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Abstract: The worldwide known and employed spice of Asian origin, turmeric, receives significant
attention due to its numerous purported medicinal properties. Herein, we report an optimized
synthesis of curcumin and symmetric curcuminoids of aromatic (bisdemethoxycurcumin) and hetero-
cyclic type, with yields going from good to excellent using the cyclic difluoro-boronate derivative of
acetylacetone prepared by reaction of 2,4-pentanedione with boron trifluoride in THF (ca. 95%). The
subsequent cleavage of the BF2 group is of significant importance for achieving a high overall yield
in this two-step procedure. Such cleavage occurs by treatment with hydrated alumina (Al2O3) or
silica (SiO2) oxides, thus allowing the target heptanoids obtained in high yields as an amorphous
powder to be filtered off directly from the reaction media. Furthermore, crystallization instead of
chromatographic procedures provides a straightforward purification step. The ease and efficiency
with which the present methodology can be applied to synthesizing the title compounds earns
the terms “click” and “unclick” applied to describe particularly straightforward, efficient reactions.
Furthermore, the methodology offers a simple, versatile, fast, and economical synthetic alternative
for the obtention of curcumin (85% yield), bis-demethoxycurcumin (78% yield), and the symmetrical
heterocyclic curcuminoids (80–92% yield), in pure form and excellent yields.

Keywords: curcumin; Curcuma longa; bis-demethoxycurcumin; Michael acceptor; diferuloylmethane;
BF3·THF; alumina

1. Introduction

Curcumin [(1,7-bis-(4-hydroxy-3-methoxy-phenyl)-1,6-heptadien-3,5-dione] [1,2], also
known as diferuloylmethane, is a bioactive molecule found in the rhizome of the Curcuma
longa Asian spice from Zingiberaceae family [3–20] Chemically, curcumin is described as a
typical Michael-type acceptor [21–24]. The worldwide scientific interest in this molecule
is due to its broad therapeutic activities, which include its purported properties as an
anticancer [25–31], antiangiogenic disease [32], antimetastatic [33], antioxidant [34–36], free
radical scavenger [37], anti-inflammatory [38,39], antidepressant [40] and anti-Alzheimer’s
disease agent [41–45].

The importance of having curcumin as a pure metabolite lies in expanding its comple-
mentary studies on its pharmacokinetics, pharmacodynamics, and toxicological studies [46],
which help to understand the effects of this fascinating bioactive molecule in living sys-
tems. The research in chemical synthesis has been mainly directed to the preparation
of derivatives [47,48] that help overcome its physicochemical properties [49] and rapid
metabolism [27,42,50] and to increase its bioavailability [11,51].

Curcumin has a long historical pathway as a natural colorant [49,52–54] (E100), and
curcumin’s chemistry began early in the 19th century. Curcumin was isolated in 1815 [9],
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and its crystallized form was known in 1870 [54]. Until early in the 20th century, the molec-
ular formula of curcumin (C21H20O6) could be assessed by Miłobȩdzka, J. et al. in 1910 [55].
In the following years, Lampe [56] (1918), Pavolini [54] (1950), and Pabon [57] (1964)
carried out a total synthesis of this molecule. The chemical structure was confirmed
in 1973 [58], while studies of the keto-enol equilibrium [3,41,59–61], stability [62], and
metabolic pathway [63–65] in vivo stand out as relatively recent findings.

Although separations of curcumin are reported in various investigations [8,10,13,66,67],
its purification is a difficult task due to the presence of two closely related curcuminoids
(i.e., demethoxycurcumin and bis-demethoxycurcumin [25,26,53,68,69]) due to
co-crystallization phenomena. Furthermore, obtaining high-purity curcumin from natural
sources is difficult since it involves repeated chromatographic and crystallization procedures.

