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Abstract: Copper, antimony and sulfur in elemental form were applied for one-pot solid-state
mechanochemical synthesis of skinnerite (Cu3SbS3) in a laboratory mill and an industrial mill. This
synthesis was completed after 30 min of milling in the laboratory mill and 120 min in the industrial
mill, as corroborated by X-ray diffraction. XRD analysis confirmed the presence of pure monoclinic
skinnerite prepared in the laboratory mill and around 76% monoclinic skinnerite, with the secondary
phases famatinite (Cu3SbS4; 15%), and tetrahedrite (Cu11.4Sb4S13; 8%), synthesized in the industrial
mill. The nanocrystals were agglomerated into micrometer-sized grains in both cases. Both samples
were nanocrystalline, as was confirmed with HRTEM. The optical band gap of the Cu3SbS3 prepared
in the laboratory mill was determined to be 1.7 eV with UV–Vis spectroscopy. Photocurrent responses
verified with I–V measurements under dark and light illumination and Cu3SbS3 nanocrystals showed
~45% enhancement of the photoresponsive current at a forward voltage of 0.6 V. The optical and
optoelectrical properties of the skinnerite (Cu3SbS3) prepared via laboratory milling are interesting
for photovoltaic applications.

Keywords: mechanochemistry; milling; ternary chalcogenide Cu3SbS3; nanocrystals; optical properties;
optoelectrical properties

1. Introduction

A wide variety of copper-based semiconducting chalcogenides have been investigated
in recent years to pursue the need for solar-cell materials. Materials based on the Cu-Sb-S
ternary system are regarded to be potential low-cost, sustainable absorbers capable of use in
thin-film solar cells due to the availability and the low cost of the constituent nontoxic and
earth-abundant elements. Their applications, such as in near-infrared, telecommunication
and solar photovoltaic devices as well as thermoelectrics are also interesting [1,2].

Skinnerite (Cu3SbS3) belongs among the semiconductors that are currently stud-
ied very intensively. Cu3SbS3 is a ternary semiconductor with a direct bandgap value
that ranges from 1.46 to 1.84 eV and has high absorption coefficients with values over
105 cm−1 [3]. Cu3SbS3 is also a promising material for thermoelectrics [4], and confirma-
tion of its potential for solar-energy conversion applications has also been approved [5].
Furthermore, it can be used as a photocatalyst material in treatment of wastewater that
contains huge quantities of dyes [6]. Cu3SbS3 nanocrystals are also used in photothermal,
photovoltaic and sensing applications [7].

Skinnerite (Cu3SbS3) nanocrystals have been synthesized via various techniques, such
as, sputtering [5], chemical-bath deposition [6], the hot-injection method [7,8], thermal
evaporation [9–12], the solvothermal method [13–15] and wet-chemical synthesis [16].
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Cu3SbS3 thin films have been prepared via the chemical-bath-deposition method in
an aqueous solution that contained (CuCl2, 2H2O), SbCl3 and Na2S2O3 as precursors; these
exhibit good photocatalytic activity to degrade methylene blue under solar and xenon-lamp
irradiation [6]. Cu3SbS3 NCs with high phase purity have been synthesized through a hot-
injection method [7]. Ikeda et al. [8] also synthesized homogeneous Cu-Sb-S nanocrystals
with p-type semiconductive properties in a solution through the hot-injection method.
Fabrication of Cu3SbS3 thin films using successive thermal evaporation of Cu2S and Sb2S3
layers was reported in paper [9]. Cu3SbS3 thin films prepared with the conventional
thermal-evaporation technique used for fabrication of solar cells based on n-Si substrates
were studied in [10]. Cu3SbS3 thin films with p-conductivity were synthesized via the
single-source vacuum-thermal-evaporation method [11]. The annealing-temperature effect
of Cu3SbS3 thin films prepared with the vacuum-evaporation technique was investigated in
paper [12]. Cu3SbS3 nanowires were obtained through the mild solvothermal route based
on reactions between CuCl2, SbCl3 and elemental sulfur in ethylenediamine [13]. Zhong
et al. synthesized Cu3SbS3 nanorods via a simple and convenient biomolecule-assisted
solvothermal route [14]. Cu3SbS3 nanocrystallites were also successfully acquired through
a facile solvothermal route based on the reactions between CuCl2, SbCl3 and thioglycolic
acid in glycol [15]. Atri et al. [16] investigated co-thermal decompositions of equimolar
concentrations of thiourea complexes ([Cu(tu)3]Cl and [Sb(tu)2]Cl3) in ethylene glycol
and ethanolamine.

