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Abstract: Although important progress has been made, cancer still remains a complex disease to
treat. Serious side effects, the insurgence of resistance and poor selectivity are some of the problems
associated with the classical metal-based anti-cancer therapies currently in clinical use. New treatment
approaches are still needed to increase cancer patient survival without cancer recurrence. Herein, we
reviewed two promising—at least in our opinion—new strategies to increase the efficacy of transition
metal-based complexes. First, we considered the possibility of assembling two biologically active
fragments containing different metal centres into the same molecule, thus obtaining a heterobimetallic
complex. A critical comparison with the monometallic counterparts was done. The reviewed
literature has been divided into two groups: the case of platinum; the case of gold. Secondly,
the conjugation of metal-based complexes to a targeting moiety was discussed. Particularly, we
highlighted some interesting examples of compounds targeting cancer cell organelles according
to a third-order targeting approach, and complexes targeting the whole cancer cell, according to a
second-order targeting strategy.

Keywords: platinum compounds; gold compounds; metal-based drugs; heterobimetallic complexes;
targeting strategies

1. Introduction

During the last decades, great strides have been made in the fight against cancer.
The knowledge about the mechanisms of its onset and cellular resistance has notably in-
creased, as well as the discovery of new potential therapies. Despite this, cancer remains
a problematic pathology to treat due to its characteristics of aggression, ability to metas-
tasize, resistance onset, and severe side effects of the available drugs. For these reasons,
cancer is still the second leading cause of morbidity and mortality worldwide [1]. In the
context of the most promising anticancer therapies developed so far, metal-based drugs
have represented for several decades the cornerstone for tumour chemotherapy [2,3]. In
fact, platinum complexes, such as cisplatin, oxaliplatin, and carboplatin, are still the most
widely used treatments in several kinds of cancer, including testicular, cervical, ovarian,
and non-small cell lung cancers. However, in several cases after a variable number of
chemotherapy cycles with platinum-based complexes, tumoral cells could become less
susceptible to the cytotoxic effects of the drug, thanks to the activation of a multifacto-
rial adaptive response that involves three major components: autophagy, endoplasmic
reticulum stress signalling, and senescence [4]. Thus, the majority of cisplatin-treated
patients experience therapeutic failure and tumour recurrence during—or right after—the
treatments [5]. In addition, there are severe side effects associated with therapeutic reg-
imens based on platinum complexes, such as nephrotoxicity, neurotoxicity, leukopenia,
thrombocytopenia, gastrointestinal issues, nausea, vomiting, and hair loss [6]. These latter
are mainly due to poor drug selectivity causing the death of healthy cells together with
the tumoral ones. Considering all these issues, improvements in developing new effective
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therapies can indeed be pursued. These problems have prompted researchers to focus on
developing a new generation of chemotherapeutics. Firstly, the research has been extended
to other transition metal compounds, such as gold, ruthenium, silver, iridium, rhenium,
and copper, that proved to have important cytotoxic effects on cancer cells, becoming
promising potential new anticancer drugs. For example, the gold compounds’ popularity
increased following the idea to repurpose Auranofin, an Au(I)-based complex approved
by the FDA in 1985 as an antirheumatic Au(I) agent, for the treatment of cancer [7]. In
fact, several studies highlighted its promising cytotoxic properties, entering also in three
separate clinical trials in the United States as an anticancer compound [8]. Additionally, for
Ru-based compounds the interest of the scientific community significantly grew after the
publication of NAMI-A, KP1019 and KP1339, which are three Ru(III) complexes that have
entered other human clinical trials [9]. During the past years, various strategies have been
explored to optimise the efficiency of metal complexes with anti-cancer activity, both in
potency and selectivity, aiming to obtain the so coveted “anticancer magic bullet”, already
conceptualised in the early 1900s by Paul Ehrlich [10]. In this review, we will focus on some
examples referring to two main strategies: the first one regards heterobimetallic complexes
with a synergic action, while the second one refers to constructs where the metallic complex
was conjugated to a targeting moiety. Starting from the promising results obtained with
some monometallic complexes, a new approach was attempted combining different metal
centres in one compound by forming a heterobimetallic complex able to combine the vari-
ous modes of action that are typical of the constituting metal centres. The heterobimetallic
compound should enhance the anticancer properties of single metallodrugs. The objective
is to enlighten any possible synergistic effect due to the administration of two or more
active ingredients as a single drug [11,12]. Generally, the two metal centres have a different
final molecular target with diverse mechanisms of action, or they can modify different
pathways in the cellular metabolism, or adjust some chemical-physical properties of the
whole heterobimetallic complex, such as the solubility or lipophilicity, with different con-
tributions [13]. The combination of different activities into one single drug should reduce
the concentration needed for the therapeutic approach, and this should decrease the side
effects produced by a large amount of compound needed to have a positive response to
the therapy. This behaviour could be expressed in lower IC50 values or by overcoming the
resistant problems to the current therapies. Another appealing approach involves targeting
strategies, which has proved to have many advantages and potential interesting applica-
tions. Targeted anticancer agents are designed according to a strategy that aims to direct
them towards cancer-specific biomarkers or biological targets which are overexpressed
in cancer cells. The aim is to achieve higher selectivity than standard platinum-based
therapies and, consequently, lower side effects. In fact, preferential recruitment of the drug
into tumour cells results in a selective cytotoxic action that damages tumour cells more than
healthy ones. After being preferentially accumulated in tumour cells, the drug interacts
with specific targets by modifying or interrupting a signalling pathway that supports the
evasion of apoptosis, tumour growth, and resistance in cancer cells. While in classical
therapies the focus is on discovering increasingly cytotoxic and potent drugs, in targeted
therapies the aim is to achieve selectivity on diseased cells, potentially leading to more
significant and controlled cytotoxicity [14].

2. Heteronuclear Metal Complexes with Anticancer Activity

One of the new strategies here presented concerns the combination of two different
metal centres in one single drug to build a heteronuclear metal complex. The combina-
tion of more than one metal was already used for other types of applications, such as
catalysis, where electronically different metals could synergistically cooperate and have
better properties compared to the monometallic precursors in a catalytic process [15]. The
same approach was used more recently for potential anticancer applications. The opportu-
nity to use different metal-based compounds, which act as anticancer but have different
mechanisms of action from each other, could promote cooperative activity and synergis-
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tic effects. In this review, we divided different examples into two main groups, one of
platinum and one of gold. These two metal centres, as monometallic compounds, have
been extensively studied and they are known to exploit their anticancer activity in different
types of final targets. Platinum compounds generally act in the genomic moiety [16], while
gold complexes are considered good inhibitors of thioredoxin reductase [17]. One of the
most recent and interesting results of the literature concerns the combination of platinum
or gold with different metal centres or a combination of them. A discussion on the possible
synergistic effects of the new heteronuclear metal drugs has been done. To be sure that
the enhanced anticancer activity is truly done by the cooperative action of the two metal
centres, a comparison with the monometallic fragments is always needed.