In the methodologies developed for synthesizing curcumin, it was early recognized
that protecting theα-diketone functionality is a critical step for the subsequent condensation
of two vanillin molecules at the sidechain methyl groups. Thus, the well-known secondary
Knoevenagel reaction on carbon C-1 is avoided [54]. In addition, adequate protection of
the b-diketone function can be achieved through boron complexes using reagents such as
boron trioxide [47,57,70], boric acid [58], and, more recently, boron trifluoride [71]. The
approach named “click chemistry” is applied in the obtention of compounds following
simple steps of joining small modular units [72]. In the present case, the protective reaction
on the b-diketo function to give the BF2 derivative occurs with a high degree of efficiency,
i.e., in a “click” fashion. Furthermore, the removal of the BF2 group occurs under equally
simple conditions and high efficiency, allowing us to propose the term “unclick” for this
reaction step.

The synthetic approach used in our work is adequate for obtaining the natural sym-
metric curcuminoids curcumin and bisdemethoxycurcumin, with a significant reduction of
expensive chromatographic and crystallization steps. However, the other essential natural
asymmetric demethoxycurcumin requires a somewhat different synthetic route, which is
under investigation. Nevertheless, the method demonstrated robustness for synthesizing
symmetric heterocyclic curcuminoids using the corresponding aldehydes. A convenient
feature altogether is the economy of reagents and laboratory steps needed.

2. Results

Although the protection reaction of acetylacetone is commonly carried out with boron
trifluoride etherate [73–75], its manipulation requires extreme caution [2]. A much safer
alternative is found using boron trifluoride complex in THF (Scheme 1). Five advantages at
least are introduced, i.e., (I) minimum release of toxic vapors from the container, (II) both
high density (1.268 g/mL) and boiling point (180 ◦C) allows easier manipulation when
measuring the required volumes; (III) the addition of the reagent to the reaction flask is carried
out at room temperature; (IV): no violent reaction is observed upon addition of reagents and
(V): the use of inert atmosphere does not seem critical for the reaction to proceed.
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Scheme 1. Synthesis of synthon I.

The synthesis of curcuminoids-BF2 has been previously reported in a one-pot reaction [76].
In our scaled-up approach (98 mmol), it was found convenient a stepwise procedure
to overcome the bulk generation of HF, which promotes the formation of quaternary
ammonium salts from n-butylamine. The isolation of a powdered product renders a rather
convenient material for further workup. Thus, the BF2 derivatives can be advantageously
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manipulated and purified as solid starting materials, favoring cleaner and higher overall
yields (see Table 1).

Table 1. Synthesis curcuminoid-BF2 complexes.

Aldehyde Curcuminoid-BF2 Yield A

Vanillin 1 90%
4-hidroxybenzaldehyde 2 85%

Furfural 3 80%
2-Thiophene carboxaldehyde 4 95%

A = represents the average from 3 lots after washing with water/acetone (90:10) and drying at vacuum. All
reactions were carried out during 12 h.

The high yields obtained in the aldol condensation reaction (Scheme 2) are explained by
the following two reasons: (1) the precipitation of the condensed compound consequently
produces a continuous consumption of the reactants in solution [76] and (2) the protection
of acac through the use of BF3 is an approach that affords much better yields [77].
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Scheme 2. Synthesis of curcuminoid-BF2 complexes.

The crude product of the aldol condensation reaction to obtain curcumin-BF2 contains
residues (see Figure 1) of n-butylamine and tributyl borate, which are easily removed after
washing with a mixture of distilled water and acetone (10–20% acetone), see Figure 2.

Figure 1. Crude 1H-NMR spectrum of Curcumin-BF2, DMSO-d6, 400 MHz, in the region 0.5–3.0 ppm.
Note the presence of butylamine and tributyl borate residues.
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Figure 2. Spectrum 1H-NMR of Curcumin-BF2 (after washing with water/acetone 90::10, DMSO-d6,
400 MHz).

One of the critical steps in the synthesis of curcuminoids (heptanoids) is the cleavage
of the BF2 group to obtain 1,3-diketone form (or enol). Yields greater than 80% are reported
when the BF2 group is hydrolyzed in several media (organics: MeOH/DMSO [76,78] and
MeOH/DMSO/triethylamine or inorganics: diluted NaOH [73] and sodium oxalate [79]).
However, the efficiency and reproducibility of reported procedures have been considered
limited [73].