The ball-milling method affords all of the advantages of the enlarging field of mechanochem-
istry [17]. These benefits include green, solvent-free synthesis of both organic [18] and
inorganic materials [19] and top-down synthesis of nanoparticles [20]. This method rep-
resents an environmentally friendly alternative to the classical methods of nanoparticle
synthesis. However, sometimes, a very long milling time or high milling speed is necessary.
In most cases, a subsequent annealing step is utilized in order to obtain desired structures.
Mechanochemistry can be upscaled from a laboratory to a hundred-gram or even pilot-plant
scale. An eccentric vibratory mill can be used for larger scale production [21–25]. Synthesis
of skinnerite (Cu3SbS3) using mechanical alloying (MA) as a solid-state route from elemen-
tal powders at 450 rpm for 20 h and using the hot-pressing and spark-plasma-sintering
methods has already been performed [26].

Herein, a mechanochemical synthesis of skinnerite (Cu3SbS3) nanocrystals from el-
emental precursors, for a shorter milling time, without the following postheating via
high-energy milling on a laboratory scale and with utilization of an argon atmosphere, is
investigated. Moreover, the optical and optoelectrical properties of pure skinnerite that
was mechanochemically synthesized in a planetary laboratory mill were also studied. The
novelty thereof is mainly synthesis of skinnerite on the industrial scale.

2. Results
2.1. Reaction Kinetics and Structural Characterization of Skinnerite (Cu3SbS3) Mechanochemically
Synthesized in a Laboratory and an Industrial Mill

A series of experiments were performed in a laboratory mill as well as in an industrial
mill. In order to investigate the reaction kinetics in the laboratory-scale planetary ball
mill, XRD patterns were recorded at different milling times (5, 15 and 30 min). They are
presented in Figure 1, below.

The skinnerite (Cu3SbS3) (JCPDS 01-082-0851), was already identified at the shortest
milling time (5 min), and an intermediate phase of covellite (CuS) (JCPDS 00-024-0060),
was observed. Unreacted antimony (Sb) (JCPDS 01-076-8600), was also present. After
15 min of milling, only skinnerite (Cu3SbS3) (JCPDS 01-082-0851), was present as the final
product, and the intermediate phases disappeared. The mechanochemical reaction was
almost completed after 15 min of milling. No other phases were detected, indicating the
high purity of the skinnerite product. A further 15 min of treatment brought about no
significant changes in the XRD pattern. The crystal structure of skinnerite was monoclinic,
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with a space group of P121/c1. These results are consistent with previous reports in the
literature [9].
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Figure 1. XRD patterns of the milled mixture of Cu, Sb and S in a stoichiometric ratio for different 

milling times in the planetary mill. The identified phases are marked as follows: Sb—unreacted an-

timony, CuS—covellite (C), Cu3SbS3—skinnerite (S). 
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Figure 1. XRD patterns of the milled mixture of Cu, Sb and S in a stoichiometric ratio for different
milling times in the planetary mill. The identified phases are marked as follows: Sb—unreacted
antimony, CuS—covellite (C), Cu3SbS3—skinnerite (S).

The XRD patterns of the synthesized skinnerite (Cu3SbS3) for 60 and 120 min of milling
in the industrial mill are shown in Figure 2.