2.1. The Case of Platinum

Transition metal complexes have been deeply studied for different applications, such as
catalysis, antimicrobial, and also antitumoral drugs [18]. Platinum complexes are probably
the most well-known and studied in the field of anticancer compounds, also thanks to
the omnipresence of cisplatin and its derivatives as a starting point [19,20]. To overcome
all the side effects of cisplatin such as neurotoxicity, nephro-, oto-, and gastrointestinal
toxicity, alternative transition metal centres gained a place in this field [21–23]. In the last
years, there are many examples of Pt(II) complexes combined with different metal centres
such as Ru(II), Rh(III), Au(I), Re(I), Tc(I) [17,24–27]. Platinum-based complexes are mainly
binders of genomic targets via a covalent bond between the Pt metal centre and N-7 atom of
guanine base [16], even if there is also evidence of protein binding, as serum albumin [28].
Here we present the most recent and promising results of bimetallic complexes that involve
different types of compounds such as photoactivable, macrocycle, or prodrugs compounds.
The possible synergistic effects of two metal centres with different targets were evaluated.

Starting from the ruthenium and rhodium ones, these metal centres can form
organometallic complexes usually by the coordination to nitrogen atoms or with arene
ligands, making the coordination easily achievable [29]. Ruthenium-based compounds,
usually considered to have antimetastatic activity, received interest as anticancer agents
after the discovery of the antitumoral properties of NAMI-A, KP1019, and KP1339 men-
tioned above. These organometallic Ru(II)-arene derivatives have a different mechanism of
action compared to cisplatin to exploit the anticancer activity, which involves the binding
to the biomolecule transferrin, an iron-binding protein [30].

In 2019 Askari and co-workers published their work, where the synthesis of three
heterobimetallic Pt(II)-Ru(II) and Pt(II)-Rh(III) complexes (1–3) (Figure 1) is described. The
three bimetallic complexes 1–3 turned out to be active in the human 20S proteasome, one
of the main targets for cancer therapy. Compounds 1–3 also inhibited cathepsin B and
L, which take part in tumour progression and invasion. The cytotoxic activity has been
evaluated also in comparison to the Pt(II)-based precursors and cisplatin. The bimetallic
complexes showed a good reduction of cell viability in different tumour cell lines such as
neuroblastoma SH-SY5Y, melanoma SKMel-28, hepatocellular adenocarcinoma HepG2,
and colorectal adenocarcinoma Caco-2 tumour cell lines, comparable or in some cases even
greater than cisplatin, while for the healthy cell line of human fibroblasts WI 38 there is no
sign of cytotoxicity. The flow cytometry analyses with Annexin-V/PI staining revealed that
the cell death mechanism in the SH-SY5Y line is apoptotic after 72 h of treatment. Pt(II)
precursors showed no significant inhibition or antiproliferative activity, which makes them
a structural feature of the proposed heterobimetallic complexes [25].
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Figure 1. Molecular structure of compounds 1–3.

A paper by Zheng and co-workers, published in 2018, described the synthesis and
characterization of a new bimetallic Ru(II)-Pt(II) complex (Figure 2). In this case, the
platinum moiety plays a pivotal role in the activity of the whole bimetallic compound
improving the anticancer activity of the Ru-containing moiety. The photoactivable Ru
complex 4 is combined with cis-Pt(DMSO)2Cl2 to obtain the heterobimetallic complex 5
through the coordination of Pt to the two free nitrogen of the bpm (2,2′-bipyrimidine)
ligand. The dichloroPt(II)-containing portion could covalently bind DNA. All the tests have
been performed both in dark and light conditions. The cytotoxic activity of 5 is extremely
increased in light conditions and is more cytotoxic compared to 4. These results pointed out
that both complexes have overcome the cisplatin resistance of the A549R (lung cancer) cell
line taking advantage of the photodamage of mtDNA. Moreover, the bimetallic complex 5
can bind to mtDNA also through the Pt centre; in fact, the impairment of the polynucleotide
occurs both in the dark and upon visible light irradiation. The higher affinity of 5 to DNA
is due to the double type of binding: covalent, through the Pt(II) moiety, and noncovalent,
through the planar ligand of Ru(II) moiety. Under light irradiation, 5 can produce ROS
inside the mitochondria, causing their dysfunction, including MMP collapse, ATP depletion,
and attenuation of mitochondrial energy status (see Figure 3). Both complexes have been
tested in vivo and compound 5 has shown better pharmacological properties with respect
to compound 4. In particular, 5 produced lower side effects and decreased the tumour
volume without causing mouse death (Figure 4) [31].
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Figure 4. (a) Chart of the relative tumour volumes (V/V0) of mice treated with PBS, 4 (Ru), and
5 (RuPt), measured for 11 days after treatment with PBS (control), under dark and light conditions. On
the first and sixth days, intratumoral injections were performed. (b) Photo of the tumours removed
from the nude mice. The completed scavenged tumours have been underlined by red dotted circles.
(Reprinted with permission from ref. [31]. Copyright 2018 John Wiley and Sons).

Photoactivable systems seem to be a good alternative to overcome cisplatin toxicity
and another promising new metal complex that is active upon irradiation inside the tumour
cells has been studied by Zhou and co-workers [32]. The Ru–Pt complex 6 (Figure 5) has a
large macrocyclic structure, and the metallacycle facilitates its cellular uptake, as confirmed
by ICP-MS analyses. The uptake values for complex 6 reach 114.82 ng and 451.37 ng
per million cells for Ru and Pt, while the same test with the Ru moiety alone revealed a
maximum cellular Ru concentration of 2.32 ng per million cells. The study of the cytotoxic
activity on the A549 cell line showed that 6 is accumulated preferentially in mitochondria
and nuclei as an intact metallacycle (confirmed by confocal laser scanning microscopy
analysis). Compound 6 exhibits its cytotoxic potential upon LED irradiation at 450 nm
(21.8 mW cm−2, 5 min), with IC50 values of 0.71–4.4 µM, while it is extremely decreased in
dark conditions, with IC50 of 65.2–80.9 µM. Light promotes the generation of singlet oxygen
specie which causes cell death producing damages concurrently in the mitochondria and
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nuclei. As already observed for products 5 and 4, also in this case the in vivo tests at low
light doses obtained with a diode laser (800 nm, 50 mW, 20 s/mm), showed that 6 causes
an effective tumour remission associated with low systemic toxicity.
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Another interesting strategy, that involves in this case the platinum moiety, is to exploit
the advantage related to Pt(IV) complexes. The platinum centre in its higher oxidation state
is chemically less reactive and kinetically more inert than its respective Pt(II) counterpart.
This feature can be fruitfully used to prevent off-target reactions, obtaining complexes that
can be considered prodrugs [33,34]. Moreover, the Pt(IV) complexes adopt the octahedral
coordinative geometry, giving the opportunity to functionalise the axial positions with
other biologically active molecules [35,36]. Since inside the cancer cells there is an increased
reductive environment compared to the healthy ones [37], this can be exploited to obtain
the selective Pt(IV) reduction inside the cancer cell, restoring the reactive Pt(II) complex
with the simultaneous release of the axial ligands [38].