The removal of boron reaction by-products has been reported using inorganic salts [80]
(e.g., aluminum sulfates and sodium aluminates) or silica, but efficient removal has been
reported using amorphous Al2O3 [81]. This feedback has served to assay additional means
that can catalyze the hydrolysis of the BF2 group through the use of three different metal-
hydrated oxides (Scheme 3): SiO2 (silica) or Na12[(AlO2)12(SiO2)12]·xH2O (molecular sieves)
or Al2O3 xH2O (alumina).
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Scheme 3. “Unclick” reaction of BF2 group.

Initially, it was chosen to carry out the opening reactions catalyzed in silica using
two different alcoholic solvents (ethanol and methanol). However, ethanol is more eco-
friendly, and curcumin was obtained 72 h later in low yield (possibly due to the adsorption
of curcumin to silica). Therefore, methanol was found more appropriate for removing the
boron-difluoride moiety (Table 2).
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Table 2. “Unclick” reaction conditions for the BF2 group.

Curcuminoid-BF2 Solvent Metal Oxide Time in Reflux (h) Curcuminoid Yield A

1 EtOH BSilica 72 5 (Curcumin) 52%
1 EtOH CMolecular sieves 4Å 24 5 74%
1 EtOH DAlumina 24 5 60%
1 MeOH Silica 24 5 70%
1 MeOH Molecular sieves 4Å 24 5 <80%
1 MeOH Alumina 24 5 85%
2 MeOH Silica 24 6(bis-demethoxycurcumin) <50%
2 MeOH Molecular sieves 4Å 24 6 65%
2 MeOH Alumina 24 6 78%
3 MeOH Silica 72 7 <30%
3 MeOH Molecular sieves 4Å 24 7 88%
3 MeOH Alumina 24 7 81%
4 MeOH Silica 72 8 60%
4 MeOH Molecular sieves 4Å 24 8 86%
4 MeOH Alumina 24 8 92%

A = represents the average of 3 batches from crude; B = SiO2 high-purity grade, average pore size 60 Å (52–73 Å),
70–230 mesh, 63–200 µm, for column chromatography, C = Na12[(AlO2)12(SiO2)12] xH2O, D = Al2O3 grade III.

3. Discussion

The synthesis of curcumin and curcuminoids has been carried out with three sim-
ple reaction steps: (1) protection of keto-enol functionality of acetylacetone (acac) by
BF3·THF; (2) condensation of the corresponding aromatic aldehyde catalyzing with n-
butylamine; (3) cleavage of the BF2 group by means of hydrated metal oxides. Curcumin,
bis-demethoxycurcumin itself, and two heterocyclic curcuminoids were obtained with very
good yields and were fully characterized by spectroscopic techniques.

In a general description, this procedure consists of three basic yet simple general steps:
(a) a protective step (reaction of the 2,4-pentanedione with boron trifluoride avoiding the
Knoevenagel secondary reaction) while activating the methyl groups promoting (b) the
efficient aldol condensation and (c) the deprotecting reaction step removing the BF2 group
and allowing the recovery of the original b-diketone function.

It suggested that the mechanism for the removal of the BF2 group is due to an anion
exchange phenomenon involving the reaction of boron and the basic OH—group or water
in agreement with previous mechanistic proposals [81,82], which are specifically adsorbed
and are present at the surfaces of hydrated metal oxides [83–85]. A possible reaction
mechanism is depicted in Scheme 4.
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Our best yields in the obtention of curcumin were achieved using MeOH/Al2O3,
probably associated with the more significant boron adsorption in acidic pH, though
other authors associate boron adsorption with the presence of hydroxide ions present in
alumina [86].