In the case of the sample prepared with 60 min of milling, the peaks could be assigned
to the monoclinic skinnerite (Cu3SbS3) phase (according to Rietveld refinement, its content
was 38%) (JCPDS 01-082-0851). However, a few lower-intensity peaks corresponded to the
secondary tetragonal famatinite (Cu3SbS4; 28%) (JCPDS 01-071-3305) and cubic tetrahedrite
(Cu11.4Sb4S13; 31%) phases (JCPDS 01-075-2211) that overlapped with the skinnerite phase.
Unreacted antimony (Sb; below 3%) (JCPDS 01-076-8600) was also present. Formation of
famatinite as a secondary phase has also been reported in previous works [3,9]. The progress
of the mechanochemical synthesis in the industrial mill was significantly improved after
120 min of milling with monoclinic skinnerite (Cu3SbS3) in an amount of approximately
76%. Through a milling-time increase to 120 min, a smaller amount of the famatinite phase
(Cu3SbS4; 15%), as well as of the tetrahedrite phase (Cu11.4Sb4S13; 8%), were evidenced.
However, the unreacted antimony (Sb; below 1%) was also present. All of these XRD
patterns were strongly influenced by amorphization and the generation of small crystallites.
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Figure 2. XRD patterns of the milled mixture of Cu, Sb and S in a stoichiometric ratio for different
milling times in the industrial mill. The identified phases are marked as follows: Cu11,4Sb4S13—
tetrahedrite (T), Cu3SbS4—famatinite (F), Cu3SbS3—skinnerite (S) and Sb—unreacted antimony. The
labeled phases are only informative due to overlap of some phases.

Monoclinic skinnerite (Cu3SbS3) was formed as a final product in both cases, fol-
lowing Equation (1). From the kinetics investigations presented above, it was concluded
that the best sample was the sample milled in the laboratory mill for 30 min. While the
mechanochemical synthesis in the laboratory mill led to the formation of only pure skin-
nerite (Cu3SbS3), in the case of the industrial milling, more secondary phases, such as
famatinite and tetrahedrite, were present. These phases were most likely formed as side
products during the skinnerite synthesis from the elemental precursors. The estimated
content of the skinnerite phase in the final product obtained in the industrial mill was
around 76%. It is possible that upon prolonged milling in the case of industrial milling, the
purity of the product would also improve. Thus, the final sample milled in a laboratory
planetary ball mill for 30 min and the final sample treated in an industrial mill for 120 min
were selected for further characterization.

2.2. Microstructural Characterization of Final Products Prepared in Both Mills

Microstructural characterization was carried out using TEM/HRTEM/SAED/EDX
techniques, and the obtained results are displayed in Figure 3. Both samples were made up
of small nanocrystalline domains, which aggregated, giving rise to larger particles, as can
be observed in the TEM images and the SAED rings.
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The synthesized sample in the industrial mill exhibited more-diffuse SAED rings (top
inset in Figure 3b), indicating that its crystalline domain was smaller than that obtained
for the sample synthesized in the laboratory mill, which is in agreement with the result
obtained via SEM, shown later. In the case of the laboratory sample, all of the SAED rings
could be indexed in the monoclinic skinnerite (Cu3SbS3) structure (space group P21/c), in
accordance with the XRD results. The (h k l) planes are marked (top inset in Figure 3a).
This structure was as well-confirmed via HRTEM as can be seen in the micrograph that
corresponds to the [0 2 1]P21/c zone axis. The observed and calculated FFTs are presented
in the bottom insets of Figure 3a. The twinning formation can be seen from the HR image
(marked with an arrow), probably due to the speedy nucleation in the structure formation.
In the case of the industrial sample, the SAED rings (top inset in Figure 3b) were well-
indexed to the monoclinic skinnerite (Cu3SbS3) phase and space group P21/c (in accordance
with the XRD). For a monocrystal oriented along the [0 0 1]P21/c phase, the SAED pattern is
presented in Figure 3b. A semiquantitative analysis showed that the composition of each
sample was very similar to the stoichiometric composition, and the corresponding EDX
spectra and atomic percentages are presented in Figure 3.