In this frame, the Guangyu Zhu group worked on the synthesis of new Pt(IV)–Ru(II)
metal complexes (Figure 6) which combine the cytotoxic properties of cisplatin with the
antimetastatic properties of ruthenium-arene complexes. They were all found to be more
cytotoxic compared to cisplatin with low micromolar (11), sub-micromolar, and nanomolar
(7–10) cytotoxicity in most of the human cancer cells tested. All the bimetallic complexes
are effective also in cisplatin-resistant cells A2780cisR (ovarian carcinoma) and A549cisR
(lung adenocarcinoma). Compounds 7–11 have a selectivity index (the ratio between the
IC50 in MRC-5 (lung fibroblast) and the IC50 in A549 cells) that is nearly 10-fold higher than
that of cisplatin. A direct comparison with the performances of the monometallic moieties
revealed that the increased cytotoxic activity is produced by a synergistic effect between
the two metal complexes [39,40].
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Quental and co-workers investigated the combination of two different metal cen-
tres: one with therapeutic properties (i.e., Pt(II)), and the other with properties use-
ful in diagnostics (i.e., Re(I)) to achieve a theranostic agent. The new heterobimetallic
complex (12) (Figure 7) had indeed a rhenium moiety with photosensitizing properties and
a non-classical platinum centre with intrinsic cytotoxic activity in the dark. The metalation
of cellular DNA caused after the treatment with 12 both in the dark or under irradiation
was investigated by employing ICP-MS analysis. After the administration of 12 in dark
conditions, the polynucleotide was extracted from the cell culture and mineralised, and
ICP-MS detected no presence of platinum. This agrees with gel electrophoresis experiments,
where there is no modification of the mobility of the supercoiled form. On the contrary,
light exposure of the cell culture treated with the studied compound increases the amount
of open circular form, which is correlated to photosensitization with consequent ROS
production (singlet oxygen 1O2).

The Re-tricarbonyl unit in 12 could be replaced by 99mTc (13) (Figure 7) to allow biodis-
tribution investigations and imaging studies in normal mice. The intensity of radioactivity
was higher in the excretory organs (liver and kidney), where 13 accumulated the most [27].
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In 2020, Bertrand and co-workers synthesised different bimetallic complexes of
Pt(II)-Re(I) (15a–d, 16c) starting from the Pt(II) precursors (14a–d) (Figure 8). The first
screening was based on the MTT assay (Table 1). The most promising ones were the
monometallic 14a and the bimetallic 15a, 15d, and 16c which were 10 times more cyto-
toxic compared to cisplatin. Additionally, 15b and 15c had no cytotoxic activity, while
16c was the most cytotoxic of this group. Even those that showed good IC50 values on
MDA-MB-231, MCF-7, and A2780 cancer cell lines all showed a very scarce selectivity
when comparing the data obtained with the control healthy cells (MCF-10A). In addition,
the lipophilicity of the whole complex (Table 1) was directly correlated to the ligand nature,
and the bimetallic compounds 15a–d were more lipophilic than the mono Pt counterparts,
while the charged 16c was the most hydrophilic. The amount of metal content revealed
in cellular uptake experiments exactly reflected this order of lipophilicity, and it was not
correlated to the cytotoxic activity. Additionally, in this case, there was no evidence of
synergistic effects [24].
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Table 1. Antiproliferative activity of compounds 14a, 15a, 15d, 16c, and cisplatin on different cancer
cell lines and the healthy cell line MCF-10F after 72 h of incubation at 37 ◦C. Partition coefficients of
all complexes are reported as Log Po/w. (Adapted with permission from ref. [24]. Copyright 2020
John Wiley and Sons).

Complex
IC50 ± SD (µM)

Log Po/w
MDA-MB-231 MCF-7 A2780 MCF-10F

14a 3.1 ± 0.5 1.6 ± 0.9 1.5 ± 0.6 1.1 ± 0.2 3.7
14b n. d. n. d. n. d. n. d. 3.3
14c n. d. n. d. n. d. n. d. 6.9
14d n. d. n. d. n. d. n. d. 4.5
15a 2.1 ± 0.6 2.2 ± 0.4 1.5 ± 0.3 1.82 ± 0.06 3.6
15b n. d. n. d. n. d. n. d. 4.9
15c n. d. n. d. n. d. n. d. 8.1
15d 9.2 ± 3.5 20.3 ± 1.9 34.5 ± 7.2 17.4 ± 2.6 5.8
16c 1.7 ± 0.3. 1.1 ± 0.4 1.3 ± 0.2 3.3 ± 0.3 2.4

cisplatin 20.4 ± 3.4 14 ± 3.5 1.0 ± 0.2 2.9 ± 0.8 −2.4 a

n. d. = not determined; a data retrieved from ref [41].

2.2. The Case of Gold

Other types of combinations involve gold compounds. Gold complexes are usually
composed by the coordination of the soft metal centre with phosphine or sulphur ligands,
but carbenes ligands have also gained much interest [42,43]. Gold complexes express
anticancer activity by disrupting the reduction/oxidation (redox) system within the cell via
the inhibition of thioredoxin reductases (TrxRs). This enzyme is present in the mitochondria
and an alteration of its activity could lead to apoptosis [17,44–47]. Here we present some
relevant examples of recently synthesised complexes that combine the cytotoxic potential
of gold-based compounds with other metal centres which exploit their anticancer activity
differently, such as Pt(II), Ru(II), Ti(IV), Ir(III), and Re(I).
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To date, there are only a few examples in the literature on the combination of Au(I) and
Pt(II) metal centres [13,48,49]. Some of the most promising examples are the heterometallic
Pt–Au complexes depicted in Figure 9 (18a–c), which have shown synergistic effects by
an improvement of the antiproliferative activity against A549 (lung), SKOV3 (ovarian),
and MCF-7 (breast) cancer cell lines in comparison to their Pt-based precursor complexes
17a–c and [ClAu(µ-dppm)AuCl], which are not toxic to any of the cell lines investigated.
Inhibition of cell proliferation was also compared to cisplatin and Auranofin, revealing 18b
as the most promising complex, and apoptosis is the cell death mechanism in MCF-7 cancer
cells in a dose-dependent manner. Furthermore, 18a effectively internalises in MCF-7 cells,
and the nucleus showed the highest accumulation of the complex, which was revealed by
fluorescence microscopy, with less dispersion in the cytoplasm. Selectivity for cancer cells
was investigated by comparing the IC50 values of the healthy cell line MCF-10A (epithelial
breast), with the one obtained with MCF-7. All the complexes showed good selectivity for
the tumorigenic cell line, and complexes 18b and 18c demonstrated higher specificity for
human breast cancer cells with minor damage to normal epithelial breast cells [13].
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In the case of the two Pt(II)-Au(I) complexes (19, 20) (Figure 10) proposed by Wenzel
and co-workers, the new compounds exhibited great cytotoxic activity. A comparison of the
IC50 values between the ovarian cancer cell A2780 and cisplatin-resistant A2780cis showed
that 19 and 20 were able to overcome possible resistance phenomena. There is no evidence
of cooperative effects of the two metals, and the cytotoxicity towards a healthy cell line is
comparable to the tumoral one, demonstrating a total lack of selectivity. The sugar moiety
seems to improve the transport of the compound into the cells, but the phosphine ligand
may counter the Pt moiety from freely binding to the double strand of DNA [49].
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Figure 10. Molecular structure of compounds 19 and 20.