The 1H-NMR spectrum of curcumin (Figure 3) confirms the assigned structure, and
characteristic signals of the vinyl protons (α,β-unsaturated, system AB) are present in the
form of two doublets at 7.54 and 6.75 with coupling constants ca. 16 Hz (trans). Evidence
for the keto-enol tautomerism is given by the signal observed at 16.47 ppm (enol) and the
signal corresponding to the methine proton (CH) at 6.06 ppm. Additionally, the DEPT-135
spectrum (see Supplementary Material) shows no (CH2) methylene carbons; methines
(CH) and methyl groups (CH3) are observed as positive signals and fit satisfactorily with
data reported in the literature [59]. Similarly, the 1H-NMR spectra of all other symmetric
curcuminoids show a consistent correlation between structure and spectral features (see
Supplementary Material).

Figure 3. 1H-NMR spectrum of curcumin obtained from synthesis DMSO-d6, 400MHz.

The mass spectrum (MS) of curcumin shows a characteristic peak at m/z = 368,
which corresponds adequately to the molecular ion of curcumin and is consistent with the
chemical formula C21H20O6. In addition, the spectrum shows a base peak with m/z = 177
representing the expected molecular fragment. Mass spectra of bis-demethoxycurcumin
(6) m/z = 308, furan-curcumin (7) m/z = 256, and thiophene-curcumin (8) m/z = 288
show a consistent peak with the chemical formulas C19H16O4, C15H12O4, and C15H12O2S2,
respectively (see Supplementary Material).

The present synthetic route was successfully extended for the obtention of other
symmetrical curcuminoids (compounds 6–8) with 4-hidroxybenzaldehyde, furfural, and
thiophenecarboxaldehyde. Thus, when 4-hidroxybenzaldehyde and furfural were used in
the corresponding curcuminoid synthesis using a modified Pabon´s approach, the yields
decreased significantly to a reported 33 and 8%, respectively [77,87].

Interestingly, the heterocyclic curcuminoid resulting from 2-thiophene carboxaldehyde
(compound 4) afforded excellent yields (95%) in the aldol condensation reaction, while the
cleavage of the BF2 group on MeOH/alumina afforded (compound 8) in 92% yield. This
overall high yield is even higher than the corresponding one observed for curcumin.
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The term “Click Chemistry” [88] has been adopted for curcumin synthesis based on
three simple concepts: (I) reactions are broad in scope and give high yields; (II) starting
reagents are readily available, and simple reaction conditions are needed, and (III) no chro-
matographic methods are required to purify curcumin and other symmetric curcuminoids.
The term “Unclick” refers to the efficient removal of the protecting/activator group, namely
BF2, which was also achieved in high yield.

4. Materials and Methods

Boron trifluoride.THF complex (CAS 462-34-0), silica gel high-purity grade, aver-
age pore size 60 Å (52–73 Å), 70–230 mesh, 63–200 µm, for column chromatography
(CAS 112926-00-8), molecular sieves 4Å beads, 8–12 mesh (CAS 70955-01-0) and Alumina
Brockmann III (1344-28-1) were purchased from Sigma-Aldrich and were used without
prior activation or purification.

All chemicals were available commercially, and the solvents were purified with con-
ventional methods before use [89].

Melting points were determined on an Electrothermal Engineering IA9100 digital
melting point apparatus in open capillary tubes and were uncorrected [1,2].

1H and 13C NMR spectra were obtained in a Bruker Fourier 400 MHz spectrometer
using TMS as an internal reference and CDCl3 or Acetone-d6, or DMSO-d6 as solvents.
NMR spectra were processed with MestreNova software 12.0.0 [90] and are found in the
Supplementary Materials.

Spectroscopic measurements. IR absorption spectra were recorded using an FT-IR
Bruker Tensor 27 spectrophotometer in the range of 4000–400 cm−1 as KBr pellets [1,2]
(see Supplementary Materials).

Mass Spectra were recorded using The MStation JMS-700 JEOL equipment (Electron
Ionization, 70 eV, 250 ◦C, Impact positive mode and calibration standard with perfluo-
rokerosene) and the AccuTOF JMS-T100LC JEOL equipment (DART+, 350 ◦C, positive
ion mode and calibration standard with PEG 600) [1,2]. All mass spectra are shown in
Supplementary Materials.