2.3. Morphological Characterization of Final Products Prepared in Both Mills

The morphology of the final samples prepared in the laboratory and in the industrial
mill was investigated with SEM, and the representative images are presented in Figure 4.
Small particles or crystalline domains that were joined, giving place to larger particles that
were about 15 µm in size, were present in both samples. The small domains seemed to be a
little larger in the sample obtained in the laboratory-scale planetary mill (100–150 nm) than
in the case of the industrial sample (50–100 nm).
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2.4. Surface Properties of Final Products Prepared in Both Mills

Surface properties were investigated with the nitrogen-adsorption method. The spe-
cific surface areas of the final Cu3SbS3 samples prepared in the laboratory and the industrial
mill were 1.3 m2g−1 and 1.0 m2g−1, respectively. These low values are in accordance with
what can be expected for mechanochemically synthesized ternary chalcogenides [27–29].
We could not find relevant information about the BET specific surface area of Cu3SbS3 in
the literature: just the fact that much higher values for the related materials have been
reported (e.g., a CuSbS2–Cu3SbS4 nanocomposite prepared with a different method [30]).

To investigate the surface properties of the mechanochemically synthesized Cu3SbS3
nanocrystals in more detail, the adsorption–desorption isotherms and pore-size distribution
were analyzed (Figure 5).

In both cases, the adsorption and desorption sections of the isotherm almost completely
overlap, which means the potential amount of mesopores was low. This is in accordance
with the low specific-surface-area values described earlier. The shapes of the isotherms at
relative pressure values close to 1 hint at mostly macroporous structures. This is confirmed
with the pore-size-distribution curves (Figure 5b), namely for the sample milled in the
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industrial mill (see the high intensities for the pore radii above 20 nm). Although the
specific surface areas of both samples were almost similar, it seems that a slightly higher
value of the laboratory-milled sample was caused by a slightly larger amount of mesopores
and small macropores (the points at low pore sizes exhibited slightly higher intensities in
this case, whereas the large macropores were less numerous for this sample). The pore-size
distribution calculation from the adsorption section of the isotherm was necessary because
when the desorption section of the isotherm of the sample milled in a laboratory-scale
ball mill was analysed, an artifact (an intensive peak) at around 2 nm, connected with the
tensile strength effect, was detected [31].
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2.5. Zeta Potential of Final Products Prepared in Both Mills

The zeta potential measurement provided relevant information about the surface
and electrostatic properties. The results for mechanochemically synthesized skinnerite
(Cu3SbS3) in the laboratory and the industrial mill, in the pH range from 1 to 12, are shown
in Figure 6a and b, respectively. A common feature between both samples was a changeover
from positive values, at about pH 1.3, to negative values. The IEP of nonoxidized sulfide
minerals is similar to that of elemental sulfur and has been found at pH values between
1 and 2 [32–37]. Subsequently, a decrease in ZP values to a level of about −30 mV could
be observed in the range of 2 to 4 pH; then, there was an interesting increase in values in
the neutral pH range. At alkaline pH, the curve again reached negative ZP values. For
the laboratory-milled sample, increasing values passed into the positive area and peaked
at pH 8, followed by a decrease in values with a negative maximum of −45 mV at pH 12.
With this change, we observed two more isoelectric points, at pH 6.50 and 9.54. These
are most likely the result of the presence of the oxidized forms of copper (IEPs: 6.3 pH,
Cu(OH)2 and 9.5 pH, CuO) [38]. At natural pH 6.05, without addition of ions, the ZP value
was −13.8 mV. For the industrial sample, we observed a similar course, but the maximum
increase in values reached −17.5 mV at pH 7. If more alkali were added to the suspension,
the particles would tend to acquire more negative charge, down to −52.3 mV, for pH 11.
The observed increase in zeta potential above pH 11 was caused by compression of the
double layer at high ionic forces [38–40]. For natural pH 5.2, without addition of ions, the
ZP value of this sample reached −32.9 mV. The difference between the ZP values of the
samples is most likely a result of different amounts of oxidized forms present at the surface.

