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Abstract: Molybdenum carbide is considered to be one of the most competitive catalysts for hydrogen
evolution reaction (HER) regarding its high catalytic activity and superior corrosion resistance. But
the low electrical conductivity and poor interfacial contact with the current collector greatly inhibit its
practical application capability. Herein, carbon nanotube (CNT) supported molybdenum carbide was
assembled via electrostatic adsorption combined with complex bonding. The N-doped molybdenum
carbide nanocrystals were uniformly anchored on the surfaces of amino CNTs, which depressed
the agglomeration of nanoparticles while strengthening the migration of electrons. The optimized
catalyst (250-800-2h) showed exceptional electrocatalytic performance towards HER under both
acidic and alkaline conditions. Especially in 0.5 M H2SO4 solution, the 250-800-2h catalyst exhibited
a low overpotential of 136 mV at a current density of 10 mA/cm2 (η10) with the Tafel slope of
49.9 mV dec−1, and the overpotential only increased 8 mV after 20,000 cycles of stability test. The
active corrosive experiment revealed that more exposure to high-activity γ-Mo2N promoted the
specific mass activity of Mo, thus, maintaining the catalytic durability of the catalyst.
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1. Introduction

Hydrogen is one of the most promising renewable and clean sources owing to its
environmental friendliness and sufficient supply from water splitting driven by renew-
able energy, such as solar and wind energy [1–3]. The development of low-cost and
high-performance catalysts to replace platinum is one of the preconditions for large-scale
production of hydrogen from water electrolysis [4,5]. Molybdenum carbide is considered to
be one of the most competitive catalysts for hydrogen evolution reaction (HER) regarding
its d-band structure is similar to platinum and its high abundance of molybdenum in the
earth’s crust that is 2~3 orders of magnitude higher than that of platinum [6,7].

To improve the catalytic performance of molybdenum carbide, various strategies,
including morphological and compositional modification [8,9], defect engineering [10–12],
crystallite regulation [13], heterojunction construction [14–16], and carbon-supported struc-
ture design [17–19] have been proposed. Among them, the carbon-supported molybdenum
carbide showed a great potential to maximize the catalytic capability of molybdenum
carbide by optimizing the carbon interface. The effective interfacial contact between molyb-
denum carbide and carbon substrate facilitates electronic migrations from molybdenum
to carbon, thus, weakening H-Mo binding, which is supposed to be beneficial to water
splitting [6,20]. Furthermore, the supporting effect of carbon substrate is conducive to
anchoring small-sized molybdenum carbide, reducing their agglomeration. Roughly there
are two types of carbon-supported molybdenum carbide construction. One is support-
ing molybdenum carbide onto the prepared carbon [17–19]; another is the in-situ formed
carbon-supported molybdenum carbide [21–26]. The main advantage of the former is
that the preparation process is relatively simple and controllable, and the used carbon
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substrate is highly graphitized. But this fabrication usually results in poor contact between
molybdenum carbide and carbon. By contrast, the in-site construction can create good
interfacial contact, facilitating the transfer of electrons, though the graphitization degree
of carbon is a little bit low. To enhance the interaction between molybdenum carbide and
carbon substrate, it is necessary to functionalize either molybdenum or carbon sources
for better matching the pairs. Fu et al. [25] modified reduced graphene oxide (rGO) with
polyethyleneimine and formed a positively charged carbon surface, which could attract the
negatively charged PMo12O40 ions and realized the self-assembly of molybdenum species
on a carbon support. As a result, the small-sized molybdenum carbide nanoparticles
were well dispersed on the surface of rGO support without evident agglomeration. In
another study, Qamar et al. [26] used oxalate to coordinate molybdenum, and the formed
Mo-oxalate complex could effectively assemble onto the surface of a carbon nanotube
(CNT). The obtained CNT-supported molybdenum carbide electrocatalyst showed superior
performance towards HER.

In this work, carbon-supported molybdenum carbide has been constructed by a combi-
nation of amino CNTs and molybdate. Due to the strong protonation of -NH2, the aqueous
amino CNTs tended to be positively charged, making molybdate anions spontaneously an-
chored onto the surface of CNTs by electrostatic adsorption [27,28]. During the subsequent
heat treatment process, the molybdenum carbide nanocrystals were gradually developed
and uniformly dispersed on the surface of CNTs. The as-prepared CNT-supported molyb-
denum carbide exhibited good interfacial electronic transfer capability, and the targeted
catalyst showed excellent electrocatalytic performance toward HER in both acidic and basic
solutions. This study provides a simple and reasonable method to construct good interfacial
contact between molybdenum carbide and carbon support, thereby greatly promoting the
property of the catalyst for HER.