HPLC chromatograms were obtained using an Agilent 1260 infinity II with diode -UV
detector at 425 nm, column Eclipse Plus C18(2) 100 × 2.0 mm 3 µm; eluting with a solvent
gradient (previously described with minor modifications [70,91]) from acetonitrile/water
(acetic acid 2%) 40:60 to acetonitrile/water (acetic acid 2%) 50:50 and are included in the
Supplementary Materials.

4.1. Synthon Preparation

In a 250 mL round flask, 10 mL of 2,4-pentanodione (acac, 98 mmol) was dissolved
in 30 mL of dichloromethane; subsequently, 11 mL of boron trifluoride tetrahydrofuran
complex (BF3·THF, 98 mmol) was added to the solution, and the reaction was left overnight
with magnetic stirring at room temperature. After, the organic phase was concentrated
in vacuo affording the resulting product, which can be directly used for the following
reaction step.

2,2-difluoro-4,6-dimethyl-2H-1,3,2-dioxaborinin-1-ium-2-uide (Synthon): yield 95%,
solid amber, melting point 40 ◦C, 1H NMR (400 MHz, CDCl3, TMS): δ 5.96 (s, 1H, Methine-H),
2.27 (s, 6H, Methyl-H); 13C NMR (100 MHz, CDCl3, TMS): δ 192.63 (C=O), 102.12 (Cmethine-H),
24.32 (-CH3). IR (KBr) 1556 v(C=O, C=C), 1148 v(B-F, B-O), 1086 v(B-F, B-O)cm−1,
DART+-MS: m/z (%) = 129 (148–19), m/z calc. = 148.

4.2. Condensation of Aldehydes with the Synthon

The curcuminoid-BF2 symmetric structure is obtained by an aldol condensation reac-
tion under similar experimental conditions previously reported [71,73–77].
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4.3. General Methodology

Mixture 1. In a 100 mL Erlenmeyer flask, 7.5 g of vanillin (49 mmol) was dissolved in
25 mL of EtOAc, 6.3 mL of tributyl borate (24.5 mmol) was added, and this mixture was
heated until homogenization was achieved.

Mixture 2. In a 250 mL round flask, 4 g of synthon (1.1 eq, 27 mmol) was dissolved
in 25 mL of EtOAc, and then the homogenous product 1 was added to the solution;
then, 2.7 mL of N-butylamine (27 mmol, in 10 mL of EtOAc) was added dropwise. The
reaction was left overnight with magnetic stirring at room temperature. Finally, a solid red
precipitate was filtered-off and washed with a mixture of 50 mL water/acetone 90::10. This
same methodology (same molar amounts) was carried out to synthesize the symmetrical
curcuminoids-BF2.

Spectral data of Curcumin-BF2 (1): 2,2-difluoro-4,6-bis((E)-4-hydroxy-3-methoxystyryl)-
2H-1,3,2-dioxaborinin-1-ium-2-uide, yield 90%, red solid, melting point 230 ◦C, 1H NMR
(400 MHz, DMSO-d6, TMS): δ 10.10 (s, 2H,-OH), 7.92 (d, J = 15.6 Hz, 2H, Vinyl-H),
7.47 (d, J = 1.8 Hz, 2H, Aryl-H), 7.34 (dd, J = 8.3 Hz, 2H, Aryl-H), 7.02 (d, J = 15.6 Hz,
2H, Vinyl-H), 6.88 (d, J = 8.2 Hz, 2H, Aryl-H), 6.45 (s, 1H, Methine-H), 3.85 (s, 6H,
-OCH3); 13C NMR (100 MHz, DMSO-d6, TMS): δ 178.72 (C=O), 151.34 (C-OH), 148.17 (Caryl),
146.97 (Cvinyl-H), 125.99 (Caryl), 125.26 (Caryl-H), 117.86 (Cvinyl-H), 115.95 (Caryl-H),
112.39 (Caryl-H), 101.12 (Cmethine-H), 55.76 (-OCH3). IR (KBr) 3482 v(-OH), 1615 v(C=O),
1586 v(C=C), 1509 v(C=O, C=C), 1146 v(B-F, B-O) cm−1, DART+-MS: m/z = 397 (416–19),
m/z calc. = 416.

