhamnetin-3-O-sophoroside, and
kaempferol-3-O-sophoroside were present in the highest concentrations of the total phenolic
compounds. Quercetin derivatives contributed approximately 37% of the total flavonoid
content. Pellicanò et al. [156] found naringenin (84.04 mg/kg DW) as the most abundant
flavonoid identified, followed by caffeic acid (26.60 mg/kg DW). Apart from phenolics,
carotenoids are the next class of bioactive compounds present in tomato seeds. Qualitatively,
the carotenoid composition (β-carotene and lycopene isoforms: lycopene all trans, lycopene
cis 1, lycopene cis 2, lycopene cis 3) in tomato seeds is similar to that of the carotenoids in
tomato fruit [157].

Tomato waste has attracted great interest due to its biological activity and potential
applications of phytochemicals (Table 11).

Table 11. Biological activity and potential applications of phytochemicals obtained from tomato
wastes.

Material Extract/Compound Biological Activity/Application References

Tomato seeds polyphenols
oil - antioxidant activity Zuorro et al. [154]

- high nutritional quality Eller et al. [155]

Tomato
by-products extract

- natural antioxidants for the formulation of functional
foods or to serve as additives in food systems to

elongate their shelf-life
- oxidative stability of dairy products

- potential nutraceutical resource
- animal feed

Savatović et al. [158]
Elbadrawy and Sello [134]

Nour et al. [159]
Abid et al. [160]

Ćetković et al. [135]
Trombino et al. [161]

Tomato peel fiber - food supplement, improving the different chemical,
physical and nutritional properties of foods Navarro–González et al. [137]

lycopene - natural color or bioactive ingredient Ho et al. [162]
carotenoids - natural antioxidants and colorants Horuz and Belibagli [163]

2.6. Banana Residues

Banana (Musa spp., Musaceae family) is one of the main fruit crops cultivated for its
edible fruits in tropical and subtropical regions. The main by-product of bananas is its peels,
which represent approx. 30% of the whole fruit [164]. Moreover, banana waste also includes
small-sized, damaged, or rotting fruit, leaves, stems, and pseudoparts. Banana peels are
sometimes used as feedstock for livestock, goats, monkeys, poultry, rabbits, fish, zebras, and
many other species. They are rich in vitamin B6, manganese, vitamin C, fiber, potassium,
biotin, and copper [165], but also in phytochemicals with high antioxidant capacity such
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as phenolics (flavonols, hydroxycinnamic acids, gallocatechin), anthocyanin (delphinidin,
cyanidin), carotenoids (β-carotenoids, α-carotenoids, and xanthophylls), catecholamines,
sterols and triterpenes (Table 12). Banana peels are natural antacids and are helpful in acid
reflux, heartburn, and diarrhea [165].

Table 12. Phytochemicals identified in banana wastes and their concentration.

Name Banana Residues MW
[g mol−1] CxHyOz Concentration References

Total phenolics 53,800 a Kabir et al. [166]
15,180–31,450 a,c Chaudhry et al. [167]

29,200 a Rebello et al. [168]
Total flavonoids 16,440 b Kabir et al. [166]

10,800–22,110 b,c Chaudhry et al. [167]
Phenolic acids—benzoic acids

Gallic acid banana peel 170.12 C7H6O5 77.3 f Behiry et al. [169]
Ellagic acid banana peel 302.20 C14H6O8 161.9 f Behiry et al. [169]

Salicylic acid banana peel 138.121 C7H6O3 2.7 f Behiry et al. [169]
Phenolic acids—hydroxycinnamic acids

Chlorogenic acid banana pseudostem
and rhizome 354.31 C16H18O9 Kandasamy et al. [170]

Ferulic acid
red banana peel

yellow banana peel
banana peel

194.18 C10H10O4

63.55 e

34.97 e

16.8 f

Avram et al. [171]
Avram et al. [171]
Behiry et al. [169]

Sinapic acid red banana peel
yellow banana peel 224.21 C11H12O5

35.17 e

19.44 e
Avram et al. [171]
Avram et al. [171]

Cinnamic acid banana peel 148.16 C9H8O2 0.7 f Behiry et al. [169]
o-coumaric acid banana peel 164.158 C9H8O3 11.2 f Behiry et al. [169]

Flavonoids—flavonols

Kaempferol red banana peel
yellow banana peel 286.239 C15H10O6

28.80 e

9.30 e
Avram et al. [171]
Avram et al. [171]

Quercetin red banana peel
yellow banana peel 302.236 C15H10O7

6.14 e

1.14 e
Avram et al. [171]
Avram et al. [171]

Isoqercitrin red banana peel
yellow banana peel 464.096 C21H20O12

10.47 e

14.54 e
Avram et al. [171]
Avram et al. [171]

Rutin banana peel 610.517 C27H30O16 9730.8 f Behiry et al. [169]
Myricetin banana peel 318.235 C15H10O8 115.2 f Behiry et al. [169]

Myricetin-3-rutinoside banana peel 626.51 C27H30O17 22.50 d Behiry et al. [169]
Quercetin-3-rutinoside-3-

rhamnoside banana peel 756.7 C33H40O20 12.91 d Rebello et al. [168]

Kaempherol-3-rutinoside-3-
rhamnoside banana peel 740.7 C33H40O19 5.32 d Rebello et al. [168]

Quercetin-7-rutinoside banana peel 610.5 C27H30O16 8.78 d Rebello et al. [168]
Quercetin-3-rutinoside banana peel 610.5 C27H30O16 29.87 d Rebello et al. [168]

Kaempferol-7-rutinoside banana peel 594.52 C27H30O15 4.12 d Rebello et al. [168]
Laricitrin-3-rutinoside banana peel 640.16 C28H32O17 2.22 d Rebello et al. [168]

Kaempferol-3-rutinoside banana peel 594.52 C27H30O15 12.35 d Rebello et al. [168]
Isorhamnetin-3-rutinoside banana peel 624.5 C28H32O16 1.31 d Rebello et al. [168]

Syringetin-3-rutinoside banana peel 654.6 C29H34O17 0.63 d Rebello et al. [168]
Flavonoids—flavanones

Naringenin banana peel 84.7 f Behiry et al. [169]
Flavonoids-flavanols

Catechin banana peel 290.27 C15H14O6 1.34 d Rebello et al. [168]
Epicatechin banana peel 290.27 C15H14O6 2.55 d Rebello et al. [168]

Gallocatechin banana peel 306.27 C15H14O7 4.20 d Rebello et al. [168]
Procyanidin B1 banana peel 578.14 C30H26O12 1.27 d Rebello et al. [168]
Procyanidin B2 banana peel 578.14 C30H26O12 81.95 d Rebello et al. [168]
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Table 12. Cont.

Name Banana Residues MW
[g mol−1] CxHyOz Concentration References

Procyanidin B4 banana peel 578.14 C30H26O12 7.90 d Rebello et al. [168]
Other compounds

Cycloeucalenol acetate banana pseudostem
and rhizome 468.77 C32H52O2 Kandasamy et al. [170]

4-epicyclomusalenone banana pseudostem
and rhizome 424.71 C30H48O Kandasamy et al. [170]

a expressed in mg GAE kg−1 DM, b expressed in mg QE kg−1 DM, c depending on the method of extraction,
d expressed in molar proportion (%), e expressed in ug/mL of crude extract, f expressed in mg kg−1 of dry extract.

Previous studies reported that the banana peel is rich in chemical compounds as
antioxidant and antimicrobial activities [167–169,171]. Moreover, ethanoic extract from ba-
nana peel exhibited the strongest antihyperglycemic activity in comparison with the extract
from pulp, seed, and flower [172]. Phytochemicals derived from banana peel were tested
as a biofungicide against Fusarium culmorum and Rhizoctonia solani and as a bactericide
against Agrobacterium tumefaciens for the natural preservation of wood during handling
or in service. Encapsulation is successfully investigated as the method for stabilizing the
banana peel extract and its bioactive compounds during storage [173].

Other phytochemical components present in the banana peel extracts, such as ethane-
diol and butanediol, were determined as highly reducing agents to synthesize silver
nanoparticles, which are significant to the medical and chemical industries [173].

The harvesting of the fruits in the plantation requires the decapitation of the whole;
therefore, the valuable banana by-products, in addition to peels, are the pseudostem, leaves,
inflorescence, and fruit stalk, but also rhizome, which can also be used as a raw material for
the acquisition of phytochemicals [174]. Kandasamy et al. [170] isolated three compounds
from the pseudostem and rhizome of bananas, including chlorogenic acids, cycloeucalenol
acetate, and 4-epicyclomusalenone. Crude extract and isolated compounds are character-
ized by strong antibacterial, antifungal, antiplatelet aggregation, and anticancer activities.

Using the inflorescence of bananas, anthocyanins can be obtained as good biocolorants
with attractive colors, moderate stability in food systems, water solubility, and benefits for
health [175]. Cyanidin-3-rutinoside, as the main compound, could be exploited as a cheap
source of natural food colorant.

The newest application and explored properties of biologically active compounds
from banana residues are presented in Table 13.

Table 13. Biological activity and potential applications of phytochemicals obtained from banana
residues.

Material Extract/Compound Biological Activity/Application References

Banana peel extract

- as additives for formulation of
bioactive compounds-rich yogurts

- antioxidants activity
- DPPH• scavenging activity
- ABTS+• scavenging activity

- α-glucosidase inhibitory activity

Kabir et al. [166]

Banana peel acetonic, ethanoic, and
methanolic extracts

- antioxidant activity
- antimicrobial activity against

Staphylococcus aureus, Pseudomonas
aeruginosa, Escherichia Coli,

Saccharomyces cerevisiae

Chaudhry et al. [167]
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Table 13. Cont.

Material Extract/Compound Biological Activity/Application References

Banana peel extract - application as corrosion inhibitors Vani et al. [176]

Banana pseudostem and
rhizome

crude extracts
(hexane, chloroform, ethyl

acetate, and methanolic)
Isolates:

chlorogenic acid
4-epicyclomusalenone
cycloeucalenol acetate

- antioxidant activity
- platelet aggregation inhibitory

activity
- antimicrobial activity

- cytotoxicity

Kandasamy et al. [170]

Banana peel extract - antioxidant activity Rebello et al. [168]
Yellow and red banana

peel hydroalcoholic extracts - the antioxidant, cytotoxic, and
antimicrobial effects Avram et al. [170]

Banana peel Methanolic extract

- application as biofungicide against
the growth of Fusarium culmorum and
Rhizoctonia solani, and as a bactericide
against Agrobacterium tumefaciens for
natural wood preservation during

handling or in service.