On the basis of the results presented so far, only pure skinnerite that had been pre-
pared in the laboratory mill for 30 min was selected to be investigated from optical and
optoelectrical points of view.
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Figure 6. Dependence of zeta-potential values on pH for mechanochemically synthesized Cu3SbS3 in
the laboratory (a) and the industrial mill (b).

2.6. Optical Properties of Skinnerite Prepared in the Laboratory Mill

The optical properties of the skinnerite nanocrystals were investigated using UV−Vis
spectroscopy, which indicated strong absorption in the visible region of the solar spectrum
(Figure 7). The inset in Figure 7 shows the Tauc plot that allowed deduction of the direct
band gap of the Cu3SbS3 nanocrystals from the derived UV–Vis spectrum (Figure 7). The op-
tical band gap for the Cu3SbS3 nanocrystals (Tauc-plot inset of Figure 7) was estimated via
plotting (αhν)2 as a function of photon energy hν (α = absorption coefficient, h = Planck’s
constant and ν = frequency). Extrapolation of a partially linear region, the linear section of
the (αhν)2 versus hν, allowed an approximate determination of the near-optical bandgap
value, estimated to be 1.7 eV for laboratory-prepared Cu3SbS3, which is somewhat larger
than the value (1.5 eV) reported for bulk material [3]. This value is in good agreement
with measurements [9] for thin Cu3SbS3 layers and also for Cu3SbS3 nanocrystals [7]. The
absorption features observed for Cu3SbS3 nanocrystals are consistent with those of earlier
reports [15,41]. The determined value of the bandgap energy shows that this synthesized
material can be considered a promising candidate for solar-cell applications.
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Figure 7. UV–Vis spectrum and Tauc plot with the determined optical energy band gap (inset) of
mechanochemically synthesized skinnerite in the laboratory mill. Red line—smoothed spectrum.
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Raman spectroscopy was employed to inspect phase purity. The structural properties
of the synthesized Cu3SbS3 were also studied using Micro-Raman spectroscopy. The
representative micro-Raman spectrum of the sample is shown in Figure 8.
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Figure 8. Micro-Raman spectrum of the Cu3SbS3 nanocrystals synthesized in the laboratory mill.

As is evident from the Raman spectrum, the sample showed three main Raman-active
modes: at 250, 312 and 344 cm−1. The observed Raman modes at 312 and 344 cm−1 corre-
sponded to the Cu3SbS3 phase. The weaker peak at 312 cm−1 belonged to the vibrational
mode of the Sb-S. The intensive peak at 344 cm−1 may be attributed to the phonon vibration
modes of the Sb-S3 in the Cu3SbS3. This is in accordance with the results published in
paper [6]. The weaker Raman modes observed around 250 and 189 cm−1 may be attributed
to the Cu–S vibration, which corresponded to that of the CuSbS2 in accordance with the
literature [42]. The lower Raman modes noticed around 283 cm−1, together with those at
312 and 344 cm−1, may also correspond to Cu3SbS4 [43–45], as they overlap with the modes
corresponding to the Cu3SbS3 phase. The absence of the CuSbS2 and Cu3SbS4 phases in
the XRD pattern of the prepared sample might be due to their existence in small amounts,
as the detection limit of the XRD technique is around 5%.

The micro-PL spectrum of the mechanochemically synthesized Cu3SbS3 is shown in
Figure 9. With the excitation wavelength at 514 nm, the corresponding emission peak was
found at 647 nm (1.91 eV). Nanocrystalline Cu3SbS3 emanates a wide range of lumines-
cence in the visible region, depending upon its band gap and size. In the literature, the
fundamental band gap of Cu3SbS3 has been calculated via HSE06 to be 2.02 eV [2], and
the experimentally determined optical band gap was 1.84 eV for Cu3SbS3 film [5] and
1.87 eV of the corresponding nanocrystals [7]. These values are well-suited to the measured
PL emission peak in this study. The photoluminescence properties of Cu3SbS3 have not
been studied so far, and only photoluminescence spectra measured with the excitation
wavelength at 234 nm and 285 nm [13,14] recorded an experimental bandgap value of
2.95 eV and therefore cannot be compared with our results.
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Figure 9. Microphotoluminescence spectrum of mechanochemically synthesized Cu3SbS3 in the la-

boratory mill. 
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Figure 9. Microphotoluminescence spectrum of mechanochemically synthesized Cu3SbS3 in the
laboratory mill.

