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Abstract: The toxicity of all species of mercury makes it necessary to implement analytical procedures
capable of quantifying the different forms this element presents in the environment, even at very low
concentrations. In addition, due to the assorted environmental and health consequences caused by
each mercury species, it is desirable that the procedures are able to distinguish these forms. In nature,
mercury is mainly found as Hg0, Hg2+ and methylmercury (MeHg), with the latter being rapidly
assimilated by living organisms in the aquatic environment and biomagnified through the food chain.
In this work, a dispersive solid-phase microextraction of Hg2+ and MeHg is proposed using as the
adsorbent a magnetic hybrid material formed by graphene oxide and ferrite (Fe3O4@GO), along
with a subsequent determination by electrothermal atomic absorption spectrometry (ETAAS). On
the one hand, when dithizone at a pH = 5 is used as an auxiliary agent, both Hg(II) and MeHg are
retained on the adsorbent. Next, for the determination of both species, the solid collected by the
means of a magnet is suspended in a mixture of 50 µL of HNO3 (8% v/v) and 50 µL of H2O2 at 30%
v/v by heating for 10 min in an ultrasound thermostatic bath at 80 ◦C. On the other hand, when the
sample is set at a pH = 9, Hg(II) and MeHg are also retained, but if the solid collected is washed
with N-acetyl-L-cysteine only, then the Hg(II) remains on the adsorbent, and can be determined as
indicated above. The proposed procedure exhibits an enrichment factor of 49 and the determination
presents a linear range between 0.1 and 10 µg L−1 of mercury. The procedure has been applied to the
determination of mercury in water samples from different sources.

Keywords: mercury; methylmercury; speciation; magnetic dispersive solid-phase microextraction;
electrothermal atomic absorption spectrometry

1. Introduction

Mercury (Hg) is present in nature as a pure elemental substance (liquid mercury) and
as inorganic mercury in the form of salts such as HgS (cinnabar), Hg2Cl2 (calomel), HgCl2
and mercury acetate. It is also found in the form of organometallic cations such as methyl-,
dimethyl-, and ethyl-mercury. In addition, mercury is also released into the air, water, and
soil through anthropogenic activities [1].

It is well known that all forms of Hg are toxic. Acute exposure to Hg0 causes lung,
kidney, and brain damage, while prolonged exposure to low levels causes neurological
and psychiatric syndromes. Mercury is preferentially released into the environment as Hg0

vapor. In the atmosphere, it exhibits several transformations, predominantly its oxidation to
mercury ions (mainly Hg2+), whereas in nature, mercury is mainly found as three different
chemical species: elemental (Hg0), ionic (Hg2+) and organic (MeHg). The Hg released into
the environment by both natural and anthropogenic sources reaches the marine ecosystem,
where it is methylated by the action of microorganisms. The methylated form, MeHg, is
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rapidly taken up by living organisms in the aquatic environment and biomagnified through
the food chain, reaching humans through the consumption of fish [2].

Human exposure to MeHg is global, as it is present in different concentrations in
virtually all freshwater and marine organisms. Until the 1970s, organomercurials, especially
MeHg and ethylmercury (EtHg), were widely used in agriculture as antifungal agents in
cereal seeds [3]. Accordingly, the study and development of simple analysis techniques
capable of speciating and quantifying trace amounts of mercury is a priority for many
researchers [4–6].

Mercury determination involves two steps: a sample preparation and quantification.
The sample preparation step is complicated due to the volatile character of mercury and its
species [7]; however, the determination step is relatively simple and has often been carried
out using the technique of vapor generation coupled to atomic absorption spectrometry
(CVAAS), fluorescence spectrometry (CVAFS), inductively coupled plasma optical emission
spectrometry (CVICP-OES) and coupled plasma mass spectrometry (CVICP-MS) [8–10].

Mercury has also been determined by electrothermal atomic absorption spectrometry
(ETAAS) [11–13]. Due to the extraordinary volatility of the element, which has a significant
vapor pressure even at room temperature, the direct use of ETAAS does not achieve a
suitable sensitivity for this species because the concentration is usually very low. However,
if a preconcentration procedure is used, the necessary sensitivity can be achieved taking
advantage of the relative simplicity and convenience of this analytical technique which is
present in most laboratories and is often underused [14].