Behiry et al. [169]

Banana peel, pulp, seed,
and flower Ethanolic extract

- very strong antioxidant activity
- antihyperglycemic activity at a dose

of 350 mg/kg body weight
Nofianti et al. [172]

Banana peel Water extract contained
ethanediol and butanediol

- highly reducing agent for
metals used for the synthesis of silver

nanoparticles
Buendía-Otero et al. [174]

Banana inflorescence

- as good biocolorants with attractive
colors, moderate stability in food

systems, water-solubility, and
benefits for health

Padam et al. [175]

2.7. Apple Residues

Poland is the main producer of apples in the world, with an annual production of over
4 million tons [177]. About 25% of apple biomass was wasted during crop and processing.
Apple pomace as a waste from apple juice and cider processing consists mainly of apple
skin/flesh, seeds, and stems [178]. Until recently, apple waste was used as livestock feed,
bioenergy feedstock, as well as for food supplementation and pectin extraction, but still, it
is far from being used at its full potential, particularly considering its application in the
pharmaceuticals and cosmetics industry [179,180]. Nonetheless, apple pomace has the
potential to become a source of valuable biomaterials for agriculture. It contains numerous
phytochemicals in the form of pectin and dietary fibers, but also polyphenols, triterpenoids,
and volatiles. Interestingly, apple pomace is a richer source of antioxidants than fresh
fruits itself because it has a significantly lower content of water; moreover, many valuable
bioactive compounds are found mainly in the peels and seeds [180].

Polyphenols are the main valuable constituents of apple pomace. Waldbauer et al. [181]
reported that the total phenolic content in apple pomace is in the range of 262–856 mg
of total phenols/100 g. This content differs between studies due to the use of different
solvents, extraction conditions, and apple varieties [182,183].

Four major phenolic groups are hydroxycinnamic acids, dihydrochalcone derivatives
(phloretin and its glycosides), flavan-3-ols (catechin and procyanidins), and flavonols
(quercetin and its glycosides) [184,185].

Although the phytochemical composition of apple pomace has been studied for a
long time, new compounds with beneficial properties are still being isolated and iden-
tified. Ramirez-Ambrosi et al. [186] identified 52 phenolic compounds using a newly
developed, rapid, selective, and sensitive strategy of ultrahigh-performance liquid chro-
matography with diode array detection coupled to electrospray ionization and quadrupole
time-of-flight mass spectrometry (UHPLC-DAD–ESI-Q-ToF-MS) with automatic and si-
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multaneous acquisition of exact mass at high and low collision energy. Among new com-
pounds, two dihydrochalcones (two isomers of phloretin-pentosyl-hexosides) and three
flavonols (isorhamnetin-3-O-rutinoside, isorhamnetin-3-O-pentosides and isorhamnetin-3-
O-arabinofuranoside) have been tentatively identified for the first time in apple pomace.

One of the compounds newly identified in the last few years in apple pomace is
monoterpene–pinnatifidanoside D [185]. This compound has been isolated for the first
time from Crataegus pinnatifida and exhibited small antiplatelet aggregation activity.

Mohammed and Mustafa [187] and Khalil and Mustafa [188] isolated and structurally
elucidated novel furanocoumarins from apple seeds. Isolated compounds exhibited promis-
ing antimicrobial activity against Pseudomonas aeruginosa, Klebsiella pneumonia, Haemophilus
influenzae, Escherichia coli, Candida albicans, and Aspergillus niger.

The main compounds determined in apple by-products with ranges of their concen-
trations are listed in Table 14.

Table 14. Total phenolic content (TPC), total flavonoid content (TFC), and main phytochemicals
identified and quantified in apple pomace.

Name MW
[g mol−1] CxHyOz

Concentration
[mg/kg dm *] References

Total phenolic content (TPC)
2620–8560 a

1590–10,620 a

4399–8100 a

Waldbauer [181]
Li et al. [182]

Gorjanović et al. [183]
Total flavonoid content (TFC) 18,600–27,400 b Gorjanović et al. [183]

Phenolic acids—hydroxybenzoic acids
Gallic acid 170.12 C7H6O5 2.22–4.80 d Gorjanović et al. [183]

4-hydroxybenzoic acid 137.02 C7H5O3 17.66–69.56 c Li et al. [182]
Protocatechuic acid 154.12 C7H6O4 2.78–30.50 c Li et al. [182]

p-hudroxybenzoic acid 138.22 C7H6O3 1.16–5.80 d Gorjanović et al. [183]
Cyclohexanecarboxylic acids

Quinic acid 192.17 C7H12O6 227.4–418 c Uyttebroek et al. [179]
Phenolic acids—hydroxycinnamic acids

Chlorogenic acid 354.31 C16H18O9

41.80 –160.40 c

89.0–308.3 d

38.9–312.8
960

Li et al. [182]
Gorjanović et al. [183]
Uyttebroek et al. [179]

Pingret et al. [189]
p-coumaroylquinic acid 338.31 C16H18O8 94 Pingret et al. [189]

Sinapic acid 224.212 C11H12O5 2.03–7.20 d Gorjanović et al. [183]
Caffeic acid 180.16 C9H8O4 0.12–0.35 d Gorjanović et al. [183]

p-Coumaric acid 164.16 C9H8O3
2.52–23.11 c

0.32–0.76 d
Li et al. [182]

Gorjanović et al. [183]

Ferulic acid 194.18 C10H10O4
1.70–4.21 c

13.24–23.80 d
Li et al. [182]

Gorjanović et al. [183]
Flavonoids—flavonols

Rutin 610.52 C27H30O16

7.99–46.93 d

19.32
2.24–3.26 c

10 b

Gorjanović et al. [183]
Oleszek et al. [185]

Uyttebroek et al. [179]
Pingret et al. [189]

Quercetin 302.24 C15H10O7
7.2–14.2 d

25.2 e
Gorjanović et al. [183]

Oleszek et al. [185]
Quercetin-3-O-galactoside 464.38 C21H20O12 80.8–165.2 d Gorjanović et al. [183]

Quercetin-3-O-pentosyl 434.35 C20H18O11 44.8 e Oleszek et al. [185]

Hyperoside 464.38 C21H20O12
434 e

122 b
Oleszek et al. [185]
Pingret et al. [189]

Isoquercetin 464.38 C21H20O12
70 e

42
Oleszek et al. [185]
Pingret et al. [189]

Quercitrin 448.38 C21H20O11

442.4 e

70.14–109.5 c

40 b

Oleszek et al. [185]
Uyttebroek et al. [179]

Pingret et al. [189]
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Table 14. Cont.

Name MW
[g mol−1] CxHyOz

Concentration
[mg/kg dm *] References

Isoquercitrin 464.0955 C21H20O12 10.65–15.5 c Uyttebroek et al. [179]

Avicularin 434.35 C20H18O11

285.6 e

81.6–125.7
24

Oleszek et al. [185]
Uyttebroek et al. [179]

Pingret et al. [189]

Reynoutrin 434.35 C20H18O11
145.6 e

54 b
Oleszek et al. [185]
Pingret et al. [189]

Isorhamnetin 1.10–17.62 d Gorjanović et al. [183]

Isorhamnetin-3-O-arabinofuranoside 478.41 C22H22O12
Ramirez–Ambrosi et al.

[186]

isorhamnetin-3-O-pentoside 478.41 C22H22O12
Ramirez–Ambrosi et al.

[186]
Isorhamnetin-3-O-rutinoside 624.55 C28H32O16 0.10–1.11 d Gorjanović et al. [183]

Isorhamnetin-3-O-rhamnoside 462.41 C22H22O11
Ramirez–Ambrosi et al.

[186]
Kaempferol 286.24 C15H10O6 0.62–2.46 d Gorjanović et al. [183]

Kaempferol-7-O-glucoside 448.38 C21H20O11 0.03–1.19 d Gorjanović et al. [183]
Quercetin-3-O-rhamnoside 448.38 C21H20O11 34.1–121.9 d Gorjanović et al. [183]

Guajavarin 434.353 C20H18O11 161 b Pingret et al. [189]
Hyperin 463.371 C21H19O12 64.02–92.4 c Uyttebroek et al. [179]

Flavonoids—flavanonols
Taxifolin 304.254 C15H12O7 0.16–0.46 d Gorjanović et al. [183]

Flavonoids—flavanols

Catechin 290.27 C15H14O6

1.50 –31.70 c

1.05–7.45 c

52

Li et al. [182]
Uyttebroek et al. [179]

Pingret et al. [189]

Epicatechin 290.27 C15H14O6
34.4–166.3 c

244
Uyttebroek et al. [179]

Pingret et al. [189]

Procyanidin 594.53 C30H26O13
2900
3408

Fernandes et al. [178]
Pingret et al. [189]

Procyanidin B2 578.52 C30H26O12 42.8–208.1 Uyttebroek et al. [179]
Naringenin 272.26 C15H12O5 0.11–0.24 d Gorjanović et al. [183]
Eriodictyol 288.26 C15H12O6 0.11–0.21 d Gorjanović et al. [183]
Naringin 580.541 C27H32O14 0.22–0.60 d Gorjanović et al. [183]

Flavonoids—flavones
Apigenin 270.24 C15H10O5 0.31–0.48 d Gorjanović et al. [183]

Apigenin-7-O-glucoside 432.38 C21H20O10 0.47–1.01 d Gorjanović et al. [183]
Chrysin 254.25 C15H10O4 0.11–0.22 d Gorjanović et al. [183]
Luteolin 286.24 C15H10O6 0.10–0.26 d Gorjanović et al. [183]

Flavonoids—dihydrochalcones
Phloretin 274.26 C15H14O5 0.29–0.98 d Gorjanović et al. [183]

Phlorizin 436.4 C21H24O10

112–215 d

361.2 f

56.8–198.6 c

1008

Gorjanović et al. [183]
Oleszek et al. [185]

Uyttebroek et al. [179]
Pingret et al. [189]

Phloretin 2-O-glucoside 452.41 C21H24O11
Ramirez–Ambrosi et al.

[186]
Phloretin -xylosyl-glucoside 568.52 C26H32O14 142 Pingret et al. [189]

3-hydroxyphloretin-2′-O-
xylosylglucoside 584.52 C26H32O15

Ramirez–Ambrosi et al.
[186]

3-hydroxyphloretin-2′-O-glucoside 452 C21H24O11
Ramirez–Ambrosi et al.