2. Experimental
2.1. Reagents

Ammonium molybdate tetrahydrate, ethanol, potassium hydroxide, hydrochloric
acid, and sulfuric acid were all analytical grade and obtained from Sinopharm Chemical
Reagent Co. (Shanghai, China). Nafion® (5 wt.%), amino muti-walled CNTs, and Pt/C
(20 wt.%) were acquired from Alfa Aesar, Aladdin, and Johnson Matthey, respectively. All
chemicals were used as received without any additional treatment.

2.2. Preparation

250 mg of amino multi-walled CNTs were added to a beaker containing 80 mL of
water. After ultrasonic dispersion for 30 min, ammonium molybdate aqueous solution
(250 mg ammonium molybdate tetrahydrate dissolved in 20 mL of water) was added
drop by drop. The suspension was stirred to form a paste and then transferred into a
vacuum oven to dry at 60 ◦C for 10 h. The obtained black powder was put into a tube
furnace filled with CH4/H2 (20/80 mL/min) mixing gas and heated for 2 h at 800 ◦C. The
collected product was labeled as 250-800-2h (250 mg ammonium molybdate tetrahydrate,
800 ◦C, 2 h). To study the influence of preparation conditions on the catalyst, the mass
of ammonium molybdate tetrahydrate, calcination temperature, and calcination time
were changed. The obtained contrast samples include 250-600-2h, 250-700-2h, 250-900-2h,
250-800-1h, 250-800-4h, 150-800-2h, 200-800-2h, and 300-800-2h. In addition, the sample
(250-800-2h) was treated with 0.5 M HCl for 72 h to reveal the acid corrosion effect.

2.3. Characterization

X-ray diffraction (XRD) patterns were recorded over a D8-Focus diffractometer oper-
ated using Cu K radiation of 0.154 nm wavelength. The scanning step and scanning speed
were 0.01◦ and 0.05◦/s, respectively. Scanning electron microscope (SEM) was SU8010
mode of Hitachi with the acceleration voltage of 0.1–30 kV and equipped with X-ray Energy
Dispersion Spectrometer (EDS). X-ray photoelectron spectroscopy (XPS) was performed on
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a K-Alpha model of Thermo Fisher operated using Al Kα radiation. The signal binding
energy was calibrated against the C1s peak (284.64 eV) of adventitious carbon. The thermo-
gravimetric analyzer was STA409PC mode of Netzsch Instrument. The test was carried out
in an oxygen atmosphere from room temperature to 800 ◦C at a rate of 5 ◦C/min.

Electrochemical tests were carried out using a standard three-electrode potentio-
stat/galvanostat system (Interface 1000, Gamry, Warminster, PA, USA). The reference and
counter electrodes were a saturated calomel electrode (SCE) and a graphite rod, respectively.
Before the experiment, the potential of SCE relative to a reversible hydrogen electrode
(RHE) was calibrated in 0.5 M H2SO4 solution and 1 M KOH solution (Figure S1), respec-
tively. The preparation method of the working electrode was as follows. First, 5.0 mg
of catalyst was placed into a 1.5 mL centrifuge tube. Then 800 µL of ultra-pure water,
150 µL of anhydrous ethanol, and 50 µL of 5% Nafion solution were added successively.
After ultrasonic dispersion of the centrifuge tube for 40 min, 10 µL of dispersed droplets
were removed from the centrifuge tube to the surface of a glassy carbon electrode with a
diameter of 3 mm and left for drying at room temperature. The polarization curves were
obtained by linear sweep voltammetry (LSV) with IR compensation at a 2 mV/s scan rate.
The geometric current density was calculated by dividing the measured current by the
geometric area of the glassy carbon electrode. Electrochemical impedance (EIS) tests were
performed at 150 mV with a potential amplitude of 5 mV in frequencies from 106 to 0.1 Hz.

Cyclic voltammetry (CV) was conducted to check the electrochemical double-layer
capacitance (Cdl) of catalysts at non-Faradaic overpotentials, which could be applied to
estimate the electrochemically active surface areas. CV tests were performed at scan rates
of 50–300 mV/s in the range of 0 to 0.3 V. A linear trend was obtained by plotting the
difference in current density between the anodic and cathodic sweeps at 0.15 V against
the scan rate. The slope of the fitting line is equal to twice Cdl. HER durability tests were
conducted in 0.5 M H2SO4 and 1 M KOH solution in the potential range of −0.3–0.3 V
at a scan rate of 100 mV s−1 for different cycles, respectively. LSV before and after the
potential cycling were carried out for HER activity comparison. A long-term stability test
was also conducted by performing chronoamperometry measurement at −150 mV in 0.5 M
H2SO4 solution.