In recent years, different microextraction techniques coupled with atomic absorption
spectrometry have been used for the determination of Hg(II) [15–17]; however, very few
works are found in the literature in which the speciation of mercury and its subsequent
quantification are carried out [18]. Moreover, the analysis of MeHg in water samples is usu-
ally carried out using chromatographic techniques, although a derivatizing treatment of the
sample is required [19,20]. Recently, the use of novel, hybrid sorption nanomaterials such as
graphene oxide functionalized with ionic liquids (IL), and graphene-nickel functionalized
with IL, have allowed the determination of Hg(II), MeHg and phenyl mercury (PhHg)
without using chromatographic systems [21], although the separation of these materials
from the analysis medium is difficult to complete. Efficient recoveries can be achieved by
employing adsorbent materials exhibiting magnetic properties, such as graphitic carbon
nitride [22].

In this work, an adsorbent with a large surface area and excellent characteristics, such
as graphene oxide (GO) has been employed. The GO suspensions are so stable that its
separation by a centrifugation step after the adsorption process is difficult; however, when
GO forms a hybrid material with a magnetic compound such as Fe3O4, the hybrid product,
a Fe3O4@GO composite, is easily separated from the solution by the application of a mag-
netic field. In the literature there are publications on the use of magnetic-reduced graphene
oxide for Hg(II) retention and water purification, either without modification [23,24], or
functionalized with EDTA [25]. Moreover, the development of these and other function-
alized hybrid materials for the determination of Hg(II), both in water and food, has been
recently reviewed [26]. While the analysis of Hg(II) has been extensively studied using
these hybrid materials [27–31], however, the determination of MeHg has been scarcely
implemented [32].

The main species of mercury in water are Hg(II) and mercury-organic species, in par-
ticular MeHg [33]. The latter has a strong bioaccumulation in living organisms. Moreover,
the concentration of mercury in aquatic organisms is determined by its presence in the
water, which in turn is related to the methylation and demethylation processes [34].

In this paper, a novel procedure is proposed based on a dispersive solid-phase mi-
croextraction using Fe3O4@GO as the adsorbent material and ETAAS as the technique for
the determination of both Hg2+ and MeHg. The reliability of the approach has been verified
by means of certified reference materials and then applied to the determination of mercury
in water from different sources.
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2. Results and Discussion
2.1. Effect of pH

The effect of pH on the adsorption of Hg(II) on Fe3O4@GO was studied by preparing
suspensions with different acidity obtained by adding diluted HNO3, sodium hydroxide
or buffer solutions. The results showed that the extent of the retention depended not
only on the pH, but also on the main species present in the usual buffer solutions. The
ability of Hg(II) to form complexes with common species such as chloride, hydroxyl, car-
bonate, sulfate and phosphate [35], ammonium [36] and dissolved organic matter [37]
is known; consequently, the presence of these chemicals affects the determination of
Hg(II) [38]. Due to the fact that in the development of the preliminary experiments the
maximum retention was obtained at a pH slightly higher than 7, it was decided to use
compounds that form buffer solutions lying in the range from 7 to 9 without interfer-
ing in the measurement of mercury, such as 2-amino-2-hydroxymethyl-propane-1,3-diol
(TRIS), N-(2-hydroxyethyl) piperazine-N′-(2-ethanesulfonic acid) (HEPES), 2-[(2-hydroxy-
1,1-bis(hydroxymethyl)ethyl)amino]ethanesulfonic acid (TES) and 2-(N-morpholino)
ethanesulfonic acid (MES). The best outcomes were obtained with the use of TRIS as
the main component of the buffer solution. Consequently, several suspensions were pre-
pared, and the pH adjusted in the 3–10 range by adding sodium acetate-acetic acid or
TRIS-HNO3 buffer solutions, as can be seen in Figure 1 where the results are summarized.
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three experiments.

2.2. Retention of the Different Forms of Mercury

The retention of other mercury species that could eventually exist in the samples to be
analyzed, namely, MeHg, EtHg, PhHg and diphenylmercury (Ph2Hg) was considered. A
retention study of all of them on Fe3O4@GO was carried out at different pH values in the
5–11 range using the buffer solutions above commented. Figure 2 shows the percentage
of retention of these chemicals in the different pH media. As can be seen, the greatest
retention of mercury species occurred at a pH close to 9; however, EtHg and MeHg were
hardly retained on Fe3O4@GO at any pH value.
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Figure 2. Retention of different forms of mercury in Fe3O4@GO at different pH values.