Cinellu and co-workers compared the activity of monometallic Pt(II) complex 21 with
the bimetallic Pt(II)-Au(I) complexes 22 and 23 (Figure 11). Interestingly, the heterobimetal-
lic complex bearing the triphenylphosphine ligand (22) presented greater cytotoxic effects
compared to the mononuclear Pt complex 21. The IC50 value obtained after the administra-
tion of 21 and the gold(I) precursor (AF) together in an equal amount was compared with
the values obtained with the heterobimetallic complexes. The data suggested an additive
rather than a synergistic effect of the platinum and gold centres in compound 21. On the
other hand, it is important that even if joined in the same molecular scaffold, the two metal
complexes do not reduce their biological activity. Further, the Au(TPA) ligand decreases
the antiproliferative activity of complex 23. Moreover, compounds 21 and 22 interact with
RNase A but in a different way. It seems that Rnase A shows selectivity for gold over
platinum. In addition, complex 22 breakdowns in the presence of the oligonucleotide
(ODN4: 5′-CGC-GCG-3′), forming different adducts with the pt fragment, [AuPPh3]+ and
Au(I). The formation of different biomolecular adducts, which could be caused by the
presence of different metal centres in the same molecule, may lead to enhanced cytotoxic
effects in agreement with the observed additive effect of coupled metals [48].
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Figure 11. Molecular structure of compounds 21–23.

The group of Maria Contel synthesised new heterobimetallic Ru(II)-Au(I) complexes
(25a–d) (Figure 12) where the Au metal centre is coordinated to an N-heterocycle car-
bene. PrestoBlue assay, a resazurin-based compound which has similar behaviour to the
most well-known MTT, was used to evaluate the antiproliferative activity of the com-
plexes [50]. The bimetallic complexes are more cytotoxic compared to cisplatin and have a
better selectivity toward cancer cell lines compared to the healthy ones (HEK293T). The
same assay was performed with a combination of a ratio of 1:1 of the monometallic gold
(24a–d) and ruthenium counterparts and they all have a lower IC50 value compared to the
corresponding heterometallic complexes. Compounds 25a–d do not interact with the DNA
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plasmid pBR322, so other targets may cause cell death. Complex 25a has been tested for the
inhibition of the TrxR (thioredoxin reductase) and it is more efficient than its monometal-
lic counterparts (Figure 13). This behaviour could suggest a synergist effect of the two
metal centres when present in the same compound [51]. Further inhibition studies on
complex 25b published two years after revealed as inhibited molecular targets different
interleukins, metalloproteases, and cathepsins, which are important in tumour metastasis
and angiogenesis [52].
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Figure 13. Activity of thioredoxin reductase of Caki-1 cells treated with 0.1% of DMSO (control) or
complex 25a (5 µM) after 5, 12, and 24 h of incubation. (Reprinted with permission from ref. [51].
Copyright 2016 Royal Society of Chemistry).

The same group worked also with heterobimetallic complexes of Ti(IV)-Au(I) (26
and 27) (Figure 14). The mechanism of action of 26 and 27 is different compared to
cisplatin, because they do not bind DNA, but they inhibit protein kinases such as p90-
RSK, AKT, MAPKAPA, and thioredoxin reductase [53,54]. The two new compounds show
IC50 values under the µM range, after 72 h of incubation, for renal cancer cell line Caki-1.
Compounds 26 and 27 are more cytotoxic than the Au(I) monometallic derivatives and
much more cytotoxic than the titanocene dichloride, with effective anti-migration and
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anti-invasive properties, making these bimetallic compounds two promising candidates for
cancer therapy [55].
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Ir(III) complexes can form emissive phosphorescent compounds with tuneable pho-
tophysical properties. By changing the organic ligands, the wavelength of emission
changes accordingly, obtaining highly pure primary colours for OLEDs (full-colour dis-
plays), or near-infrared emission for chemical sensors, bio-imaging, and telecommunica-
tion [56,57]. Only very recently have Ir(III) complexes exhibited their potency as theranostic
agents. Their emission properties enable the visualisation of their cellular biodistribution
and, concomitantly, Ir(III) complexes have displayed good cytotoxicity towards different
cancer cells [58,59].

Three new Au(I)-Ir(III) bimetallic complexes (29, 30, and 31) (Figure 15) were presented
by Redrado and co-workers in 2021 and the results were compared with the monometallic
precursor [Ir(NˆC)2(dppm)]+ (28). All complexes induce apoptosis with the formation
of cytoplasmic vacuolisation. The value of IC50 in A549 cells ranges between 0.6 and
1.7 µM, with complex 31 being the most cytotoxic. The emission properties of Ir(III)
moiety (green irradiation) allowed the investigation of cell distribution, which showed
the complexes more located in the cytoplasm, and the superimposition with MitoTracker
Red (MTR) emission (red irradiation), a mitochondrial selective dye used as internal
standard, suggested an accumulation in the mitochondria. The presence of the gold
fragment increases the generation of ROS and the inhibition of TrxR but there is no evidence
of synergistic or additive effects for the heterometallic complexes [60].
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Luengo and co-workers published a paper on Au(I)-Re(I) heterometallic complexes
(34a–c and 35a–b) (Figure 16). The antiproliferative activity has been evaluated with lung
cancer cells A549 and cervix cancer cells He-La. Better results have been obtained for
the cationic complexes compared to the neutral ones. The monometallic Re(I) complexes
(32, 33) show their cytotoxic activity even at 24 h, while only the heterotrimetallic com-
plexes reveal their selectivity towards HeLa cells after 72 h with exception of 34b. The
gold moiety is involved in the mechanism of action, even in terms of internalisation. The
gold ancillary ligand guides the cellular uptake following the order -PPh3>-CNtBu>-Ipr.
The distribution of the heterometallic species in HeLa cells was evaluated with fluorescent
microscopy, thanks to the optical properties of Re moiety. In A549 cells all the compounds
precipitate and accumulate outside the cells, especially the neutral complexes 32 and 34a–c,
while in HeLa cells, the positively charged heterotrimetallic compounds 35a–b were in
the outer cellular membrane media, very close to the membrane, suggesting a possible
interaction of the complexes with the membrane. These different behaviours may explain
the selectivity and higher toxicity toward the HeLa cell line over A549. The monometallic
Re complex 33 internalised in the cells and no precipitate was detected outside the cell
membrane. This suggests that the gold moiety could be responsible for the localisation pat-
tern, additionally with the selectivity for HeLa cells membrane over A549 one, displayed by
heterometallic species [61].
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3. Targeting Strategies