[186]
Coumarins **

Aesculin 340.282 C15H16O9 5.53–10.67 Gorjanović et al. [183]

(E)-12-(2′-Chlorovinyl) bergapten 277.5 C14H10O4Cl Mohammed and
Mustafa [187]
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Table 14. Cont.

Name MW
[g mol−1] CxHyOz

Concentration
[mg/kg dm *] References

Flavonoids—flavanones

12-(1′,1′-dihydroxyethyl) bergapten 276 C14H12O6
Mohammed and

Mustafa [187]
12-(2′-chloropropan-2′-yl)-8-

hydroxybergapten 308.5 C15H13O5Cl Mohammed and
Mustafa [187]

12-Hydroxy-11-
chloromethylbergapten 332.5 C13H9O5Cl Mohammed and

Mustafa [187]

officinalin 220 C11H8O5
Khalil and Mustafa

[188]

8-(tert-butyl)officinalin 276 C15H16O5
Khalil and Mustafa

[188]

8-Hydroxyofficinalin 236 C11H8O6
Khalil and Mustafa

[188]

Officinalin-8-acetic acid 278 C13H10O7
Khalil and Mustafa

[188]

8-(2′-hydroxypropan-2′-yl) officinalin 289 C15H16O6
Khalil and Mustafa

[188]
Triterpenoids

α-amyrin 426.72 C30H50O 94.0 Woźniak et al. [190]
β-amyrin 426.72 C30H50O 41.4 Woźniak et al. [190]

Uvaol 442.72 C30H50O2 53.9 Woźniak et al. [190]
Erythtodiol 442.72 C30H50O2 18.0 Woźniak et al. [190]

Ursolic aldehyde 440.70 C30H48O2 73.9 Woźniak et al. [190]
Ursolic acid 456.70 C30H48O3 7125.1 Woźniak et al. [190]

Oleanolic acid 456.70 C30H48O3 1591.4 Woźniak et al. [190]
Pomolic acid 472.70 C30H48O4 870.3 Woźniak et al. [190]

Pigments ***
all-trans-neoxanthin 600.884 C40H56O4 1.14–7.11 d Delgado–Pelayo [191]

all-trans-violaxanthin 600.870 C40H56O4 1.70–18.26 d Delgado–Pelayo [191]
9-cis-violaxanthin 600.870 C40H56O4 0.23–2.37 d Delgado–Pelayo [191]
9-cis-Neoxanthin 600.884 C40H56O4 0.56–21.92 d Delgado–Pelayo [191]

13-cis-violaxanthin 600.884 C40H56O4 0.10–0.29 d Delgado–Pelayo [191]
all-trans-antheraxanthin 584.885 C40H56O3 0.09–0.57 d Delgado–Pelayo [191]

all-trans-zeaxanthin 568.886 C40H56O2 0.08–0.52 d Delgado–Pelayo [191]
all-trans-lutein 568.871 C40H56O2 1.32–61.53 d Delgado–Pelayo [191]

9-cis-lutein 568.871 C40H56O2 0.06–1.61 d Delgado–Pelayo [191]
13-cis-lutein 568.871 C40H56O2 0.10–2.76 d Delgado–Pelayo [191]

all-trans-β-carotene 536.8726 C40H56 1.49–30.31 d Delgado–Pelayo [191]
Monoestrified xanthophylls 3.01–10.18 d Delgado–Pelayo [191]

Diesterified xanthophylls 4.93–38.39 d Delgado–Pelayo [191]
Chlorophyll a 893.509 C55H72MgN4O5 18.39–1049.26 d Delgado–Pelayo [191]
Chlorophyll b 907.492 C55H70MgN4O6 4.78–309.86 d Delgado–Pelayo [191]

Other compounds
Resveratrol 228.24 C14H12O3 0.16–0.89 Gorjanović et al. [183]

Pterostilbene 256.296 C16H16O3 0.19–0.90 Gorjanović et al. [183]
Pinocembrin 256.25 C15H12O4 0.22–0.39 Gorjanović et al. [183]
Palmitic acid 256.4 C16H32O2 7.25 f Walia [192]
Linoleic acid 280.45 C18H32O2 43.81 f Walia [192]

Oleic acid 282.47 C18H34O2 46.50 f Walia [192]
Stearic acid 284.48 C18H36O2 1.72 f Walia [192]

Arachidic acid 312.54 C20H40O2 0.72 f Walia [192]
Pinnatifidanoside D 518 C24H38O12 344.4 Oleszek et al. [185]

* dm—dry matter, a expressed as mg gallic acid equivalent, b expressed as quercetin equivalent, c depending
on the methods of extraction or apple pressing, d depending on apple varieties, e expressed as rutin equivalent,
f expressed in % of the oil extracted from apple seeds, ** determined in seeds, *** determined in peels.
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Many have been written about the application of apple pomace itself. However, the
present work concerns the properties and application of bioactive compounds derived from
apple pomace. The newest studies reported valuable activities and interesting applications
of phytochemicals from apple pomace are listed in Table 15. Preclinical studies have found
apple pomace extracts and isolated compounds improved lipid metabolism, antioxidant
status, and gastrointestinal function and had a positive effect on metabolic disorders
(e.g., hyperglycemia, insulin resistance, etc.) [193]. As was reported by Gołębiewska
et al. [194], despite medicine and cosmetics, apple pomace phytochemicals found recent
applications in building and construction industries as green corrosion inhibitors and wood
protectors [194].

Table 15. Biological activity and potential applications of phytochemicals obtained from apple
residues.

Material Extract/Compound Biological Activity/Application References

Apple seeds coumarins - antioxidant activity
- antitumor activity Khalil and Mustafa [188]

Apple pomace

phenolic-rich fractions:
phloridzin, phloretin,

quercitrin, and quercetin as
major constituents

- anti-inflammatory, cytotoxic activity,
anticancer activity (SiHa, KB, and

HT-29 cell lines)
Rana et al. [195]

Apple pomace crude extract and four
fractions

- antioxidant activity
- antifungal activity against crop

pathogens: Neosartorya fischeri, Fusarium
oxysporum, Botrytis sp. Petriella setifera

Oleszek et al. [185]

Flour from apple
pomace ethanolic extract antioxidant, antidiabetic, and

antiobesity effects Gorjanović et al. [183]

Apple pomace Ursolic acid antimicrobial, anti-inflammatory, and
antitumor activities Cargnin et al. [196]

Apple peel ursolic acid antimalarial activity Silva et al. [197]

Apple pomace
ethanolic extract:

5-O-caffeoylquinic acid as the
major compound

- antioxidant and antimicrobial activity
(against Propionibacterium acnes)

- application in dermal formulations
Arraibi et al. [198]

Apple pomace

Extracts (boiling water with
1% acetic acid)
and fractions

(polyphenols and
carbohydrates)

- antioxidant activity
- anti-inflammatory activity

- application as a food ingredient in
yogurt formulation

Fernandes et al. [178]

Apple pomace phloretin, phloridzin antioxidant and antibacterial activity
(Staphylococcus aureus, Escherichia coli) Zhang et al. [199]

Apple pomace Phloridzin oxidation products
(POP)

application as natural yellow pigments
in gelled desserts Haghighi and Rezaei [200]

Apple pomace Phloridzin oxidation products
(POP)

- strong antioxidant activity
- application as a yellow pigment Liu et al. [201]

Apple peel extract - application as corrosion inhibitor for
carbon steel Vera et al. [202]

Phenolic content is related to the antioxidant properties of apple pomace, and pro-
cyanidins are considered the major contributors to the antioxidant capacity of apples.
Despite high concentrations in apples, catechins and procyanidins are very often absent
in the extract from apple pomace. The exposure of polyphenols to polyphenoloxidase
during apple processing caused, in addition to native apple phytochemicals, their oxidation
products also represent a significant part of the overall polyphenolic fraction. Moreover,
the polyphenols can interact non-covalently with polysaccharides; thus, they become non-
extractable. Fernandes et al. [178] reported that such complexes represented up to 40% of
the available polyphenols from apple pomace, potentially relevant for agro-food waste
valuation. Moreover, it has been revealed that the use of appropriate extraction procedures,
such as microwave-superheated water extraction (MWE) of the hot water/acetone, as well
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as additional hydrolysis, made it possible to recover these valuable compounds from apple
pomace. This knowledge will allow for designing more diversified solutions for agro-food
waste valuation [178]. The strong antioxidant in apple pomace is quercetin, which has
protective effects against breast and colon cancer, as well as heart and liver diseases [203].

Apple is a unique plant in the Rosaceae family due to the high content of phloridzin,
a major phenolic compound in commercial varieties of apples [203]. Phloridzin has anti-
diabetic potential and could be applied as a natural sweetening agent [200]. Phloridzin
from apple waste was also tested as the substrate for the production of food dye through its
enzymatic oxidation. The yellow product, so-called phloridzin oxidation products (POP),
turned out to be a good alternative to tartrazine and other potentially toxic food yellow
pigments [200,201].

Interesting phytochemicals of apple pomace are triterpenoids, particularly ursolic
acid. It has attracted attention because of its therapeutic potential associated with several
functional properties such as antibacterial, antiprotozoal, anti-inflammatory, and antitu-
mor [196]. Woźniak et al. [190] optimized the method of its extraction using supercritical
carbon dioxide. The data obtained allowed the prediction of the extraction curve for the
process conducted on a larger scale.

As has been mentioned previously, apple pomace contains some amount of seeds.
Walia et al. [192] proved that also apple seed oil could be a promising raw material for the
production of natural antioxidants and anticancer agents. The authors tested the fatty acid
composition and physicochemical and antioxidant properties of oil extracted from apple
seeds separated from industrial pomace. The dominant fatty acids were oleic acid (46.50%)
and linoleic acid (43.81%).

The major constituent in apple seed is also amygdalin, which may be metabolized to
toxic hydrogen cyanide [203,204]. However, in the literature, there are also several reports
of the positive pharmacological activity of amygdalin. Luo et al. [205] showed its anti-
fibrotic properties in the case of liver fibrosis. Song and Xu [206] proved that amygdalin
exhibits analgesic effects in mice, probably by inhibiting prostaglandins E2 and nitric oxide
synthesis. Despite so many above reports, there is still a need for human and animal studies
to confirm the protection against the disease’s effects of apple pomace.