4-hydroxy-curcuminoid-BF2 (2) 2,2-difluoro-4,6-bis((E)-4-hydroxystyryl)-2H-1,3,
2-dioxaborinin-1-ium-2-uide, yield 85%, red powder, melting point 225 ◦C, 1H NMR
(400 MHz, Acetone-d6, TMS): δ 9.29 (br, 2H, -OH), 7.96 (d, J = 15.6 Hz, 2H, Vinyl-H), 7.73 (m,
4H, Aryl-H), 6.97 (m, 4H, Aryl-H), 6.90 (d, J = 15.6 Hz, 2H, Vinyl-H), 6.39 (s, 1H, Methine-H );
13C NMR (100 MHz, Acetone-d6, TMS): δ 180.81 (C=O), 162.16 (C-OH), 147.35 (Cvinyl-H),
132.67 (Caryl-H), 127.27 (Caryl), 118.96 (Cvinyl-H), 117.15 (Caryl-H), 102.20 (Cmethine-H). IR
(KBr) 3422 v(-OH), 1598 v(C=O), 1579 v(C=C), 1518 v(C=O, C=C), 1147 v(B-F, B-O) cm−1,
EI-MS: m/z = no observed, m/z calc. = 356.

Furan-curcuminoid-BF2 (3) 2,2-difluoro-4,6-bis((E)-2-(furan-2-yl)vinyl)-2H-1,3,
2-dioxaborinin-1-ium-2-uide, yield 80%, red powder, melting point 200 ◦C, 1H NMR
(400 MHz, CDCl3, TMS): δ 7.64 (d, J = 15.15, 2H, Vinyl-H), 7.51 (d, J = 1.74, 2H, Aryl-H), 6.75
(d, J = 3.49, 2H, Aryl-H), 6.51 (d, J = 15.22, 2H, Vinyl-H), 6.47 (dd, J = 3.51, 1.77, 2H, Aryl-H),
5.96 (s, 1H, Methine-H); 13C NMR (100 MHz, CDCl3, TMS): δ 178.98 (C=O), 151.01 (Caryl),
146.78 (Caryl-H), 131.91 (Cvinyl-H), 119.04 (Caryl-H), 117.95 (Cvinyl-H), 113.37 (Caryl-H),102.34
(Cmethine-H). IR (KBr) 1619 v(C=O), 1569 v(C=O, C=C), 1455 v(C-H), 1385 v(C-H), 1276
v(C-O), 1067 v(B-F, B-O) cm−1, DART+-MS: m/z = 305 (304 + 1), m/z calc. = 304.

Thiophene-curcuminoid-BF2 (4) 2,2-difluoro-4,6-bis((E)-2-(thiophen-2-yl)vinyl)-2H-
1,3,2-dioxaborinin-1-ium-2-uide, yield 95%, violet powder, melting point 270 ◦C, 1H NMR
(400 MHz, Acetone-d6, TMS): δ 8.20 (d, J = 15.38, 2H, Vinyl-H), 7.84 (d, J = 5.10, 2H, Aryl-H),
7.73 (d, J = 3.70, 2H, Aryl-H), 7.26 (dd, J = 5.05; 3.69, 2H, Aryl-H), 6.79 (d, J = 15.38, 2H, Vinyl-
H), 6.51 (s, 1H, Methine-H); 13C NMR (100 MHz, Acetone-d6, TMS): δ 180.71 (C=O), 140.92
(Caryl), 139.92 (Cvinyl-H), 135.63 (Caryl-H), 133.32 (Caryl-H), 130.14 (Caryl-H), 120.67 (Cvinyl-
H), 102.81(Cmethine-H). IR (KBr) 1594 v(C=O), 1541 v(C=O), 1494 (C=C), 1411(-C=Cring),
1291 v(C-O), 1152 v(B-F, B-O) cm−1, DART+-MS: m/z = 317 (336–19), m/z calc. = 336.