3. Results and Discussion

Figure 1 shows the XRD patterns of the products obtained at different calcination
temperatures. By comparing with a standard card of β-Mo2C, it can be seen that the
products calcined at 600–900 ◦C contain both β-Mo2C and graphite-carbon phases. The
diffraction peak at 26◦ correlates to the (002) crystal plane of graphite-carbon, while the
peaks at 34.35◦, 38.98◦, 39.39◦, 52.12◦, 61.53◦, and 69.56◦ can be attributed to (100), (002),
(101), (102), (110), and (103) crystal plane of β-Mo2C, respectively. It is also observed
that the relative intensity of the β-Mo2C diffraction peak increases with the calcination
temperature, indicating that high temperature is conducive to the formation of β-Mo2C
with high crystallinity.

As a representative catalyst, the morphology of the 250-800-2h sample was observed
by SEM with different magnifications (Figure 2a,b). Apparently, the catalyst is composed
of long nanotubes, and the surfaces of these nanotubes are covered with a layer of small
particles. Combined with the XRD results (Figure 1) and elemental distributions (Figure S2),
these small particles are β-Mo2C nanocrystals, which are well dispersed on the surfaces of
the CNTs. The mean size of the particles is ~7 nm.
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(b) 200,000 times.

Figure 3 shows the XPS results of the 250-800-2h catalyst. On the Mo 3d XPS spectrum,
Mo2+, Moδ+ (0 < δ < 4+), and Mo6+ can be identified from their characteristic peaks
corresponding to 3d5/2 and 3d3/2 electronic states, respectively [15,28]. On the N 1s XPS
spectrum, the peak at 394.9 eV belongs to the Mo-N bond. But the characteristic diffraction
peak of molybdenum nitride is not observed in the XRD patterns of Figure 1, hinting at
its non-crystalline structure. Besides the Mo-N bond, there are some atomic N doped
into the carbon crystal lattice, which is confirmed by the peaks at 398.1 eV, 399.2 eV, and
400.5 eV corresponding to pyridine-N, pyrrole-N, and graphite-N, respectively. These XPS
results reveal that N atoms in the precursors have been involved in the chemical reactions
associated with Mo and C. Actually, N doping in molybdenum carbide or carbon matrix can
effectively regulate the electronic distributions around the active center, thereby optimizing
the electrocatalytic activity of the catalyst [6,23,29,30].
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Figure 4a shows the LSV behaviors of the catalysts with different calcination tempera-
tures in 0.5 M H2SO4 solution. The Pt/C catalyst was also tested as the contrast. Evidently,
the 250-900-2h catalyst has a more negative HER potential than the other catalysts, implying
relatively weaker catalytic activity. The 250-800-2h catalyst exhibits the best HER activity,
and its overpotential at 10 mA cm−2 (η10) is only 137 mV. To further disclose the specific
area activity of the catalysts, the electrochemical active areas were estimated by measuring
the double-layer capacitance at non-faradic intervals. It can be seen in Figure 4b that the
electrochemically active area decreases with the increase in calcination temperature. Con-
sidering its most positive HER potential with a relatively smaller active area, the 250-800-2h
catalyst shows the highest specific area activity [31]. During the HER process in an acid
solution, the desorption of hydrogen is supposed to be the rate-determining step (RDS). The
kinetics of the RDS reaction can be measured by the Tafel plot. Figure 4c compares the Tafel
slopes of the catalysts. The 250-800-2h catalyst also presents the smallest value of 49.9 mV
dec−1, indicating its fastest kinetic rate. In addition, the electrochemical impedances were
measured, and the corresponding Nyquist plots are shown in Figure 4d. The 250-800-2h
sample exhibits the smallest charge-transfer barrier, suggesting its good electron transfer
capability. Based on the above results, the 250-800-2h catalyst shows the highest catalytic
activity due to the excellent charge-transfer kinetics.

The effects of calcination time and molybdate content under 800 ◦C on the catalytic
activity of the catalyst were investigated synchronously. It can be seen in Figure S3 that
the 250-800-2h catalyst is superior to the others, indicating that the proper calcination time
is ~2 h. Too long may cause particle sintering, while too short often results in incomplete
crystallization. Figure S4 reveals the optimal amount of molybdate precursor. For a certain
amount of CNT substrate, the rational exposure of molybdenum active sites at the surface
is very important. Too little molybdenum content cannot provide enough active sites
to catalyze HER, while too much molybdenum loading can cause overlapping of active
sites, thus, reducing the effective exposure of molybdenum active sites. Due to proper
molybdenum loading, the 250-800-2h catalyst shows the highest catalytic activity with
maximal exposure to active sites.