2.8. Winery Waste

The major winery by-products are grape pomace and marc, including seeds, pulp, skins,
stems, and leaves. Bioactive phytochemicals present in residues from wine-making are mainly
represented by polyphenols belonging to various groups of compounds, such as phenolic
acids (hydroxybenzoic acids and hydroxycinnamic acids), flavonoids (flavanols or flavan-3-ols,
anthocyanins, proanthocyanidins, flavones, and flavonols), and stilbenes and anthocyanins.
The relative concentrations of the different phenolic compounds are influenced by genotype
(red or white grapes), a distinct fraction of residues, as well as agro-climatic conditions [207].
The presence of polyphenolic compounds in grape residues supports the potential of the
investigation and valorization of this agro-industrial waste. The compounds identified in
grapes by-products with their concentrations are listed in Table 16.

Table 16. Phytochemicals identified and quantified in grape residues.

Name MW
[g mol−1] CxHyOz

Concentration
[mg/kg dm] References

Total phenolic content (TPC) 280–7770 b,e,f

14,200–26,700 a,e
Pintać et al. [208]
Eyiz et al. [209]

Total flavonoid content (TFC) 40–1150 b,e,f

2403–4178 a,e
Pintać et al. [208]
Eyiz et al. [209]

Total monomeric anthocyanins 539–1598 a,e Eyiz et al. [209]
Total proanthocyanidin 3.23–6.32 a,e Eyiz et al. [209]

Phenolic acids—hydroxybenzoic acid
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Table 16. Cont.

Name MW
[g mol−1] CxHyOz

Concentration
[mg/kg dm] References

Gallic acid 170.12 C7H6O5

24–246 a,e

250 a

4.86–70 a,e,f

75.5 a

596.36 a

3030 c

Farías–Campomanes et al. [210]
Wang et al. [211]
Pintać et al. [208]
Daniel et al. [212]

Wittenauer et al. [213]
Jara-Palacios et al. [214]

Digalloylquinic acid 496.4 C21H20O14 299 a Gonçalves et al. [215]

Ellagic acid 302.197 C14H6O8

620 a

8.37–64.1 b,e,f

4.315 a

Wang et al. [211]
Pintać et al. [208]
Daniel et al. [212]

Protocatechuic acid 154.12 C7H6O4
9–63 a,e

940 c
Farías–Campomanes et al. [210]

Jara–Palacios et al. [214]

Vanillic acid 168.15 C8H8O4

24–237 a,e

0.53–13.0 b,e,f

10 a

Farías–Campomanes et al. [210]
Pintać et al. [208]
Daniel et al. [212]

4-hydroxybenzoic acid 138.122 C7H6O3
9–63 a,e

0.16–1.71 b,e,f
Farías–Campomanes et al. [210]

Pintać et al. [208]

Syringic acid 198.17 C9H10O5
48–593 a,e

0.13–20.6 b,e,f
Farías–Campomanes et al. [210]

Pintać et al. [208]
Galloylshikimic acid 326.25 C14H14O9 438.1 a Gonçalves et al. [215]

Phenolic acids—hydroxycinnamic acid

Chlorogenic acid 354.31 C16H18O9
0.14–11.50 b,e,f

4.715 a
Pintać et al. [208]
Daniel et al. [212]

Caffeic acid 180.16 C9H8O4

0.41–1.68 b,e,f

9.735 a

630 c

Pintać et al. [208]
Daniel et al. [212]

Jara–Palacios et al. [214]

Caftaric acid 312.23 C13H12O9

735.32 a

880 c

11–168 a,g

Wittenauer et al. [213]
Jara–Palacios et al. [214]
Jara–Palacios et al. [216]

cis-Coutaric acid 296.23 C13H12O8 5.3–11.8 a,g Jara–Palacios et al. [216]
trans-coutaric 296.23 C13H12O8 5.5–20.7 a,g Jara–Palacios et al. [216]

p-Coumaric acid 164.16 C9H8O3

6–39 a,e

0.13–1.49 b,e,f

8.175 a

510 c

Farías–Campomanes et al. [210]
Pintać et al. [208]
Daniel et al. [212]

Jara–Palacios et al. [214]
Flavonoids—flavonols

Quercetin 302.236 C15H10O7

3–15 a,e

11.3–78.9 b,e,f

200 a

2.473–15.637 c

4.7 a

2870 c

344–403 c,f

Farías–Campomanes et al. [210]
Pintać et al. [208]
Wang et al. [211]
Balea et al. [217]

Daniel et al. [212]
Jara–Palacios et al. [214]

Drosou et al. [218]

Quercetin-3-O-glucoside 463.371 C21H19O12

0.39–38.0 b,e,f

67.6 a

2374.32 a

16,900 c

475–609 c,f

Pintać et al. [208]
Gonçalves et al. [215]
Wittenauer et al. [213]

Jara–Palacios et al. [214]
Drosou et al. [218]

Quercetin-3-O-glucuronide 478.362 C21H18O13

13.4 a

2432.29 a

15,800 c

990–1285 c,f

Gonçalves et al. [215]
Wittenauer et al. [213]

Jara–Palacios et al. [214]
Drosou et al. [218]

Quercetin-3-O-pentoside 434.35 C20H18O11 52.0 a Gonçalves et al. [215]
Quercetin-3-O-rhamnoside 448.4 C21H20O11 49.4 a Gonçalves et al. [215]
Quercetin-3-O-galactoside 2120 c Jara–Palacios et al. [214]

Hyperoside 464.38 C21H20O12 0.17–5.67 b,e,f Pintać et al. [208]
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Table 16. Cont.

Name MW
[g mol−1] CxHyOz

Concentration
[mg/kg dm] References

Rutin 610.52 C27H30O16

0.11–8.19 b,e,f

2.136 c

5.3 a

690 c

Pintać et al. [208]
Balea et al. [217]

Daniel et al. [212]
Jara–Palacios et al. [214]

Isorhamnetin 316.265 C16H12O7 6.42–72.9 b,e,f Pintać et al. [208]

Isorhamnetin 3-O-glucoside 478.406 C22H22O12
66.3 a

145–175 c,f
Gonçalves et al. [215]

Drosou et al. [218]

Myricetin 318.24 C15H10O8

170 a

0.21–2.31 b,e,f

0.341–1.029 c

452–711 c,f

Wang et al. [211]
Pintać et al. [208]
Balea et al. [217]

Drosou et al. [218]
Myricetin-3-O-hexoside 480.38 C21H20O13 184.6 a Gonçalves et al. [215]
Myricetin-3-O-glucoside 480.38 C21H20O13 781–1044 c Drosou et al. [218]

Quercitrin 448.38 C21H20O11 0.21–3.99 b,e,f Pintać et al. [208]

Laricitrin-O-hexoside 494.405 C22H22O13
46.8 a

216–434 c,f
Gonçalves et al. [215]

Drosou et al. [218]

Kaemferol 286.239 C15H10O6

80 a

2.45–53.1 b,e,f

3.38–5.74 c

150 c

Wang et al. [211]
Pintać et al. [208]
Balea et al. [217]

Jara–Palacios et al. [214]

Kaempferol 3-O-glucoside 448.38 C21H20O11
0.05–23.0 b,e,f

3670 c
Pintać et al. [208]

Jara–Palacios et al. [214]
Kaempferol 3-glucuronide 462.4 C21H18O12 310 c Jara–Palacios et al. [214]

Syringetin 3-glucoside 508.432 C23H24O13 168–200 c,f Drosou et al. [218]
Quercitrin 448.38 C21H20O11 3.272–14.952 c Balea et al. [217]

Isoquercitrin 464.0955 C21H20O12 2.429–65.698 c Balea et al. [217]
Flavonoids—flavanols

Catechin 290.27 C15H14O6

1460 a

5.01–193 b,e,f

945 a

1101.7 a

10,496.63 a

12,200 c

Wang et al. [211]
Pintać et al. [208]

Gonçalves et al. [215]
Daniel et al. [212]

Wittenauer et al. [213]
Jara–Palacios et al. [214]

Epicatechin 290.271 C15H14O6

1280 a

5.80–309 b,e,f

949 a

322.5 a

8994.93 a

6340 c

Wang et al. [211]
Pintać et al. [208]

Gonçalves et al. [215]
Daniel et al. [212]

Wittenauer et al. [213]
Jara–Palacios et al. [214]

Epigallocatechin 306.27 C15H14O7 900 a Wang et al. [211]
Procyanidin dimers 578.1424 C30H26O12 3306 a Gonçalves et al. [215]

Procyanidin trimers 866.77 C45H38O18
1105 a

12,920 c
Gonçalves et al. [215]

Jara–Palacios et al. [214]

Procyanidin tetramer 1155.0 C60H50O24
806 a

16,540 c
Gonçalves et al. [215]

Jara–Palacios et al. [214]

Procyanidin B1 578.1424 C30H26O12
4858.58 c

15,500 c
Wittenauer et al. [213]

Jara–Palacios et al. [214]

Procyanidin B2 578.1424 C30H26O12
4277.04 c

4940 c
Wittenauer et al. [213]

Jara–Palacios et al. [214]
Procyanidin B3 578.1424 C30H26O12 4350 c Jara–Palacios et al. [214]
Procyanidin B4 578.1424 C30H26O12 Jara–Palacios et al. [216]

Flavonoids—flavones
Apigenin 270.24 C15H10O5 0.58 b Pintać et al. [208]

Apigenin 7-O-glucoside 432.38 C21H20O10 0.02–12.7 b,e,f Pintać et al. [208]
Luteolin 286.24 C15H10O6 0.23–1.07 b,e,f Pintać et al. [208]

Luteolin-7-O-glucoside 448.38 C21H20O11 0.36–4.46 b,e,f Pintać et al. [208]
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Table 16. Cont.