4.4. Reaction Conditions for “Unclick” Removal of the BF2 Group

In a 500 mL round flask, 10 g of curcuminoid-BF2 was dissolved in 400 mL of methanol
(MeOH), 20% weight of metal oxide (catalyst) was added to the solution, and the mixture
was left overnight under magnetic stirring at reflux. The reaction was quenched by filtration
using a sintered glass funnel packed with celite. MeOH was evaporated in vacuo, and
reaction crude was extracted with 150 mL of EtOAc (ethyl acetate) and water (3 × 100 mL).
The organic phase was dried with Na2SO4 and concentrated in vacuo to afford the curcum-
inoid product, which was purified by recrystallization using EtOAc and hexane. The yields



Molecules 2023, 28, 289 9 of 13

obtained for the synthesis of curcumin with several catalyzers were as follows: silica (70%),
molecular sieves (80%) and alumina (85%). This same methodology (same amounts) was
carried out for the synthesis of symmetrical curcuminoids (compounds 6–8).

Curcumin (5) 1,7-bis-(4-hydroxy-3-methoxy-phenyl)-1,6-heptadien-3,5-dione, yellow-
orange powder, purified by recrystallization using EtOAc and hexane, purity by HPLC
99.48%, melting point 180 ◦C, 1H NMR (400 MHz, DMSO-d6, TMS): δ 16.47 (br, 1H, Enol-H),
9.66 (br, 2H, -OH), 7.55 (d, J = 15.8 Hz, 2H, Vinyl-H), 7.32 (d, J = 1.89 Hz, 2H, Aryl-H), 7.15
(dd, J = 8.2; 1.93 Hz, 2H, Aryl-H), 6.82 (d, J = 8.13 Hz, 2H, Aryl-H), 6.75 (d, J = 15.81 Hz,
2H, Vinyl-H), 6.06 (s, 1H, Methine-H), 3.84 (s, 6H, -OCH3); 13C NMR (100 MHz, DMSO-d6,
TMS): δ 183.22 (C=O), 149.36 (C-OH), 148.00 (Caryl), 140.72 (Cvinyl-H), 126.34 (Caryl), 123.14
(Caryl-H), 121.10 (Cvinyl-H), 115.70 (Caryl-H), 111.33 (Caryl-H), 100.85 (Cmethine-H), 55.69
(-OCH3). IR (KBr) 3506 v(OH), 1628 v(C=O), 1602 v(C=Cring), 1509 v(C=O, C=C), 1428
v(C-Ophenol), 1281 v(C-Oenol), 1154 v(C-O), 1028 v(=C-O-CH3) cm−1, EI-MS: m/z = 368,
m/z calc. = 368.

Bis-demethoxycurcumin (6) 1,7-bis(4-hydroxyphenyl)-1,6-heptadien-3,5-dione, red-
orange powder, purified by recrystallization using CH2Cl2 and MeOH, purity by HPLC
99.45%, melting point 215 ◦C, 1H NMR (400 MHz, Acetone-d6, TMS): δ 9.24 (br, 2H,-OH),
7.60 (d, J = 15.8 Hz, 2H, Vinyl-H), 7.55 (m, 4H, Aryl-H), 6.90 (m, 4H, Aryl-H), 6.66 (d,
J = 15.8 Hz, 2H, Vinyl-H), 5.99 (s, 1H, Methine-H); 13C NMR (100 MHz, Acetone-d6, TMS):
δ 184.57 (C=O), 160.77 (C-OH), 141.19 (Cvinyl-H), 131.03 (Caryl-H), 127.58 (Caryl), 121.98
(Cvinyl-H), 116.86 (Caryl-H), 101.78 (Cmethine-H). IR (KBr) 3232 v(OH), 1622 v(C=O), 1599
v( C=O), 1513 v(C=O, C=C), 1444 v(OH), 1276 v(C-Oenol), 1140 v(C-O)cm−1, EI-MS: m/z =
308, m/z calc. = 308.