In order to selectively accumulate metal complexes within tumour cells, two main
approaches are generally used. The first is a sort of “passive targeting”, where the EPR effect
(Enhanced Permeability and Retention) is exploited (Figure 17) [62]. Solid tumours have
a particular microenvironment characterised by rich vascularization and low lymphatic
drainage, where the leaky blood vessels present several wider fenestrations than healthy
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tissues [63]. While these characteristics allow the tumour to satisfy the augmented demand
for nutrients necessary to support their rapid proliferation, at the same time, they allow
drugs to have preferential extravasation into tumoral tissues [64]. However, they are not
able to access so readily to healthy tissues, where the junctions between epithelial wall cells
are tighter [64]. Anti-cancer nanomedicine is associated with finding delivery solutions,
such as micelles, liposomes, and nanoparticles, that deliver the drug to tumour cells, mainly
by exploiting the EPR effect [64,65]. Nevertheless, limited results have been achieved
through passive targeting, due to the high heterogeneity of the tumour microenvironment,
which can differ depending on the specific kind of tumour and its different stages [66]. In
fact, tumours have a highly heterogeneous nature, and the intensity and nature of the EPR
effect can vary [67]. Furthermore, this effect also depends on the chemical and physical
characteristics of the drug, such as size, shape, and elasticity [68,69].
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The second approach concerns using an “active targeting strategy” that can be de-
signed according to different methods. One of the most common approaches is the use
of ligands that selectively recognise biomarkers overexpressed on tumour cells, such as
receptors on the cell surface or proteins in the intracellular environment [70,71]. Otherwise,
other strategies foresee the use of a prodrug, inactive in healthy cells but activated only at
the site of the tumour, exploiting the unique characteristics of the tumoral microenviron-
ment, such as the presence of high levels of ROS, low pH value, overexpression of matrix
metalloprotease, or the reducing conditions [72]. There are three levels towards which
active drug targeting can be directed: first-order drug targeting to a specific organ or tissue,
second-order drug targeting to specific cells, and third-order drug targeting to an intracel-
lular organelle, such as the nucleus, mitochondria, endoplasmic reticulum [73,74]. This
section does not intend to make a complete and exhaustive review of all cancer-targeting
metal complexes. Instead, it aims to propose an overview of some of the most significant
examples of methods that have been rationally designed to obtain a preferential interaction
with cancer cells, according to different active targeting strategies belonging to second and
third-order types.

3.1. Organelle–Targeting Metal Complexes

Each organelle in the eukaryotic cell (Figure 18) plays a defined role, and for each
organelle, a malfunction can lead to various diseases, including cancer [75]. This latter
is one of the reasons why some organelles, such as mitochondria, have proved to be
promising targets in anticancer therapy [76]; others are only recently emerging, such as the
endoplasmic reticulum [77].

Organelle targeting can be achieved with metal complexes through two main strategies:
coupling the complex to specific organelle-targeting biomolecules or finetuning of the com-
plex’s properties to satisfy the characteristics required to target that particular organelle [76].
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Figure 18. Representation of the most important organelles in the eukaryotic cell. (Reprinted with
permission from ref. [76]. Copyright 2019 Elsevier).

3.1.1. Metal Complexes Targeting the Mitochondrion

Since discovering the critical role of mitochondria in apoptosis evasion mechanisms,
these organelles have attracted much interest as potential targets in anticancer therapy [78].
Mitochondria are also called the “powerhouse of the cell” because of their role in cell
energy production. However, mitochondria have many other essential roles, such as
biosynthetic metabolism, regulation of cell signalling, ROS neutralization through antioxi-
dant pathways activation, adaptive functions in response to oxidative stress, and cell death
induction [79]. For these reasons, mitochondria happen to be strictly connected to many
different tumorigenesis pathways [80]. Deregulation of mitochondria metabolism leads to
insensitivity to anti-growth signals and consequent apoptosis evasion and uncontrolled
proliferation [80]. Additionally, dysfunctions in the phenomena of mitochondrial biogene-
sis and mitophagy, aimed at maintaining a healthy mass turnover, seem to be involved in
the activations of oncogenic pathways [80]. Therapeutic strategies that rely on mitochon-
drial targeting have several advantages. Among the most interesting is the opportunity to
exploit the difference between the structural characteristics of the mitochondrion in healthy
and diseased cells to have a drug accumulation in tumour cells. Compared to normal
cells, mitochondria have different characteristics in cancer cells that can be exploited in
targeting strategies to direct drugs, especially towards the tumour site. For example, the
increased mitochondrial transmembrane potential (∆ψm), which has been highlighted in
many kinds of cancer, can be exploited to selectively accumulate delocalised lipophilic
cations (DLCs) within mitochondria (Figure 19) [81,82]. This selectivity depends on the
DLCs chemical-physical characteristics, especially the positive charge number and the
lipophilicity (logP) tuning [83,84].

Molecules 2023, 27, x FOR PEER REVIEW 18 of 34 
 

 

3.1.1. Metal Complexes Targeting the Mitochondrion 

Since discovering the critical role of mitochondria in apoptosis evasion mechanisms, 

these organelles have attracted much interest as potential targets in anticancer therapy 

[78]. Mitochondria are also called the “powerhouse of the cell” because of their role in cell 

energy production. However, mitochondria have many other essential roles, such as bio-

synthetic metabolism, regulation of cell signalling, ROS neutralization through antioxi-

dant pathways activation, adaptive functions in response to oxidative stress, and cell 

death induction [79]. For these reasons, mitochondria happen to be strictly connected to 

many different tumorigenesis pathways [80]. Deregulation of mitochondria metabolism 

leads to insensitivity to anti-growth signals and consequent apoptosis evasion and uncon-

trolled proliferation [80]. Additionally, dysfunctions in the phenomena of mitochondrial 

biogenesis and mitophagy, aimed at maintaining a healthy mass turnover, seem to be in-

volved in the activations of oncogenic pathways [80]. Therapeutic strategies that rely on 

mitochondrial targeting have several advantages. Among the most interesting is the op-

portunity to exploit the difference between the structural characteristics of the mitochon-

drion in healthy and diseased cells to have a drug accumulation in tumour cells. Com-

pared to normal cells, mitochondria have different characteristics in cancer cells that can 

be exploited in targeting strategies to direct drugs, especially towards the tumour site. For 

example, the increased mitochondrial transmembrane potential (Δψm), which has been 

highlighted in many kinds of cancer, can be exploited to selectively accumulate delocal-

ised lipophilic cations (DLCs) within mitochondria (Figure 19) [81,82]. This selectivity de-

pends on the DLCs chemical-physical characteristics, especially the positive charge num-

ber and the lipophilicity (logP) tuning [83,84]. 

 

Figure 19. Uptake mechanism of DLCs in the mitochondrion. (Δψm: mitochondrial membrane po-

tential; I, II, III, IV: complexes related to the mitochondrial respiratory chain; IMM: inner mitochon-

drial membrane; OMM: outer mitochondrial membrane). (Reprinted with permission from ref. [85]. 

Copyright 2018 Elsevier). 

In addition, considering the central role of this organelle in tumorigenesis and in sus-

taining cancer cell proliferation, drugs that accumulate within the mitochondrion can in-

hibit its functions, cause its impairment, and activate proapoptotic signalling pathways 

leading to programmed cell death [86]. Beyond the issue of poor selectivity, mitochondrial 

targeting drugs may potentially overcome another recurring problem in classic anticancer 

therapy such as drug resistance. Cisplatin-induced resistance seems to depend on the ac-

tion of the nucleotide excision repair (NER) machinery, which repairs alterations in DNA 

that prevent replication [87]. This repair pathway is only active in the nucleus while it is 

absent in the mitochondrion; for this reason, it is far more difficult that the damage 

Figure 19. Uptake mechanism of DLCs in the mitochondrion. (∆ψm: mitochondrial membrane
potential; I, II, III, IV: complexes related to the mitochondrial respiratory chain; IMM: inner mitochon-
drial membrane; OMM: outer mitochondrial membrane). (Reprinted with permission from ref. [85].
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In addition, considering the central role of this organelle in tumorigenesis and in
sustaining cancer cell proliferation, drugs that accumulate within the mitochondrion can
inhibit its functions, cause its impairment, and activate proapoptotic signalling pathways
leading to programmed cell death [86]. Beyond the issue of poor selectivity, mitochondrial
targeting drugs may potentially overcome another recurring problem in classic anticancer
therapy such as drug resistance. Cisplatin-induced resistance seems to depend on the
action of the nucleotide excision repair (NER) machinery, which repairs alterations in DNA
that prevent replication [87]. This repair pathway is only active in the nucleus while it
is absent in the mitochondrion; for this reason, it is far more difficult that the damage
induced by cisplatin on the mitochondrial DNA leads the onset of resistance [87]. Erxleben
published an extensive review in 2019 in which 241 references regarding mitochondrion
targeting metal complexes were reported [86].