Name MW
[g mol−1] CxHyOz

Concentration
[mg/kg dm] References

Flavonoids—flavanones
Chrysoeriol 300.27 C16H12O6 0.04–0.51 b,e,f Pintać et al. [208]
Naringenin 272.26 C15H12O5 0.11–0.83 b,e,f Pintać et al. [208]

Flavonoids-flavanonols
Astilbin 450.396 C21H22O11 3120–4200 b,e Negro et al. [219]

Flavonoids—anthocyanins

Delphinidin 3-O-glucoside 465.387 C21H21O12

4.68–54.7 b,e,f

775–936 c,f

7–57 a,e

Pintać et al. [208]
Drosou et al. [218]
Negro et al. [219]

Cyanidin 3-O-glucoside 449.388 C21H21O11
2.21–11.3 b,e,f

3–37 b,e
Pintać et al. [208]
Negro et al. [219]

Petunidin-3-O-glucoside 479.41 C22H23O12

1.28–35.4 b,e,f

77.0 a

1295–1618 c,f

Pintać et al. [208]
Gonçalves et al. [215]

Drosou et al. [218]

Peonidin-3-O-glucoside 463.41 C22H23O11

1.51–64.7 b,e,f

202.2 a

1591–2044 c,f

Pintać et al. [208]
Gonçalves et al. [215]

Drosou et al. [218]

Malvidin 3-glucoside 493.441 C23H25O12

0.80–384 b,e,f

443.0 a

12,182–17,687 c,f

Pintać et al. [208]
Gonçalves et al. [215]

Drosou et al. [218]
Peonidin-3-O-acetyl glucoside 505.4 C24H25O12

+ 90.2 a Gonçalves et al. [215]

Malvidin 3-O-acetyl glucoside 535.5 C25H27O13
+ 96.2 a

937–1182 c,f
Gonçalves et al. [215]

Drosou et al. [218]
Malvidin 3-caffeoyl glucoside 655.6 C32H31O15 1079–1450 c,f Drosou et al. [218]

Petunidin 3-coumaroyl glucoside 625.5536 C31H29O14 735–806 c,f Drosou et al. [218]
Peonidin 3-coumaroyl glucoside 609.5542 C31H29O13 796–1231 c,f Drosou et al. [218]
Malvidin-3-coumaroyl glucoside 639.58 C32H31O14 4700–7232 c,f Drosou et al. [218]

Delphinidin 303.24 C15H11O7 5570 a Wang et al. [211]
Cyanidin 287.24 C15H11O6 3620 a Wang et al. [211]
Petunidin 317.27 C16H13O7 15,500 a Wang et al. [211]
Peonidin 301.27 C16H13O6 25,320 a Wang et al. [211]
Malvidin 331.30 C17H15O7 10,390 a Wang et al. [211]

Terpenoids
Ursolic acid 456.70 C30H48O3 0.96–606 b,e,f Pintać et al. [208]

Coumarins
Esculetin 178.14 C9H6O4 0.23–0.66 b,e,f Pintać et al. [208]

Stilbenes

resveratrol 228.243 C14H12O3
0.07–3.37 b,e,f

5.3–6.2 a,e
Pintać et al. [208]
Iora et al. [220]

Fatty acids
Palmitic acid (16:1) 256.4 C16H32O2 85.43–110.97 d Iora et al. [220]

Palmitoleic acid (16:1 n-7) 254.414 C16H30O2 7.04–13.21 d Iora et al. [220]
Stearic acid (18:0) 284.48 C18H36O2 26.75–38.77 d Iora et al. [220]

Oleic acid (18:1 n-9) 282.47 C18H34O2 118.15–141.54 d Iora et al. [220]
Linoleic acid (18:2 n-6) 280.4472 C18H32O2 627.21–684.47 d Iora et al. [220]

Linolenic acid (18:3 n-3) 278.43 C18H30O2 11.26–19.97 d Iora et al. [220]
Arachidic acid (20:0) 312.5304 C20H40O2 3.12–3.45 d Iora et al. [220]

Eicosenoic acid 20:1 n-9 310.51 C20H38O2 0.89–2.57 d Iora et al. [220]
Behenic acid 22:0 340.58 C22H44O2 1.47–2.42 d Iora et al. [220]

Lignoceric acid 24:0 368.63 C24H48O2 1.03–1.67 d Iora et al. [220]
SFA 117.79–157.07 d Iora et al. [220]

MUFA 131.56–156.95 d Iora et al. [220]
PUFA 647.17–695.73 d Iora et al. [220]

n-6/n-3 31.43–60.80 d Iora et al. [220]
SFA/PUFA 0.17–0.24 d Iora et al. [220]

TFA 938.41–945.08 d Iora et al. [220]
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Table 16. Cont.

Name MW
[g mol−1] CxHyOz

Concentration
[mg/kg dm] References

Other compounds
Vanillin 152.15 C8H8O3 25.5 a Daniel et al. [212]

trans-piceid 390.388 C20H22O8 7.75 a Daniel et al. [212]
a expressed in mg per kg of dry matter (DM), b expressed in mg per kg of fresh weight, c expressed in mg per kg
of the extract, d expressed in mg per g of total lipids extracted from grape pomace, e depending on methods of
extraction, f depending on varieties of grapes, g depending on the part of the pomace: seeds, skins, stems.

The residues derived from the grape processing contain phytochemicals of interest for
the production of preservatives, dyes, enriched foods, medicines, and products aimed at per-
sonal care, pharmaceutical, and cosmetic industries. The presence of bioactive compounds
with antioxidant, antimicrobial, anti-inflammatory, anti-tumor, and protective activity of
the cardiovascular system provides possibilities for many applications [221]. The potential
beneficial role of phytochemicals of grape pomace in the prevention of disorders associated
with oxidative stress and inflammation, such as endothelial dysfunction, hypertension,
hyperglycemia, diabetes, and obesity, is due to the mechanisms concerned especially mod-
ulation of antioxidant/prooxidant activity, improvement of nitric oxide bioavailability,
reduction of pro-inflammatory cytokines and modulation of antioxidant/inflammatory
signal pathways [222].

It has been proven that the antioxidant properties of polyphenols in grape pomace help
to prevent radical oxidation of the polyunsaturated fatty acids of low-density lipoproteins
(LDL) and hence, are conducive to the prevention of cardiovascular diseases [223]. The
compounds derived from grape pomace were also tested for their anti-inflammatory and
anti-carcinogenic effect [224]. Álvarez et al. [225] studied the impact of procyanidins
from grape pomace as inhibitors of human endothelial NADPH oxidase and stated the
decrease in the production of reactive oxygen species. A rich source of procyanidins is
grape seeds. They are widely consumed in some countries in the form of powder as a
dietary supplement because of several related health benefits associated with procyanidins.
They present antitumor-promoting activity, inhibit growth and induce apoptosis in human
prostate cancer cells, as well as significantly reducing atherosclerosis in the aorta.

Seeds contain a very broad spectrum of procyanidins, with the dominant compounds
being the dimers, trimers, and tetramers of catechin or epicatechin. Higher polymers are
also present but at much lower abundance. Besides, every polymer can also be found as a
gallic acid ester.

Very important is the anti-microbial activity of bioactive compounds included in
grapes wastes. Mendoza et al. [226] demonstrated the antifungal properties of extracts
from winery by-products against Botrytis cinerea, the causal agent of gray mold, considered
the most important pathogen responsible for postharvest decay of fresh fruit and vegeta-
bles. Moreover, a few reports are available in the literature about the effective action of
polyphenol-rich extracts from vinification by-products against various pathogenic bacteria
and insects, e.g., Listeria monocytogenes, Leptinotarsa decemlineata, and Spodoptera littoralis [1].
The potential health benefits of plant phenolics cause much interest and consideration
in a lot of agri-food applications for phenolics extracted from grape wastes [16]. There
are a lot of studies on the application of phytochemicals from grape pomace in the meat
industry [221].

To facilitate the industrial application of wine waste polyphenols, encapsulation was
recently developed to improve the stability of valuable compounds in different conditions
of light and temperature [227,228].

The examples of the newest potential applications and valuable properties of phyto-
chemicals derived from winery waste are listed in Table 17.
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Table 17. Biological activity and potential applications of phytochemicals obtained from grape
residues.

Material Extract/Compound Biological Activity/Application References

Fresh and fermented
grape pomace Extract - antioxidant, anti-inflammatory, and

antiproliferative activity Balea et al. [217]

Grape pomace

Hydroalcoholic extract
(saponins, tannins, and

flavonoids as active
constituents)

- anthelmintic activity Soares et al. [229]

Grape pomace
Whole apple pomace

(phenolic compounds as
main constituents)

- reduction of the severity of
non-alcoholic hepatic steatosis
- inhibition of steatohepatitis

- improvement in insulin sensitivity
- reduction of ectopic fat deposition in

mice

Daniel et al. [212]

Grape pomace
crude extract and four

fractions: the most active
free phenolic acids fraction

- inhibitory effect on collagenase and
elastase Wittenauer et al. [213]

White grape pomace

extract: catechin,
epicatechin, quercetin, and

gallic acid as the main
active constituents

- antiproliferative activity against
adenocarcinoma cell Jara–Palacios et al. [214]

Grape pomace Ethanolic extract

- antioxidant activity
- potential application as additives to
food enhancing nutritional value and

improving storability

Iora et al. [220]

Grape stem extracts

- prevention of radical oxidation of
the polyunsaturated fatty acids of

low-density lipoproteins (LDL)
- reduction of intracellular reactive

oxygen species (ROS)
- prevention of cardiovascular

diseases

Anastasiadi et al. [223]

Grape seeds procyanidin-rich extract - antibacterial activity against
Helicobacter pylori (H. pylori) Silvan et al. [230]

Grape seeds procyanidin-rich extract - antihypertensive activity Quiñones et al. [231]
Grape pomace phenolics - antioxidant properties Tournour et al. [232]

Grape pomace
“Enocianina”—

anthocyanin-rich
extract

- radical scavenging, enzymatic,
antioxidant and anti-inflammatory

activity
- application as a colorant in the food

industry

Della Vedova et al. [233]

Grape pomace phenolics

- photoprotective activity
- reduction of the negative effects of

UV radiation on the skin, such as
erythema and photoaging

Hübner et al. [234]

Grape pomace extracts - wastewater remediation Gavrilas et al. [235]
Grape pomace ethanolic extract - application as additives to yogurt Olt et al. [236]

Grape pomace alcoholic extract

- application as a reducing agent of
the precursor silver nitrate, a process
that has led to the obtaining of silver
nanoparticles (NP Ag) by reducing

the ions.

Asmat–Campos et al. [237]

Grape skin resveratrol - as an antioxidant in the meat
industry Andrés et al. [238]

Grape seeds flavonoids - antimicrobial activity in meat Biniari et al. [239]
Grape steam procyanidins - inhibition of toxic compounds Bordiga et al. [240]
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Table 17. Cont.