Furan-curcuminoid (7) 1,7-di(furan-2-yl)-5-hydroxyhepta-1,4,6-trien-3-one, brown
powder, purified by recrystallization using EtOAc and hexane, purity by HPLC 99.33%,
melting point 130 ◦C, 1H NMR (400 MHz, DMSO-d6, TMS): δ 16.06 (br, 1H, Enol-H), 7.87
(d, J = 1.70, 2H, Aryl-H), 7.45 (d, J = 15.71, 2H, Vinyl-H), 6.96 (d, J = 3.37, 2H, Aryl-H), 6.66
(dd, J = 3.43; 1.68, 2H, Aryl-H), 6.57 (d, J = 15.71, 2H, Vinyl-H), 6.19 (s, 1H, Methine-H); 13C
NMR (100 MHz, DMSO-d6, TMS): δ 182.48 (C=O), 151.02 (Caryl), 146.12 (Caryl-H), 126.94
(Cvinyl-H), 121.18 (Cvinyl-H), 116.15 (Caryl-H), 113.03 (Caryl-H), 101.98 (Cmethine-H). IR (KBr)
3124 v(C=Cring), 1628 v(C=O), 1563 v(C=O, C=C), 1468 v(C=Cring), 1262 v(C-Oenol), 1139
v(C-O), 962 v(C-C=C) cm−1, EI-MS: m/z = 256, m/z calc. = 256.

Thiophene-curcuminoid (8) 1,7-di(thiophen-2-yl)-5-hydroxyhepta-1,4,6-trien-3-one,
yellow powder, purified by recrystallization using acetone and hexane, purity by HPLC
98.68%, melting point 184 ◦C, 1H NMR (400 MHz, DMSO-d6, TMS): δ 16.07 (br, 1H, Enol-H),
7.81 (d, J = 15.71, 1H, Vinyl-H), 7.75 (d, J = 5.04, 2H, Aryl-H), 7.54 (d, J = 3.31, 2H, Aryl-H),
7.17 (dd, J = 5.04; 3.60, 2H, Aryl-H), 6.56 (d, J = 15.64, 2H, Vinyl-H), 6.19 (s, 1H, Methine-H);
13C NMR (100 MHz, DMSO-d6, TMS): δ 182.52 (C=O), 139.83 (Caryl), 133.23 (Cvinyl-H),
132.06 (Caryl-H), 130.06 (Caryl-H), 128.76 (Caryl-H), 122.70 (Cvinyl-H), 101.52 (Cmethine-H). IR
(KBr) 3102 v(C=Cring), 1619 v(C=O), 1565 (C=O, C=C), 1505 v(C-O), 1418 v(C-OH), 964
(C-C=C) cm−1, EI-MS: m/z = 288, m/z calc. = 288.

5. Conclusions

Using simple high-yield steps, we contribute with a laboratory-scale strategy to obtain
curcumin and symmetric curcuminoids. As a result, it can provide significant quantities
of these compounds for physicochemical, analytical, and biological assay studies. This
synthetic route is appropriate for using different aldehydes to obtain the corresponding
symmetric curcuminoids. Due to the accessibility of this simple three-step synthetic ap-
proach, the method offers excellent potential for making available curcumin and symmetric
curcuminoids on a large scale. The benefits of the present synthesis widen the perspectives
for expanding the scientific studies concerning the fascinating molecular structures of
curcuminoids and their widely recognized biological effects.
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6. Patents

An application for a patent is underway in the country of the authors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28010289/s1, Figures S1–S71: High Yield Synthesis of
Curcumin and Symmetric Curcuminoids: A “Click” and “Unclick” Chemistry Approach.
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