In the present review, this section provides some of the most significant examples of
mitochondria-targeting complexes divided by the type of metal centre.

(1). Platinum-based complexes targeting mitochondria

Although the primary target for platinum-based complexes is nuclear DNA, some
studies have shown that cisplatin may have interesting direct interactions with mitochon-
drial DNA (mtDNA), therefore inducting apoptosis also through different mechanisms, in
addition to the expected ones or also alternatively [87–89]. Intending to redirect cisplatin
onto mitochondrial DNA, Wisnovsky et al. synthesised a cisplatin analogue (mtPt, 36;
Figure 20) conjugated to a peptide carrier that explicitly targets this organelle [88]. mtPt
shows accumulation in the mitochondrion, cytotoxicity on HeLa cells, and damage to
mtDNA without damaging nuclear DNA. Although cytotoxicity is lower than cisplatin,
mtPt is also efficient in killing cisplatin-resistant ovarian A2780/CP70 cancer cells.

Dhar and collaborators used a different carrier to deliver cisplatin selectively into
mitochondria [87]. They designed a cisplatin Pt(IV) prodrug that targets these organelles,
Platin-M (37, Figure 20). Mitochondrial targeting is provided by the presence of two delo-
calised triphenylphosphonium cations on the Pt(IVI) complex in the axial position. Drug
delivery, good pharmacokinetic, and distribution properties are achieved using biocom-
patible polymeric nanoparticles (NP) constituted by biodegradable poly(lactic-co-glycolic
acid)-block-polyethyleneglycol, functionalised with a terminal triphenylphosphonium
cation too, obtaining in this way a double targeting effect. Compared to cisplatin alone,
Platin-M NPs resulted in a 30-times higher Pt concentration in mitochondria than in the
nucleus. Prodrug Platin-M is locally activated by the highly reducing environment and
converted into the active Pt(II) cisplatin, which was observed to form cross-links with
mtDNA (Figure 21). Platin-M NPs showed 85 times higher potency than cisplatin in
resistant A2780/CP70 cells, and enhanced cytotoxicity was also underlined in human
neuroblastoma SH-SY5Y cells and androgen-independent Pca cells. Although the insertion
of TPP moiety was successful in achieving mitochondrial targeting in the case of Platin-M,
this strategy is not universally applicable; in fact, other platinum-based complexes that
exhibit TPP functionalization accumulate in the nucleus [90].
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Che and coworkers proposed a luminescent Pt(II) complex (38, Figure 20), that fea-
tures an N-heterocyclic carbene as a ligand [91]. Given the optimal emission properties,
the cellular localization of the synthesised complex was studied through fluorescence
microscopy, incubating it with fluorescent dyes such as MitoTrackerTM, Hoechst 3342, and
LysoTrackerTM in order to highlight the localization in mitochondria and cytoplasm, in
the nucleus and lysosomes, respectively. Experiments showed that the complex is pref-
erentially co-localised in mitochondria with MitoTrackerTM. Complex 38 was found to
show promising cytotoxicity towards HeLa, HepG2, SUNE1, and CCD-19Lu cell lines
(IC50 = 0.057–0.77 µM), with a 300-fold higher potency toward HeLa than cisplatin.

(2). Gold-based complexes targeting mitochondria

The thioredoxin (Trx) system, composed of thioredoxin reductase (TrxR), thioredoxin,
and NADPH, plays an essential role in regulating cellular redox balance [92]. TrxR is a
ubiquitous homodimeric flavoenzyme responsible for reducing several species, including
the protein thioredoxin. In mammals, two principal isoforms have been isolated, TrxR-1
(cytosolic) and TrxR-2 (mitochondrial). Cancer cell often shows TrxR overexpression, es-
pecially the isoform TrxR-2, which seems to be induced by increased levels of oxidative
stress [85]. In several types of tumours, TrxR-2 has an important role in the desensitization
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of cancer cells towards pro-apoptotic signals; in fact, it neutralises reactive oxygen species
(ROS), which are considered important mediators of apoptosis [85,93]. As a result, TrxR
has emerged as a potential target for anticancer therapies, and there has been a growing
interest in metal complexes that can inhibit TrxR and induce apoptosis in cancer cells. Gold
complexes have shown interesting cytotoxic activities on several tumour cell lines, and
although the mechanism of action has not yet been fully elucidated, the main mechanism is
explicated through the inhibition of mitochondrial thioredoxin reductase [94,95]. Regarding
gold complexes, mitochondrial targeting has been achieved through two main methods.
The first one, a second-order targeting, involves the conjugation of the gold complex to
mitochondria-targeting carriers that allow the accumulation in the organelle. One example
of carrier-conjugated gold complexes was synthesised by Köster and collaborators [96].
They exploited the mitochondrial targeting properties of di- and tetra-peptides, using them
as carriers for the selective delivery of Au(I) phosphines [96]. The peptide-Au(I)phosphine
conjugates (39–40, Figure 22) showed a cytotoxicity (2–50 µM) that seems to be corre-
lated to their lipophilicity. This latter seems to be responsible for a higher initial uptake.
Through this strategy, they could overcome the cisplatin resistance in MDA-MB231 breast
cancer cells.
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The second method involves a third-order targeting strategy: the use of complexes able
to target mitochondrial proteins, the most studied of which is thioredoxin reductase in this
context. Various metal-based complexes can inhibit thioredoxin reductase (e.g., complexes
based on silver, copper, platinum, bismuth, palladium, antimony, iron, and ruthenium) [85].
However, gold-based complexes are still the most promising ones and seem to have the
most significant potential for selective targeting strategies. Gold has a high affinity for
selenium, present in the selenocysteine at the C-terminal end of the enzyme’s active site [95].
This latter amino acid is relatively easy to target since, with a pKa of 5.4, it has a higher
nucleophilicity than cysteine and is easily accessible on the enzyme structure [97]. Although
there is an overexpression of TrxR in many tumour types, the preferential affinity of gold-
based compounds for TrxR is not sufficient in most cases to ensure selective cytotoxicity on
diseased cells without harming healthy cells. However, there are a few examples of gold-
based compounds that showed selectivity in cancer cells. For the synthesis of gold-based
complexes, N-heterocyclic carbenes ligands are particularly useful in the fine control of the
complexes’ lipophilicity, thanks to the structural modifications on the heterocyclic ring that
can be made in a relatively easy way [98].