Material Extract/Compound Biological Activity/Application References

Grape pulp phenolic compounds - pigment protection in meat Chen et al. [241]

Grape pomace anthocyanins - modulation of the sensory
characteristic of meat Crupi et al. [242]

Grape pomace stilbenes - modulation of the sensory
characteristic of meat Mainente et al. [243]

Grape seeds Unsaturated fatty acids
(linoleic and oleic acid) - substitution nitrate and nitrite Gárcia–Lomillo and

González-San José [244]

2.9. Citrus Residues

Citrus fruits from the family Rutaceae include oranges, lemons, limes, grapefruits, man-
darins, and tangerines. They are well known for their nutritional value, as they are good
sources of dietary fiber, pectin, vitamin C, vitamin B group, carotenoids, flavonoids, and
limonoids (Table 18). It is estimated that approximately 140 chemical components have been
isolated and identified from citrus peels, and flavonoids are the main group of phytochemicals
with biological activity [245]. Afsharnezhad et al. [165] evaluated the antioxidant potential
of extract from various fruit peels and stated that the maximum DPPH radical scavenging
activity, total phenols, and total anthocyanins were observed in orange peels.

Table 18. Phytochemicals identified and quantified in citrus residues.

Name Citrus Residues MW
[g mol−1] CxHyOz

Concentration
[mg/kg dm] References

Total phenols kinnow peel 13,840–27,910 a,c Yaqoob et al. [246]
lime peel 5.2 b Karetha et al. [247]

mandarin peel 4.0 b Karetha et al. [247]
lemon peel 4.7 b Karetha et al. [247]

pomelo peel 6.4 b Karetha et al. [247]
rough lemon peel 4.1 b Karetha et al. [247]

citron peel 6.8 b Karetha et al. [247]
sour orange peel 30.4–1354.4 a Benayad et al. [248]

lime and orange peel 3860 Barbosa et al. [249]
orange peel 7055–19,885 a Liew et al. [250]

orange seeds oil 4430 Jorge et al. [251]
Total flavonoids kinnow peel 610–11,770 a Yaqoob et al. [246]

sour orange peel 2.3–603.6 a Benayad et al. [248]
orange peel 854.7–2975.4 a Liew et al. [250]

sour orange peel 589.4 Olfa et al. [252]
lime peel 95.3 Olfa et al. [252]

orange peel 132.2 Olfa et al. [252]
lemon peel 610.5 Olfa et al. [252]

mandarin peel 275.9 Olfa et al. [252]
Total carotenoids orange seeds oil 19 Jorge et al. [251]

Organic acids
Lactic acid orange peel 90.08 C3H6O3 5463–9861 a Liew et al. [250]
Citric acid orange peel 192.1 C6H8O7 19,587–27,910 a Liew et al. [250]

L-mallic acid orange peel 134.1 C4H6O5 3056–5064 a Liew et al. [250]
Kojic acid orange peel 141.1 C6H6O4 111.2–116.4 a Liew et al. [250]

Ascorbic acid orange peel 176.1 C6H8O6 1.12–7.32 a Liew et al. [250]
Phenolic acids—hydroxybenzoic acids

Ellagic acid lime and orange peel 302.20 C14H6O8 109.7 Barbosa et al. [249]

Gallic acid
lime and orange peel

sour orange peel
orange peel

170.12 C7H6O5

5.7
111.3–866.7 a

8.84–17.81 a

Barbosa et al. [249]
Benayad et al. [249]

Liew et al. [250]
Protocatechuic acid orange peel 154.12 C7H6O4 24.55–65.92 a Liew et al. [250]
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Table 18. Cont.

Name Citrus Residues MW
[g mol−1] CxHyOz

Concentration
[mg/kg dm] References

4-hydroxybenzoic acid orange peel 138.12 C7H6O3 26.27–42.50 a Liew et al. [250]
Phenolic acids—hydroxycinnamic acids

Ferulic acid

sour orange peel
orange peel
yuzu peel

sour orange peel
mandarin peel

lime peel
grapefruit peel

lemon peel
orange peel

194.18 C10H10O4

360.0–17,237.7 a

154.8–477.3 a

135
139
101
18
29
18
19

Benayad et al. [248]
Liew et al. [250]
Lee et al. [253]
Lee et al. [253]
Lee et al. [253]
Lee et al. [253]
Lee et al. [253]
Lee et al. [253]
Lee et al. [253]

p-coumaric acid

sour orange peel
yuzu peel

sour orange peel
mandarin peel

lime peel
grapefruit peel

lemon peel
orange peel

164.16 C9H8O3

242.4
101
123
52
76
16
48
18

Benayad et al. [248]
Lee et al. [253]
Lee et al. [253]
Lee et al. [253]
Lee et al. [253]
Lee et al. [253]
Lee et al. [253]
Lee et al. [253]

Chlorogenic acid

mandarin peel
sour orange peel

yuzu peel
sour orange peel
mandarin peel

354.31 C16H18O9

0.08–68.58 a

4.494
39
96
40

Šafranko et al. [254]
Benayad et al. [248]

Lee et al. [253]
Lee et al. [253]
Lee et al. [253]

Caffeic acid

sour orange peel
orange peel
yuzu peel

sour orange peel
mandarin peel

lime peel
lemon peel

180.16 C9H8O4

384.0–1326.1 a

54.5–210.1 a

55
27
15
4

12

Benayad et al. [248]
Liew et al. [250]
Lee et al. [253]
Lee et al. [253]
Lee et al. [253]
Lee et al. [253]
Lee et al. [253]

Flavonoids—flavonols

Rutin
mandarin peel

orange peel
mandarin peel

610.52 C27H30O16

0.18–4.27 a

9.56–10.11 a

177

Šafranko et al. [254]
Liew et al. [250]
Lee et al. [253]

Flavonoids—flavanols

Catechin sour orange peel
orange peel 290.26 C15H14O6

378.3–1296 a

40.92–366.8 a
Benayad et al. [248]

Liew et al. [250]
Epigallocatechin orange peel 84.23–317.14 a Liew et al. [250]

Flavonoids-flavones

Apigenin sour orange peel
orange peel 270.24 C15H10O5

38,552.1
57.91–159.67

Benayad et al. [248]
Liew et al. [250]

Diosmetin lime and orange peel 300.26 C16H12O6 3.2 Barbosa et al. [249]
Vitexin orange peel 432.38 C21H20O10 30.73–117.27 a Liew et al. [250]

Luteolin orange peel 286.24 C15H10O6 93.47–275.14 a Liew et al. [250]
Tangeretin lime and orange peel 372.37 C20H20O7 14.1 Barbosa et al. [249]

Flavonoids-flavanones

Naringenin lime and orange peel
sour orange peel 272.25 C15H12O5

4.7
5745.6–96,942 a

Barbosa et al. [249]
Benayad et al. [248]

Hesperetin lime and orange peel 302.28 C16H14O6 10.5 Barbosa et al. [249]
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Table 18. Cont.

Name Citrus Residues MW
[g mol−1] CxHyOz

Concentration
[mg/kg dm] References

Hesperidin

lime and orange peel
mandarin peel

yuzu peel
mandarin peel

lime peel
lemon peel
orange peel

610.57 C28H34O15

2326.5
0.16–15.07 a

5367
21,496
4862
6400

16,299

Barbosa et al. [249]
Šafranko et al. [254]

Lee et al. [253]
Lee et al. [253]
Lee et al. [253]
Lee et al. [253]
Lee et al. [253]

Naringin

lime and orange peel
yuzu peel

sour orange peel
mandarin peel

lime peel
grapefruit peel

lemon peel

580.54 C27H32O14

10.2
5255

19,750
146
36

31,314
41

Barbosa et al. [249]
Lee et al. [253]
Lee et al. [253]
Lee et al. [253]
Lee et al. [253]
Lee et al. [253]
Lee et al. [253]

Narirutin

lime and orange peel
mandarin peel

yuzu peel
sour orange peel
mandarin peel

lime peel
grapefruit peel

lemon peel
orange peel

580.54 C27H32O14

293.4
0.03–5.11 a

4734
64

10,642
559
2827
185
1342

Barbosa et al. [249]
Šafranko et al. [254]

Lee et al. [253]
Lee et al. [253]
Lee et al. [253]
Lee et al. [253]
Lee et al. [253]
Lee et al. [253]
Lee et al. [253]

Furanocumarins

Bergapten
sour orange peel

lime peel
lemon peel

216.19 C12H8O4

64
196

3

Lee et al. [253]
Lee et al. [253]
Lee et al. [253]

Bergamottin
lime peel

grapefruit peel
lemon peel

338.40 C21H22O4

81
25
16

Lee et al. [253]
Lee et al. [253]
Lee et al. [253]

Volatile compounds
Caprylaldehyde sour orange peel 128.21 C8H16O 180.5 b Benayad et al. [248]

Decanal sour orange peel 156.27 C10H20O 167.2 b Benayad et al. [248]
Decanol sour orange peel 158.28 C10H22O 129.8 b Benayad et al. [248]

Geranyl Acetate sour orange peel 196.29 C12H20O2 172.7 b Benayad et al. [248]
D-limonene sour orange peel 136.24 C10H16 3939.4 b Benayad et al. [248]

β-linalool sour orange peel 154.25 C10H18O 2038.7 b Benayad et al. [248]
Linalool oxide sour orange peel 170.25 C10H18O2 282.0 b Benayad et al. [248]
Linalyl acetate sour orange peel 196.29 C12H20O2 589.1 b Benayad et al. [248]

β-myrcene sour orange peel 136.23 C10H16 1972.8 b Benayad et al. [248]
Nerol sour orange peel 154.25 C10H18O 106.2 b Benayad et al. [248]

β-ocimene sour orange peel 136.23 C10H16 465.2 b Benayad et al. [248]
α-pinene sour orange peel 136.23 C10H16 350.1 b Benayad et al. [248]
β-pinene sour orange peel 136.23 C10H16 417.6 b Benayad et al. [248]

α-terpineol sour orange peel 154.25 C10H18O 389.5 b Benayad et al. [248]
Carotenoids

Violaxantin dilaurate mandarin peel 965.44 C64H100O6 1.33 Huang et al. [255]
Violaxanthin
dipalmitate mandarin peel 1077.7 C72H116O6 2.07 Huang et al. [255]

Zeaxanthin mandarin peel 568.88 C40H56O2 1.31 Huang et al. [255]
α-cryptoxanthin mandarin peel 552.85 C40H56O 0.10 Huang et al. [255]
β-cryptoxanthin mandarin peel 552.85 C40H56O 4.96 Huang et al. [255]

Lutein kinnow peel
mandarin peel 568.87 C40H56O2

9.26–28.89 a

0.88
Saini et al. [256]

Huang et al. [255]
β-carotene mandarin peel 536.87 C40H56 5.87 Huang et al. [255]

(E/Z)-phytoene mandarin peel 544.94 C40H64 25.07 Huang et al. [255]
β-citraurin mandarin peel 432.6 C30H40O2 1.57 Huang et al. [255]



Molecules 2023, 28, 342 32 of 50

Table 18. Cont.