In order to achieve a reliable discrimination between Hg(II) and MeHg, a large number
of experiments were carried out using other composites with magnetic properties. As
Figure 3 shows, none of the sorbents assayed proved suitable for our purpose of speciation;
therefore, a different strategy based in the use of auxiliary complexing agents was tried.
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2.3. Effect of the Presence of Complexing Agents of Mercury Species

Chelating agents with thiol groups, such as L-Cysteine (L-Cys), sodium mercapto
ethane sulfonate (MESNA) and 2,3-dimercaptopropanol (BAL) at different pH values, were
assayed for the purpose. In the presence of L-Cys, the Hg(II) retention decreased and it
was not even observed in the presence of MESNA and BAL.

However, when studying the effect of dithizone (1,5-diphenylthiocarbazone), a quan-
titative retention of all the mercury forms on the adsorbent material was observed. The
amounts of dithizone and Fe3O4@GO to be used to achieve the total retention of Hg(II) and
MeHg on the adsorbent were studied. The results showed that when 1 mL of a 0.05% w/v
dithizone solution was employed, the retention of both forms of mercury was complete.
A 100 µL amount of Fe3O4@GO suspension led to a maximum and constant retention of
the mercury forms. In order to avoid that in the case of real samples, the presence of other
species that can be adsorbed to saturate the active points of the adsorbent, the use of 300 µL
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of the Fe3O4@GO suspension is recommended. This volume involves 7 mg of adsorbent
material per determination.

2.4. Study of Desorption Conditions

As mentioned above, all forms of mercury are retained in the presence of dithizone.
To achieve the speciation of Hg(II) and MeHg, selective desorption media were studied.
The study showed that if the magnetic particles were washed with N-acetyl-L-cysteine,
MeHg was desorbed, while Hg(II) remained retained on the adsorbent material; however,
this procedure was not considered reliable because when the concentration of N-acetyl-L-
cysteine exceeded 0.05 M, the Hg(II) was also partially desorbed.

The strategy for the differentiation was then focused on the medium used for the
adsorption process, since in the presence of dithizone both analytes were retained. Mean-
while, when a TRIS medium at pH = 9 was employed in the absence of dithizone, the Hg(II)
was completely adsorbed together with a small fraction of the MeHg that could be easily
released by the treatment with N-acetyl-L-cysteine.

In both adsorption procedures, the desorption of the species to be quantified by ETAAS
was achieved in an acid medium. Hydrochloric acid is not recommended for use in atomic
absorption spectrometry due to the formation of premature volatile species; therefore,
HNO3 was employed for the purpose. Excellent results were obtained with the use of
a mixture of 50 µL of 8% v/v HNO3 and 50 µL of 30% H2O2 and heating at 80 ◦C in
an ultrasonic bath. After the treatment, the mixture was vortexed for 1 min to obtain a
suspension, then, 10 µL aliquots were taken and injected into the atomizer, before applying
the heating program shown in Table 1. For the Hg (II) determination, before adding the
mixture of 8% v/v HNO3 and 50 µL of 30% H2O2, the adsorbent was washed with N-
acetyl-L-cysteine to desorb the small amount of MeHg that might have been retained in the
sorbent under those adsorption conditions.

Table 1. Instrumental parameters and heating program for mercury determination.

Parameter

Wavelength, nm 253.6519
Slit, nm 0.7
Atomizer Transversal with L’Vov platform
Background correction Zeeman effect
Injected sample volume, µL 10
Chemical modifier 20 µL of 125 mg L−1 Pd(II) solution
Sample volume, mL 10
Heating program

Step Temperature, ◦C Ramp, ◦C s−1 Hold, s

1: Dry 110 10 30
2: Pyrolysis 300 50 20
4: Atomization a,b 1500 2200 5
5: Clean 1500 0 4

Sequence: Inject chemical modifier and run steps 1 to 2. Stop heating and inject sample. Then run
the heating program.

a Internal argon flow stopped 5 s before. b Reading step.