Hickey and collaborators designed three Au(I) N-heterocyclic carbene (Au-NHC)
compounds (41, Figure 23) that combine TrxR inhibition and, due to their properties as
DLCs, also the mitochondria targeting action [99].
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The effects of different concentrations of the three complexes were evaluated on cell
growth of MDA-MB-231 and MDA-MB-468, two breast cancer cell lines, and also on
HMEC, healthy human mammary epithelial cells. The three Au(I) NHC complexes have
shown selective toxicity to both cancer cell lines but not to the normal cells, and the degree
of selectivity is correlated with their lipophilicity. Among the three complexes, the 41a
complex, presenting an intermediate log P value, shows the best selectivity and cytotoxic
potency (Figure 24).
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Figure 24. (Panel a) Cell growth measured 24 h after treatment with 6a, 6b, and 6c. (Panel b) ATP
levels of cells measured 24 h after treatment, using the ATPlite luminescence assay kit. (Reprinted
with permission from ref. [99]. Copyright 2008 American Chemical Society).

In addition to carbenes, phosphines can also be used as ligands to obtain gold com-
plexes having DLCs properties, able to target the mitochondrion. A study on the anti-
cancer activity of eight bis-chelated Au(I) bidentate phosphine complexes was reported
by Rackham and collaborators [100] that revealed selective anti-cancer properties of the
complex [Au(d2-pypp)2]Cl, presenting 1,3-bis(di-2-pyridylphosphino)propane as ligand
(42, Figure 23). This gold complex selectively induces apoptosis in breast cancer cells MDA-
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MB-468 but not in normal breast cells HMEC, at submicromolar concentrations (0.8 µM).
Gold complex’s accumulation in mitochondria is driven by the characteristic cancer cells’
high potential difference; thus, apoptosis induction is accomplished through the mitochon-
drial pathway, involving mitochondrial membrane potential depolarization, depletion of
the glutathione pool, and caspase-3 and caspase-9 activation.

In general, gold complexes are not able to discriminate between the two TrxR iso-
forms. However, there are some examples of selective inhibition of TrxR-2 [85]. The two
isoforms have a high percentage of identity, and it is therefore rather difficult to achieve
selectivity on either of them. However, as the two isoforms are distributed in different cell
compartments, a promising way to achieve a selective inhibition of TrxR-2 is to use the
mitochondrial targeting strategy so that the accumulated drug can preferentially interact
with the mitochondrial isoform.

(3). Ruthenium-based complexes targeting mitochondria

Ruthenium-based complexes show promising cytotoxic activity against various cancer
cell lines, including cisplatin-resistant ones, due to their ability to interact with DNA and
RNA [101]. Although their primary target is generally nuclear genomic material, some
examples of DLCs Ru(II) polypyridyl complexes accumulate in the mitochondrion, where
they also exert their cytotoxic action [102]. A significant example is Rubb16 (43, Figure 25),
a dinuclear complex reported by Pisani et al., which shows an IC50 of about 5 µM on
L1210 murine leukaemia cancer cell line [103]. Even if the cytotoxicity is comparable to
that of cisplatin, Rubb16 presents 16 times higher accumulation in tumour cells than in
healthy B cells. Rubb16 is part of a series of lipophilic cations that present two metal centres
connected by a flexible bridge, with the lipophilicity of the entire complex increasing as the
number of methylenes in the linker rises. Using confocal microscopy and a mitochondrial
tracking dye (MitoTracker Green FM), the cellular localization of the luminescent complex
was highlighted in the mitochondrion, with no staining observed in the cytoplasm or
other organelles. Interesting results emerged from the study on the two complexes 44a
and 44b (Figure 25), which, despite having relatively similar molecular structures, have a
considerable difference in cytotoxicity and cellular localization. Cytotoxicity was assessed in
five cancer cell lines and one healthy cell line, human lung fibroblasts MRC-5. Complex 44a
had similar cytotoxicity to cisplatin but higher selectivity to diseased cells, while complex
44b had a considerably higher IC50. Confocal microscopy studies showed that complex 44a
is localised in the cytoplasm with a weak fluorescence in the nucleus, unlike complex 44b,
which diffuses through the whole cell, including the nucleus. Then, using high-resolution
continuum source atomic absorption spectrometry (HR-CS AAS), a mitochondrial uptake
of 68% of the total was measured in HeLa cells for 44a. For these reasons, although complex
44a interacts with isolated DNA, a mechanism of action via the mitochondrial pathway has
been proposed, characterised by a perturbation of the mitochondrial membrane potential
caused by the intercalation of the hydrophobic dppz moieties.
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Interestingly, the conjugation of 44a to mitochondria-targeting or receptor-targeting
peptides, performed by the same group, led to the lack of accumulation in mitochondria
and, consequently, cytotoxic potency being compromised [104].

3.1.2. Metal-Based Complexes Targeting the Nucleus

The nucleus is not only the organelle that contains most of the genetic material, but it
is also referred to as the “brain” of the cell, being responsible for vital cellular functions
such as replication, gene expression, and cell differentiation [105]. As nuclear DNA is one
of the main targets of metal-based anticancer drugs, nuclear drug delivery is crucial for
optimal therapeutic efficiency. The drugs transport from the cytoplasm to the nucleus
through the nuclear envelope lipidic bilayer does not take place by passive diffusion but
via the nuclear pore complex (NPC), a cylindrical structure of nucleoporins that forms a
hydrophilic channel through which the bidirectional transport of macromolecules between
the nucleus and cytoplasm takes place [106]. Regarding NPCs, diffusion pores with an
estimated diameter of 90–100 Å allow free transit of macromolecules up to 40 kDa, whereas
large macromolecules with a diameter of up to 390 Å require an active transport mediated
by specific receptors [107]. Nucleus-targeting metal complexes can be obtained either
intrinsically or extrinsically. Intrinsic nuclear targeting complexes usually have positive
charges, allowing electrostatic interaction with the phosphate groups in DNA and a planar
aromatic system allowing intercalation in the double helix [76]. Conversely, extrinsic
nucleus-targeting activity can be achieved by conjugating the metal complex to a nuclear
localization signal (NLS), a short peptide that selectively binds the nuclear transport
receptors (NTRs), that facilitate the passage across the NPCs central channel [76].

An interesting example of intrinsic targeting is [Ru(bpy)(phpy)(dppz)]+ (45, Figure 26) [108],
a Ru(II) complex that showed rapid uptake in Hela cells, with nearly 90% of the complex
accumulating in the nuclei. It showed a similar distribution also in MDA-MB-231, A549,
and A549/CDDP cancer cell lines, with an IC50 value that was an order of magnitude
lower than cisplatin. Further research indicated that the strong DNA binding affinity of
[Ru(bpy)(phpy)(dppz)]+ effectively inhibited the binding of NF-B transcription factor to
DNA sequences, causing cancer cell apoptosis (Figure 27).
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Figure 27. Representation of [Ru(bpy)(phpy)(dppz)]+ nucleus-targeting activity. (Reprinted with
permission from ref. [108]. Copyright 2014 American Chemical Society).

Concerning extrinsic targeting, Noor et al. synthesised a bioconjugate where an
organometallic complex, a cobaltocenium cation, was linked to an NLS peptide, SV-40 T
(with primary sequence H-Pro-Lys-Lys-Lys-Arg-Lys-Val-OH) [109]. The conjugate shows
enhanced cellular uptake and a significant accumulation in the nucleus of HepG2 cells. The
same group studied the uptake and cellular localization of some neutral ferrocene (Fe2+)
and positively charged Cobaltocenium (Co3+) bioconjugates (46, Figure 26) [110], where the
metal-based core was conjugated with the NLS wild-type sequence PKKKRKV. Although
they did not find the complexes cytotoxic on the Hep G2 cell line, for both metal centres the
fluorescence microscopy study showed significant cellular uptake and nuclear localization
of the conjugates. Interestingly, the results obtained are similar for the two metal centres,
thus highlighting that the positive charge may not appear decisive in nuclear targeting.