Name Citrus Residues MW
[g mol−1] CxHyOz

Concentration
[mg/kg dm] References

α-tocopherol orange seeds oil 430.71 C29H50O2 135.7 Jorge et al. [251]
phytosterol orange seeds oil 414.72 C29H50O 1304.2 Jorge et al. [251]
malic acid sour orange peel 134.09 C4H6O5 122.4–2247 a Benayad et al. [248]

a depending on methods of extraction, b expressed in mg kg−1 of fresh matter of peel, c expressed in mg kg of
the extract.

Citrus peels are widely used by-products for the production of essential oils, which
have great commercial importance due to their aroma, antifungal and antimicrobial proper-
ties. Citrus essential oil is employed in the food industry, perfumes, cosmetics, domestic
household products, and pharmaceuticals [257]. The main ingredient is limonene, account-
ing for more than 94% of citrus essential oil [258]. It is used as an insect-killing agent in
pesticides and a good biodegradable and non-toxic solvent [257]. Furthermore, limonene
has shown regulatory effects on neurotransmitters and stimulant-induced changes in
dopamine neurotransmission [258].

The citrus waste contained high amounts of organic and phenolic acids, as well as
flavonoids. Among flavonoids, the main compounds are flavanones and flavones (such
as naringenin, hesperetin, and apigenin glycosides) as well as polymethoxylated flavones
(PMFs), not found in other fruit species [259,260]. Okino Delgado and Feuri [258] indicated
that polymethoxylated flavones, at a dosage of 250 mg/kg, exhibit an anti-inflammatory
effect comparable to ibuprofen. The most widely studied PMFs are tangeretin and nobiletin.
They are exclusively derived from citrus peels. Lv et al. [261] stated that nobiletin and its
derivatives showed anti-cancer activity. Generally, anticancer activity increases with the
increasing number of methoxy groups because PMFs have then higher hydrophobicity
for approaching and penetrating cancer cells [244]. Moreover, PMFs exhibit a broad
spectrum of other biological activities such as anti-obesity, anti-atherosclerosis, antiviral
and antioxidant properties [262,263].

Among flavanones, citrus peel is rich in eriocitrin, hesperidin, diosmin, neohesperidin,
didymin, and naringin. Chiechio et al. [264] used red orange and lemon extract rich in
flavanones for in vivo assays on male CD1 mice fed with a high-fat diet. The results showed
that an 8-week treatment with the extract was able to induce a significant reduction in glu-
cose, cholesterol, and triglyceride levels in the blood, with positive effects on the regulation
of hyperglycemia and lipid metabolism. Barbosa et al. [265] tested flavanones obtained
from citrus pomace by enzyme-assisted and conventional hydroalcoholic extraction as an
agent against Salmonella enterica subsp. enterica. Tested extracts decreased the expression
of genes associated with cell invasion. Moreover, the results suggest that extracts and fla-
vanones inhibit Salmonella Typhimurium adhesion by interacting with fimbriae and flagella
structures and downregulating fimbrial and virulence genes.

Citrus peels also contained some flavonols, such as rutin, isorhamnetin 3-O-rutinoside,
quercetin-O-glucoside, and myricetin, as well as phenolic acids, but at a much lower
concentration. It has been proven that Citrus reticulata waste extract, mainly including rutin,
was the most effective against gram-negative bacteria and the three pathogenesis fungi:
Bacillus subtilis, Candida albicans and Aspergillus flavus [266].

Citrus seeds are also a good source of valuable components, particularly oil rich in
carotenoids (19.01 mg/kg), phenolic compounds (4.43 g/kg), tocopherols (135.65 mg/kg)
and phytosterols (1304.2 mg/kg) [251]. This oil was characterized by high antioxidant
activity ranging from 56.0% to 70.2%.

A summary of the main phytochemical constituents, together with their concentrations
in citrus residues, as well as their newest applications and properties, is presented in
Tables 18 and 19, respectively.
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Table 19. Biological activity and potential applications of phytochemicals obtained from citrus
residues.

Material Extract/Compound Biological Activity/Application References

sour orange peel

acetone extract
chloroform extract

ethanol-water extract
naringenin
gallic acid

- hypoglycaemic and antidiabetic
actions

- α-glucosidase inhibition
- α-amylase inhibition

Benayad et al. [248]

orange peel ethanol and methanol
extract

- antimicrobial activity against
Xanthomonas, Bacillus subtilis,

Azotobacter, Pseudomonas,
Klebsiella

Gunwantrao et al. [267]

pomelo peel extract - antimicrobial and antioxidants
activity Khan et al. [268]

lemon peel eriodictoyl, quercetin, and
diosmetin

- antiviral activity against
SARS-CoV-2 Khan et al. [269]

orange peel
extracts: methanol/water,

ethanol/water and
acetone/water

- antioxidant activity Liew et al. [250]

sour orange
lime

orange
lemon

mandarin

ethanol/water extracts - antioxidant activity Olfa et al. [252]

kinnow peel and pomace extract (supercritical CO2
extraction)

- antioxidant activity
- for making functional cookies Yaqoob et al. [246]

citrus pomace (Persian lime
and orange)

extract rich in aglycones of
flavanones, mainly

naringenin and hesperetin

- activity against Salmonella enterica
subsp. enterica serovar Typhimurium Barbosa et al. [265]

lemon, orange
andgrapefruit peel essential oils (EOs)

- antifungal activity against
Rhizoctonia solanii and Sclerotium rolfsii

- insecticidal activity against
Rhyzopertha dominica, Oryzaephilus sp.,

and Sitophilus granarius

Achimón et al. [270]

mandarin peel
Extract rich in polyphenols,

mainly narirutin and
hesperidin

- inhibition of the growth of
Aspergillus flavus Liu et al. [271]

citrus peel nobiletin - activity against pancreatic cancer
through cell cycle arrest Jiang et al. [272]

citrus peel nobiletin
- activity against prostate cancer
thanks to its anti-inflammation

properties
Ozkan et al. [273]

mandarin peel polymethoxyflavone-rich
extract (PMFE)

- alleviating the metabolic syndrome
by regulating the gut microbiome and

amino acid metabolism
Zeng et al. [263]

Mandarin peel polymethoxyflavone-rich
extract (PMFE)

- alleviating high-fat diet-induced
hyperlipidemia Gao et al. [262]

Orange and lemon peel Extract rich in flavanones

- reduction in glucose, cholesterol and
triglycerides levels in the blood, with
positive effects on the regulation of

hyperglycemia and lipid metabolism

Chiechio et al. [264]

Lime and orange peel

Extract rich in flavanones,
mainly hesperetin,

hesperidin, narirutin, and
naringin

- antibacterial activity against
Salmonella enterica Barbosa et al. [265]

Bitter orange peel Extract rich in luteolin 7-O
glucoside

- antioxidant activity
- activity against gram-positive
bacteria and Fusarium oxysporum

Lamine et al. [266]
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Table 19. Cont.

Material Extract/Compound Biological Activity/Application References

Mandarin peel Extract rich in rutin

- activity against gram-negative
bacteria and the three pathogenesis

fungi: Bacillus subtilis, Candida albicans
and Aspergillus flavus.

Lamine et al. [266]

Orange peel Extract rich in
polymethoxyflavones

- antifungal activity against
Aspergillus niger. Lamine et al. [266]

Pomegranate peel Ethanolic and methanolic
extract

- activity against gram-positive,
gram-negative, and two fungal

pathogenic strains
- used as a natural food preserver

Hanafy et al. [274]

2.10. Olive Waste

The cultivation of olive trees is a widespread practice in the Mediterranean region,
accounting for about 98% of the world’s olive cultivation. A large number of phenolic
compounds occur in both olive oil and olive waste that includes both leaves and the residues
of oil production [275,276]. Their chemical characterization was reported by Dermeche
et al. [277]. The main groups of phenolic compounds in olive mill wastes are phenolic
acids, secoiridoids, and flavonoids, and the most abundant polyphenols are oleuropein,
hydroxytyrosol, verbascoside, apigenin-7-glucoside, and luteolin-7-glucoside [278] (Table 20).
Olive mill wastewater obtained during oil production is a complex mixture of vegetation
waters and processing waste of the olive fruit; it is characterized by a dark color, strong
odor, a mildly acidic pH, and a very high inorganic and organic load [279]. The organic
fraction consists essentially of sugars, tannins, polyphenols, polyalcohols, proteins, organic
acids, pectins and lipids [277]. About 30 million m3 of olive mill wastewater are produced
annually in the world as a by-product of the olive oil extraction process; because of the high
polyphenolic content (0.5–24 g/L), this by-product is difficult to biodegrade and a relevant
environmental and economic issue [280].

Table 20. Phytochemicals identified and quantified in olive waste.

Name Olive Residue MW
[g mol−1] CxHyOz Concentration References

Phenolic acids

Cinnamic acid deffated olives 148.16 C9H8O2
2.3 a

12–205 b,c
Alu’datt et al. [281]

Zhao et al. [282]

p-coumaric acid deffated olives
olive pomace 164.04 C9H8O3

10.3 a

84–884 b,c

5.01 b

Alu’datt et al. [281]
Zhao et al. [282]

Benincasa et al. [283]
o-coumaric acid olive pomace 164.04 C9H8O3 70–1562 b,c Zhao et al. [282]

Caffeic acid

deffated olives
leaves

OMWW *
olive pomace

180.16 C9H8O4

3.1 a

150 b

270 b

39–420 b,c

Alu’datt et al. [281]
Ladhari et al. [284]
Ladhari et al. [284]

Zhao et al. [282]
Protocatechuic acid deffated olives 154.12 C7H6O4 22.2 a Alu’datt et al. [281]

Hydroxybenzoic acid deffated olives 138.12 C7H6O3 4.2 a Alu’datt et al. [281]

Vanillic acid deffated olives
olive pomace 168.14 C8H8O4

9.0 a

203–2530 b,c
Alu’datt et al. [281]

Zhao et al. [282]

Ferulic acid deffated olives
olive pomace 194.18 C10H10O4

6.9 a

23–326 b,c
Alu’datt et al. [281]

Zhao et al. [282]

Gallic acid deffated olives
olive pomace 170.12 C7H6O5

7.1 a

7–223 b,c
Alu’datt et al. [281]

Zhao et al. [282]
Syringic acid deffated olives 198.17 C9H10O5 4.1 a Alu’datt et al. [281]
Sinapic acid deffated olives 224.21 C11H12O5 14.4 a Alu’datt et al. [281]
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Table 20. Cont.