2.5. Optimization of Analysis Conditions by ETAAS

At a first glance, taking into account the thermal and atomic characteristics of mercury,
ETAAS does not appear to be a suitable quantification technique; however, a review of the
literature revealed that by using the appropriate chemical modification, good sensitivity
could be obtained. For example, it has been reported that the use of the mixture of Ag+

and MnO4
- led to excellent results in the determination of mercury in edible oils [18],

waters [39], soils and sediments [40], sludges [41], infant foods [42] and food colorants [43].
Moreover, an interesting alternative is the use of metals such as palladium [13] or irid-
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ium [44] as permanent modifiers that are deposited on the walls of the graphite tube, either
by electrolysis or by previously injecting several aliquots of the modifier [45].

It should be noted that in the procedure here studied, the suspension medium rec-
ommended caused the Pd(0) coating generated by electrolysis to be exhausted relatively
quickly. A 20% loss of sensitivity in just 50 injections of 10 µL of the final suspensions
was verified. An effective alternative was found in the prior injection of palladium and
heating to a calcination temperature to achieve a deposition of the modifier on the surface
of the L’Vov platform. It was found that the use of 20 µL of a 125 mg L−1 Pd(II) solution
was sufficient to achieve mercury stabilization at 300 ◦C and its atomization at 1500 ◦C.
Higher concentrations caused an excessive broadening of the signal that required too long
integration times.

2.6. Calibration, Validation and Application to Real Samples

Applying the heating program recommended in Table 1, the analytical signal of Hg(II)
and MeHg in the samples that were no submitted to the microextraction showed a linear
behavior between 0.05 and 1 mg L−1 with a slope of 0.5814 s mg−1 L. The signal obtained
after the application of the proposed procedure for the determination of the total mercury
content showed a linear behavior between 0.1 and 10 µg L−1 with a calibration slope of
0.0284 s µg−1 L. The limit of detection (LOD), calculated as three times the standard error
of the estimate, was 0.02 µg L−1, the limit of quantification (LOQ) was 0.06 µg L−1 and the
average relative standard deviation for concentrations in the calibration interval was found
to be 5.2%. The enrichment factor, calculated as the ratio of the slopes of a calibration line
obtained in the procedure and the calibration line for the direct measurement of mercury
was found to be 49. Extraction recovery (ER) is defined as the percentage of the total
mercury amount which is extracted into the acceptor phase:

ER, % = EF× Ve

Vac
× 100

where Ve and Vac are the volumes of the acceptor phase and the aqueous sample, respec-
tively. The ERs for the mercury ranged from 97–99%.

When the recommended procedure for the Hg(II) determination was applied, the
calibration slope was 0.0281 s µg−1 L. The LOD and LOQ were 0.02 and 0.06 µg L−1, re-
spectively, and the average relative standard deviation for concentrations in the calibration
interval was found to be 4.7%, while the enrichment factor did not change.

The quantification was carried out by a direct calibration applying the proposed
procedure to standard solutions of the analytes. No matrix effect was detected.

The reliability of the procedure was verified by analyzing the Hg(II) content in three
reference materials: NCS DC 73347 (human hair), DORM-2 (fish muscle) and DORM-4 (fish
protein) that were subjected to a microwave digestion process. In the NCS DC 73347, only
the total mercury content was certified. Table 2 shows the results obtained. As can be seen,
the concentrations found were consistent with the certified values.

Table 2. Total mercury, Hg(II) and MeHg contents in hair and fish reference materials (SRM).

Total Hg, µg g−1 MeHg a, µg g−1 Hg(II) a, µg g−1

SRM Certified Found Certified Found Certified Found

NCS
DC73347

0.360 ±
0.050 0.37 ± 0.07 – 0.37 ± 0.07 – <LOD

DORM-4 0.410 ±
0.055 0.408 ± 0.06 0.355 ±

0.028 0.348 ± 0.04 – 0.06 ± 0.03

DORM-2 4.64 ± 0.26 4.67 ± 0.12 4.47 ± 0.32 4.42 ± 0.06 – 0.26 ± 0.06
DOLT-2 2.14 ± 0.18 2.18 ± 0.09 – 1.49 ± 0.09 – 0.693 ± 0.08

a mean value in Hg ± standard deviation of three digestions.

In addition, another four standard reference samples, namely, NIST SRM 1640a (nat-
ural water with a low salt content), SPS-SW2 (surface water reference material), ERM
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CAO11b (reference material), and NASS-6 (sea water) were also submitted to the rec-
ommended procedure. It is of note that these water samples did not have a certified
mercury content. In this case, the standard addition method was applied. The results are
summarized in Table 3.