2.7. Optoelectrical Properties of Skinnerite Prepared in the Laboratory Mill

Current–voltage (I–V) characteristics were measured to analyze the electrical and
optical properties of the Cu3SbS3 that was mechanochemically synthesized after 30 min of
laboratory milling.

As displayed in Figure 10, current–voltage (I–V) curves were measured in a dark state
and under white-light illumination with dispersed nanocrystals on interdigital Au con-
tacts. The solution-dipping method allows no preparation of a homogeneously distributed
layer of nanocrystalline powder. In this procedure, we assumed that active bridges from
nanocrystalline powder would be created in the Au contact gaps of the thinner layers for
measurement of electrical and optical properties. The measured characteristic showed
formation of conductive bridges with partially nonlinear behavior caused by Au contact.
The Cu3SbS3 nanocrystalline powder of this sample showed a ~45% increase in the photo-
sensitive current at a forward voltage of 0.6 V under illumination in comparison with that
in the dark state, which highlights the suitability of this material to be potentially used as
the absorber layers in solar cells.
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Figure 10. Current vs. voltage (I–V) characteristics of mechanochemically synthesized Cu3SbS3 in
the laboratory mill in a dark state and under light illumination, and an optical image of dispersed
nanocrystals on interdigital Au contacts (inset).
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3. Materials and Methods
3.1. Mechanochemical Synthesis

In a typical working process, the elemental precursors, specifically copper (Merck,
Germany), antimony (Merck, Germany) and sulfur (Ites, Slovakia) in a Cu:Sb:S stoichiomet-
ric ratio of 3:1:3, were used. In total, 2.33 g of copper, 1.49 g of antimony and 1.18 g of sulfur
were loaded into the laboratory planetary ball mill, Pulverisette 6 (Fritsch, Idar-Oberstein,
Germany), and milled under the following milling conditions: atmosphere, argon; 50 tung-
sten carbide milling balls with diameters of 10 mm; mass of milled mixture, 5 g; rotation
speed of the planet carrier, 550 min−1; milling time, up to 5–30 min. In the case of industrial
milling, 46.66 g of copper, 29.80 g of antimony and 23.54 g of sulfur were loaded into the
industrial eccentric vibratory mill, ESM-656 0.5 ks (Siebtechnik, Mülheim, Germany). The
industrial milling was performed under the following conditions: 5 L steel satellite milling
chamber attached to the main corpus of the mill; tungsten carbide balls with a diameter
of 35 mm and a total mass of 30 kg; 80% ball filling; amplitude of the vibrations, 20 mm;
rotational speed of the eccenter, 960 min−1; argon atmosphere. This milling was performed
for 60–120 min.

The mechanochemical synthesis was performed according to the following reaction
(Equation (1)):

3Cu+Sb+3S→ Cu3SbS3 (1)

3.2. Characterization Methods

XRD patterns were collected using a D8 Advance diffractometer (Bruker, Bremen,
Germany), with the CuKα radiation in the Bragg–Brentano configuration. The generator
was set up at 40 kV and 40 mA. The divergence and receiving slits were 0.3◦ and 0.1 mm,
respectively. The XRD patterns were recorded in the range of 10–70◦ 2θ, with a step of 0.03◦.
For the phase identification, Diffracplus Eva and the ICDD PDF2 database were applied,
and for the Rietveld analysis, Diffracplus Topas software was applied.