The catalytic stability of the 250-800-2h catalyst was evaluated under both acidic and
alkaline conditions. As shown in Figure 5, the η10 of the catalyst is 137 mV at the first
cycle in the acidic solution, and it increases to 145 mV after 10,000 cycles, then the η10
remains at 145 mV over 20,000 cycles. Moreover, the 250-800-2h catalyst could sustain the
high catalytic activity during the 50 h stability test by chronoamperometry at −150 mV
(Figure S5). This outcome suggests that the 250-800-2h catalyst has outstanding catalytic
stability under acidic conditions. In contrast, the η10 of the 250-800-2h catalyst increases
from 145 mV to 165 mV within 5000 cycles and comes to 177 mV after 10,000 cycles in the
alkaline solution. This continuously slow increase in η10 implies the gradual attenuation of
catalytic activity. Considering that molybdenum itself is alkali-soluble, the slow fade of
catalytic activity can be attributed to the dissolution loss of molybdenum. Although the
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electrocatalytic HER activity and stability of the 250-800-2h catalyst in an alkaline system is
not as good as that in an acidic medium, such performance is quite competitive with that
of most carbon-supported molybdenum carbide materials reported recently (Table S1).
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The high catalytic activity of the 250-800-2h catalyst is closely related to the synergistic
effect of the components. The surface amino groups of CNTs tend to bind molybdenum
atoms that help to make compact connections between Mo2C particles and CNTs, and the
high electron-conductive CNTs can contribute greatly to enhanced catalytic reaction kinetics.

The superior catalytic stability of the 250-800-2h catalyst in an acidic system was
further explored. The active corrosion experiment was carried out by acid treatment of
the 250-800-2h sample for 72 h. It is observed in Figure 6 that the main characteristic
diffraction peaks of β-Mo2C disappear after acid treatment. This suggests that the surface
β-Mo2C nanocrystals of the catalyst have been subjected to acid corrosion. There are two
new weak peaks at 37.28◦ and 43.47◦, corresponding to (111) and (200) planes of γ-Mo2N,
respectively. It is speculated that the occurrence of γ-Mo2N characteristic peaks is the result
of the corrosion of surface β-Mo2C crystals and more exposure to γ-Mo2N planes. The
mass content of Mo in the 250-800-2h sample before and after acid treatment was analyzed
by using TG. Considering that the final product in the oxygen atmosphere is MoO3 during
TG measurements, the mass content of Mo (W(Mo)) in the raw material can be calculated by
the formula:

W(Mo)= W(MoO3)
· M(Mo) / M(MoO3)
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which has far less corrosion effect on the catalyst than the active corrosion experiment. 
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The TG curves are shown in Figure 7. After the acid treatment, the final W(MoO3)
was

decreased from 54% to 12%; that is to say, the total mass content of Mo in the catalyst was
reduced by 78%. This actually explains why the XRD diffraction peaks of Mo2N cannot be
observed in the primary 250-800-2h sample.

Figure 8 compares the catalytic activity of the 250-800-2h catalyst before and after acid
treatment. It can be seen that the total catalytic activity is decreased after acid treatment.
But taking into account the Mo content, the specific mass activity after acid treatment is
1.9 times that before acid treatment at 150 mV overpotential. This result hints that the
catalytic utilization of Mo is greatly improved after acid corrosion. In fact, during the
electrochemical stability test, the 250-800-2h catalyst is under the reductive atmosphere,
which has far less corrosion effect on the catalyst than the active corrosion experiment.
Therefore, the active corrosion test results can well explain and predict the high catalytic
stability of the 250-800-2h catalyst under acidic conditions.
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4. Conclusions

The CNT-supported molybdenum carbide HER catalysts have been fabricated using
ammonium molybdate, amino CNTs, and methane as the precursors. The obtained 250-800-
2h catalyst showed excellent catalytic performance in both acidic and alkaline solutions.
Under the acidic condition, the η10 and Tafel slopes were 137 mV and 49.9 mV dec−1,
respectively. The η10 decreased only 8 mV after 20,000 cycles of voltammetry scanning in
an acidic solution. The corrosion test showed that the Mo content of the 250-800-2h catalyst
could decrease by 78%, but its specific Mo mass activity actually increased by 1.9 times.
The excellent performance of the catalyst was attributed to the synergistic effect of uniform
distribution of molybdenum carbide on the surface of CNTs, the strong binding between
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molybdenum carbide and CNTs, the electronic modification of N doping, and protection of
the carbon layer on the surface of molybdenum carbide. This phenomenon of increased
activity accompanied by corrosion further provides a theoretical basis for its good activity
durability in the actual use process.
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