Name Olive Residue MW
[g mol−1] CxHyOz Concentration References

4-hydroxyphenyl acetic
acid olive pomace 152.15 C8H8O3 660–4450 b,c Zhao et al. [282]

Secoiridoids and derivatives

Oleuropein

leaves
OMWW
OMWW

olive pomace

540.54 C25H32O13

13,050 b

9 b

103 b

811–12,231 b,c

Ladhari et al. [284]

Benincasa et al. [283]
Zhao et al. [282]

Oleuropein aglycone leaves
OMWW 378.4 C19H22O8

3410 b

6 b
Ladhari et al. [284]

Verbascoside

leaves
OMWW

OMSW **
olive pomace

624.59 C29H36O15

1160 b

6 b

5 b

833–10,159 b,c

700 b

Ladhari et al. [284]

Zhao et al. [282]
Benincasa et al. [283]

Ligstroside
leaves

OMWW
OMSW

524.51 C25H32O12

360 b

21 b

56 b

Ladhari et al. [284]

Tyrosol

leaves
OMWW
OMSW
OMWW
OMWW

olive pomace

138.16 C8H10O2

450 b

1870 b

4 b

182 b

2043 b

162–3514 a,c

Ladhari et al. [284]

Poerschmann et al. [285]
Benincasa et al. [283]

Zhao et al. [282]

Hydroxytyrosol

leaves
OMWW
OMWW
OMWW

olive pomace

154.16 C8H10O3

130 b

4450 b

225 b

1481 b

1356–17,298 a,c

Ladhari et al. [284]

Poerschmann et al. [285]
Benincasa et al. [283]

Zhao et al. [282]
Flavonoids

Luteolin

leaves
OMWW
OMSW

olive pomace
OMWW

286.24 C15H10O6

2970 b

1010 b

4 b

10–3515 b,c

62.38 b

Ladhari et al. [284]

Zhao et al. [282]
Benincasa et al. [283]

Luteolin 7-O-glucoside
leaves

OMWW
olive pomace

448.37 C21H20O11

7620 b

150 b

42–4086 b,c

88.55 b

Ladhari et al. [284]

Zhao et al. [282]
Benincasa et al. [283]

Luteolin 7-O-rutinoside 594.51 C27H30O15
Luteolin 4′-O-glucoside OMWW 448.37 C21H20O11 11.48 b Benincasa et al. [283]

Rutin

leaves
OMWW

deffated olives

olive pomace

610.52 C27H30O16

110 b

110 b

3.3 a

770–11,048 b,c

48.52 b

Ladhari et al. [284]

Alu’datt et al. [281]
Uribe et al. [286]
Zhao et al. [282]

Benincasa et al. [283]
Hesperidin deffated olives 610.56 C28H34O15 7.4 a Alu’datt et al. [281]

Quercetin

leaves
OMWW
OMSW

deffated olives

302.24 C15H10O7

4390 b

1060 b

37 b

5.7 a

Ladhari et al. [284]

Alu’datt et al. [281]

Apigenin 270.24 C15H10O5 7–469 b,c Benincasa et al. [283]
Zhao et al. [282]

Apigenin 7-O-glucoside 432.38 C21H20O10 55–1345 b,c Zhao et al. [282]

* OMWW—olive mill wastewater, ** olive mill solid waste, a percentage of total phenolic content based on peak
areas, b expressed in mg/g dry weight, c depending on the methods of extraction.
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Polyphenols also occur in the leaves [287]. These compounds confer bioactive proper-
ties on olive leaf extracts, such as antioxidant, antimicrobial, and antitumor activity; the
capacity to reduce the risk of coronary heart disease was also reported [288]. Olive leaves
can be collected as a by-product during oil processing (about 10% of the total weight of
the olives) but can also be a residue of olive tree pruning. Some authors estimated that
about 25 kg of by-products (twigs and leaves) could be obtained annually by pruning per
tree [289]. To date, this by-product is often used as animal feed, even if this natural resource
rich in antioxidant phenolic compounds should be valorized [290].

The qualitative and quantitative content of phenolic compounds is often heteroge-
neous in olive by-products; however, several studies reported the bioactive properties of
these phenolic compounds, promising potential as antioxidant, anti-inflammatory, and
antimicrobial agents. The antioxidant activities of olive mill wastewater and olive pomace
have been demonstrated by different antioxidant assays as DPPH radical-scavenging ac-
tivity, superoxide anion scavenging, LDL oxidation, and the protection of catalase against
hypochlorous acid [281,291,292]. An overview of the pharmacology of olive oil and its ac-
tive ingredients has been reported by Visioli et al. [293]. Recently, a novel stable ophthalmic
hydrogel containing a polyphenolic fraction obtained from olive mill wastewater was
formulated [294]. Among olive polyphenols, hydroxytyrosol is one of the main phenolic
compounds; it can occur in its free form or as secoiridoids (oleuropein and its aglycone).
For its polarity, it is more abundant in olive mill wastewater and pomace rather than in
olive oil. Anticancer, antioxidant, and anti-inflammatory properties have been reported for
hydroxytyrosol [295,296]. In vitro antioxidant and skin regenerative properties have been
reported by Benincasa et al. [297].

Moreover, the polyphenol fraction obtained from olive mill wastewater showed ac-
tivities against bacteria, fungi, plants, animals, and human cells; antibacterial activities
against several bacterial species (Staphylococcus aureus, Bacillus subtilis, Escherichia coli and
Pseudomonas aeruginosa) have been reported by Obied et al. [298]. Fungicidal activities have
also been reported [299]. Moreover, the effects of phenolic compounds from olive waste
on Aspergillus flavus growth and aflatoxin B1 production were investigated [300,301]. The
olive mill wastewater polyphenols did not inhibit the Aspergillus flavus fungal growth rate
but significantly reduced the aflatoxin B1 production (ranging from 88 to 100%) at 15%
concentration [302].

Finally, cytoprotection of brain cells by olive mill wastewater has been studied by Schaffer
et al. [303]. The cytoprotective effects were correlated to the content of hydroxytyrosol.

These studies showed the numerous beneficial and bioactive activities of polyphenols
fraction obtained by olive by-products; for their use, it is often carried out an appropri-
ate fractionation and/or purification to control their concentration and to avoid some
antagonist effects.

Various valuable properties and the newest studies on the application of biologically
active compounds derived form olive waste are presented in Table 21.

Table 21. Biological activity and potential applications of phytochemicals obtained from olive waste.

Material Extract/Compound Biological Activity/Application References

olive leave extract

- antioxidant, antimicrobial
- antitumor activity

- reduction of the risk of coronary
heart disease

Taamalli et al. [288]

OMWW * phenolic extract - antioxidant activity
- DPPH radical-scavenging activity Kreatsouli et al. [291]

pressed olive cake phenolic compounds

- superoxide anion scavenging
- LDL oxidation

- the protection of catalase against
hypochlorous acid

Alu’datt et al. [281]
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Table 21. Cont.

Material Extract/Compound Biological Activity/Application References

Olive oil mill waste
SFE extract and ethanol

extract (hydroxytyrosol as
the main compound)

- antioxidant activity
- DPPH radical-scavenging activity
- application as an antioxidant act

against peroxidation of virgin olive
and sunflower oils

Lafka et al. [292]

OMWW polyphenolic fraction - formulation of ophthalmic hydrogel
containing a polyphenolic fraction Di Mauro et al. [294]

dried olive mill
wastewater polyphenols

- application as ingredients
in the food industry for obtaining

functional and nutraceutical foods, as
well as in the pharmaceutical

industry

Benincasa et al. [297]

OMWW polyphenol fraction

- antibacterial activities against
Staphylococcus aureus, Bacillus subtilis,

Escherichia coli, and Pseudomonas
aeruginosa

Obied et al. [298]

- fungicidal activities Yangui et al. [299]

olive leaves and olive
pomace phenolic compounds

- ability as antimicrobial, antifungal,
antitoxigenic to reduce aflatoxigenic

fungi hazard and its aflatoxins
- application as a manufacturing
process, like, food supplement or

preservatives

Abdel–Razek et al. [300]

olive leaves IR extract

- antiradical activity
- antioxidant activity

- inhibition of the growth of
Aspergillus flavus and production of

aflatoxin B1
- inhibition of 20 strains of

Staphylococcus aureus

Abi–Khattar et al. [302]

OMWW hydroxytyrosol cytoprotection of brain cell Schaffer et al. [303]

* OMWW—olive mill wastewater.

3. Conclusions

The ever-increasing amount of processed food raw materials entails an increasing
amount of biowaste. Their management has become a growing problem. The consulted liter-
ature shows that discussed waste still contains valuable ingredients, medicinally important
phytochemicals, and good antioxidants, so it is very important to valorize them. Currently,
the recovery of different valuable phytochemicals from agro-industrial waste has become an
imperative research area among the scientific community because agro-industrial residues
of plant materials are a cheap and natural source of bioactive compounds, which can be
used in the prevention and treatment of various diseases. Despite many studies on the
valuable properties and potential applications, still, not many solutions are implemented
in the industry. This is probably caused by legislation that can affect the valorization of
such waste biomass. There are not many regulatory and legal provisions for their use. In
the European Union, the use of agricultural residues as food ingredients is regulated by the
European Community Regulation (EC) No 178/2002. However, in order to use them as
natural additives, proper authorization as a novel food is necessary (Regulation (EC) No
2015/2283) [304]. There is no doubt that the industrial application of the extracts needs to
be regulated.

According to the circular bioeconomy and biorefinery concept, food waste should be
recycled inside the whole food value chain from field to fork in order to formulate functional
foods and nutraceuticals. Nonetheless, it is important to implement environmentally
friendly industrial extraction procedures. Moreover, despite so many above reports, there
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is still a need for human and animal studies, as well as studies in the field in the case of
plants, to confirm the protective effect of such phytochemicals against diseases.

Taking into account the European Union’s emphasis on the development of a circular
economy and reducing the carbon footprint, it is expected that the effective application of
these wastes will be carried out and that regulations will be developed in accordance with
needs.
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