Morphology and microcharacterization were analyzed using scanning electron mi-
croscopy (SEM) and transmission electron microscopy (TEM) techniques. A small quantity
of the powder sample was dispersed in acetone, and some drops were deposited on
carbon-coated nickel grids (to avoid interference between the Cu grid and the Cu from
the sample in the EDS analysis). The SEM images were obtained on a Hitachi S-4800
SEM-Field Emission Gun microscope. The TEM/HRTEM images, the selected-area electron
diffraction (SAED) and the energy-dispersive X-ray (EDX) spectra (Oxford Instrument)
were taken on a 200 kV JEOL-2100-PLUS microscope (Akishima, Japan) equipped with a
LaB6 filament (point resolution = 0.25 nm). The HRTEM analysis, the lattice spacing, the
Fast Fourier Transform (FFT) and the phase interpretation were carried out with Gatan
Digital Micrograph software (Gatan Inc.) and the Java version of Electron Microscope
Software (JEM).

The specific surface area was determined with the low-temperature nitrogen adsorp-
tion method, using a NOVA 1200e Surface Area & Pore Size Analyzer (Quantachrome
Instruments, Boynton Beach, FL, USA). The values were calculated using the BET theory.
The complete nitrogen adsorption isotherms were measured in order to determine the pore-
size distribution, which was calculated using the Barrett–Joyner–Halenda (BJH) method.

The zeta potential (ZP) was acquired using a Zetasizer Nano ZS (Malvern, Malvern,
Great Britain) and obtained from the electrophoretic mobility via the Smoluchowski equa-
tion. The ZP was measured in a water solution of 10 mM KCl to maintain a minimum level
of conductivity of the medium in the pH range from 1 to 12. These measurements were
repeated three times for each sample.

The absorption spectra were taken using an UV–Vis spectrophotometer Helios Gamma
(Thermo Electron Corporation, Warwickshire, UK) in the range of 200–800 nm using a
1 cm path length quartz cuvette. The samples were diluted in absolute ethanol with
ultrasonic stirring.
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The micro-Raman and PL spectra were measured in air at room temperature, with
the focus of the beam of an Ar laser (514 and 488 nm) via a confocal Raman Microscope
(Spectroscopy & Imaging, Warstein, Germany) in backscattering geometry. The frequency
of the Raman line of crystalline Si at 520 cm−1 was used to calibrate the system in the
present study.

The current–voltage (I–V) characteristics were measured using semiconductor pa-
rameter analyzer Agilent 4155C under dark and focused halogen white-light illumination
(illumination intensity of ~600 mW/cm2). The sample was prepared for this measurement
via a solution of nanocrystalline powder in isopropyl alcohol dropped onto an interdigital
structure with Au contacts. The interdigital structure area was 3 × 3 mm and the dimen-
sions of the Au finger/gap were 30/12 µm, as shown in Figure 6b. The connection of the
interdigital structure to the socket was realized via wires glued with silver paste.

4. Conclusions

The mechanochemical approach was successfully applied for the synthesis of skinner-
ite (Cu3SbS3) nanocrystals. Monoclinic skinnerite was formed after 30 min in the laboratory
mill and after 120 min in the industrial mill. It was concluded that the best sample was
that milled in the laboratory mill for 30 min. While the mechanochemical synthesis in
the laboratory mill led to the formation of pure skinnerite, in the case of the industrial
milling, more secondary phases, such as famatinite and tetrahedrite, were also present.
The TEM analysis showed that the nanocrystals were agglomerated into micrometer-sized
grains. UV–Vis measurements indicated the suitability of the prepared skinnerite for
photovoltaic applications, as the bandgap energy value was 1.7 eV for laboratory milling.
Cu3SbS3 nanocrystals showed ~45% enhancement of the photoresponsive current at a
forward voltage of 0.6 V under illumination, indicating the suitability of this material to
be potentially used as absorber layers in solar cells. Application of the industrial eccentric
vibratory milling for skinnerite synthesis and its large-scale production reported here might
be interesting for researchers in the field of photovoltaics.
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