3.1.3. Metal-Based Complexes Targeting Endoplasmic Reticulum

It has been demonstrated that the endoplasmic reticulum (ER) is not just passively
responsible for the transport of proteins in the intracellular or extracellular space, but it
also plays a key role in regulating cellular homeostasis; in fact, the insurgence of ER stress
seems to be closely related to the onset of pathological states, such as neurodegenerative
disorders, diabetes, cardiac diseases, and cancer [111]. Features usually present in the
tumour environment, such as low pH, lack of oxygen, strongly reducing environment, and
lack of nutrients, can lead to perturbations of protein homeostasis, inducing ER stress and
consequently activating signalling transduction pathways such as the unfolded protein
response (UPR) [112]. This latter is an adaptive mechanism contributing to cancer growth,
aggressiveness, and resistance to the treatment. For this reason, ER has attracted much
interest as a promising target to address potential anticancer drugs according to a selective
anticancer strategy. Notwithstanding the UPR being a key element in cancer growth and
chemotherapy resistance, the promotion of ER stress induction has lately received attention
as a promising anticancer technique. In particular, certain metal complexes are able to
induce ER stress, which often leads to desirable immunogenic cell death. Additionally,
an interesting aspect is that ER-targeting cytotoxic compounds often accomplish selectiv-
ity on cancer cells [77]. Drugs can induce ER stress through different mechanisms, such
as direct contact with UPR machinery, generation of ROS, disruption of protein folding
chaperones, inhibition of protein degradation, and interference with Ca2+ trafficking [77].
Metal complexes capable of generating ER stress in cancer cells through various mecha-
nisms include complexes based on copper [113,114], vanadium [115], iridium [116,117],
ruthenium [118,119], gold [120,121], platinum [122], palladium [123], osmium [124,125],
and rhenium [126].

However, it is essential to emphasise that several mechanisms are frequently acti-
vated at the same time, and furthermore, activation of ER stress is often not the primary
mechanism of action of a metal complex but rather a collateral mechanism. A promis-
ing investigated class of compounds with ER stress-inducing activities is cyclometalated
cationic Ru(II) complexes. In this context, Fetzer et al. reported an interesting study on a
library of 32 organoruthenium C-N, N-C-N, N-N-C cyclometalated compounds that have
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been synthesised and tested for their in vitro antitumoral activity on HCT-116 colon cancer
cell lines [118]. The library of compounds originates from the original lead compound
RDC11 (47), whose structure is reported in Figure 28. Good to excellent cytotoxic properties
have been found for the complexes, many of which have demonstrated an IC50 below the
nanomolar threshold. The compounds’ activity was correlated to their physicochemical
properties, such as the RuIII/II redox potential and lipophilicity, as shown in Figure 29.
Further investigation of the biological properties and cellular responses reveals that some
compounds cause both DNA damage and ER stress, while others only target the ER [119].
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3.2. Cell-Targeting Metal-Based Complexes

In the human organism, cells deputed to different functions or belonging to different
tissues present a heterogeneity expressed by specific biomarkers existing on the cell surface,
often consisting of proteins and receptors. The same also applies to diseased cells, such as
cancer cells, that usually show a cancer-specific overexpression of particular receptors [127].
In order to specifically target only cancer cells exploiting these cancer-specific biomarkers,
cytotoxic compounds can be conjugated to selected ligands capable of being recognised
and bound by receptors overexpressed on the cancer cell surface and then internalised
via endocytosis, then released into the cytoplasm [128]. Peptides, antibodies, aptamers, or
natural ligands of cell receptors can represent valuable site-selective tools to distinguish
between cancer and healthy cells based on cellular surface different compositions. The
most widely used and studied ligands for metal complexes delivery are the cell-penetrating
homing peptides (CPHPs) [129,130]. It is necessary to specify that there are various types
of peptides capable of delivering the drug to the cell, and the mode and ability to reach the
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cell’s interior vary greatly. Homing peptides (HP) can recognise the corresponding receptor
and bind it but are not internalised within the cell, remaining on the membrane surface
in the extracellular environment [129,130]. In contrast, cell-penetrating homing peptides
(CPHPs) can bind the receptor and have the intrinsic ability to activate the internalization
process through endocytosis. Another technique used is binding an HP, responsible for the
recognition, to a cell-penetrating peptide (CPP), responsible for activating the internaliza-
tion process (Figure 30) [128].
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Lippard and his team reported in 2007 the synthesis of a series of mono- and di-
functionalised platinum(IV) complexes (48–49, Figure 31) conjugated to an RGD or NGR
peptides [131]. These latter target αVβ3/ αVβ5 integrins and membrane-spanning sur-
face protein aminopeptidase N (APN), respectively, both of which are over-expressed in
endothelial cells of angiogenic tumour vasculature. The HP has been conjugated by an
amide linkage to the Pt(IV) centre through a succinate group. From concentration-response
studies emerged that, when compared to nontargeting Pt(IV) compounds and the unconju-
gated targeting RGD peptide, RGD-conjugated Pt(IV) complexes are potent inhibitors of
cellular growth. Although less inhibitive than their RGD counterparts, NGR conjugates
were nonetheless more active than nonspecific Pt(IV)-peptide analogues.
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As mentioned above, in addition to peptides, other kinds of site-selective cancer-
targeting molecules can also be conjugated to metal complexes to obtain a targeting activity
on specific cancer cell lines. An interesting example is that of aptamers, which are short
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single-stranded chains of oligonucleotides that can specifically bind their targets with high
affinity, as well as being biocompatible and stable [132].

Niu et al. reported the synthesis of a bioconjugate (50, Figure 32) in which an NHC
gold(I) complex has been linked to the sgc8c aptamer, which can selectively recognise
CCRF-CEM leukaemia cells binding the protein tyrosine kinase 7(PTK-7), more abundantly
expressed in cancer cells surface than in healthy ones [133].
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Figure 32. Structure of the bioconjugate 50.

The bioconjugate is enriched with a double tag, making it possible to independently
follow the fate of the two functional elements inside the cancer cell. An anthracenyl
moiety was inserted to follow the gold complex, while the aptamer was functionalised
with fluorescein isothiocyanate (FITC). Remarkably, the IC50 of the aptamer-functionalised
complex shows higher cytotoxicity than the non-targeting complex, going from a value of
14.6 ± 1.4 µM to 0.54 ± 0.85 µM.

4. Conclusions

Inspired by the promising anticancer properties of some well-known metal-based
complexes, such as auranofin, cisplatin, and NAMI, new strategies have been developed
to improve the characteristics of the existing complexes and overcome the problems that
they carry. Higher selectivity, lower side effects, higher potency, and the overcoming of
the resistance mechanism are some of the objectives of this new generation of anticancer
strategies. In this review, we focused on some interesting examples related to two main
approaches: the conjugation of metal-based complexes to a targeting moiety and the
synthesis of heterobimetallic complexes bearing two active molecules in just one compound.
We believe this review can be a valuable tool to be used as a starting point for those
researching this area, to identify the recent advances that have been made in research and
to exploit the competencies to progress towards new ideas and strategies.
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