Table 3. Total mercury, Hg(II) and MeHg in water reference materials (SRM).

Hg Total, µg L−1 MeHg a, µg L−1 Hg(II) a, µg L−1

SRM Added Found Rec. % Added Found Rec. % Added Found Rec. %

NIST
SRM
1640a

0 <LOD – 0 <LOD – 0 <LOD –
7 6.9 ± 0.1 98 ± 3 2 1.9 ± 0.1 96 ± 2 5 5.0 ± 0.1 99 ± 3
7 7.3 ± 0.1 105 ± 3 5 5.1 ± 0.2 103 ± 3 2 2.2 ± 0.1 110 ± 5

SPS-SW2
0 <LOD – 0 <LOD – 0 <LOD –
7 6.9 ± 0.1 98 ± 3 2 1.9 ± 0.1 96 ± 3 5 4.9 ± 0.1 99 ± 3
7 6.8 ± 0.2 97 ± 2 5 4.9 ± 0.1 98 ± 3 2 1.9 ± 0.1 95 ± 4

ERM
CAO11b

0 <LOD – 0 <LOD – 0 <LOD –
7 7.1 ± 0.1 102 ± 3 2 2.1 ± 0.1 104 ± 4 5 5.0 ± 0.2 101 ± 3
7 7.2 ± 0.1 103 ± 2 5 5.1 ± 0.2 103 ± 3 2 2.0 ± 0.2 101 ± 4

NASS-6
0 <LOD – 0 <LOD – 0 <LOD –
7 6.9 ± 0.2 99 ± 3 2 1.9 ± 0.1 95 ± 3 5 5.0 ± 0.2 101 ± 3
7 6.9 ± 0.1 99 ± 2 5 5.0 ± 0.1 100 ± 3 2 1.9 ± 0.1 96 ± 3

a mean value in Hg ± standard deviation of three determinations.

The procedure proposed for the determination of the total Hg and Hg(II) was also
applied to the determination of these species in the water samples from different sources.
As shown in Table 4, a recovery test was applied because the signal obtained in the samples
was below the detection limit.

Table 4. Total mercury, Hg(II) and MeHg in real water samples (RWS).

Hg Total. µg L−1 MeHg a. µg L−1 Hg(II) a. µg L−1

RWS Added Found Rec. % Added Found Rec. % Added Found Rec. %

M1
0 <LOD – 0 <LOD – 0 <LOD –
4 3.92 ± 0.09 97.9 ± 5.3 2 1.97 ± 0.04 98.5 ± 2.3 2 1.95 ± 0.03 97.3 ± 1.8

M2
0 <LOD – 0 <LOD – 0 <LOD –
4 3.80 ± 0.03 95.1 ± 2.3 2 1.91 ± 0.07 95.5 ± 4.1 2 1.89 ± 0.07 94.5 ± 4.1

M3
0 <LOD – 0 <LOD – 0 <LOD –

4 4.01 ± 0.06 100.3 ±
4.2 2 2.00 ± 0.06 100.0 ± 3.2 2 2.01 ± 0.02 100.6 ±

1.7

M4
0 <LOD – 0 <LOD – 0 <LOD –

4 4.02 ± 0.05 100.6 ±
4.0 2 2.02 ± 0.05 100.9 ± 2.6 2 2.01 ± 0.05 100.3 ±

2.6

M5
0 <LOD – 0 <LOD – 0 <LOD –
4 3.89 ± 0.01 97.2 ± 2.1 2 1.89 ± 0.06 94.5 ± 3.1 2 2.00 ± 0.04 99.9 ± 2.4

M6
0 <LOD – 0 <LOD – 0 <LOD –
4 3.67 ± 0.07 91.8 ± 3.9 2 1.88 ± 0.07 93.9 ± 4.1 2 1.79 ± 0.01 89.7 ± 1.1

M7
0 <LOD – 0 <LOD – 0 <LOD –
4 3.99 ± 0.06 99.7 ± 4.2 2 2.07 ± 0.03 103.5 ± 1.9 2 1.92 ± 0.03 95.8 ± 1.7

M8
0 <LOD – 0 <LOD – 0 <LOD –

4 4.11 ± 0.02 102.6 ±
3.7 2 2.08 ± 0.07 103.8 ± 4.0 2 2.03 ± 0.09 101.4 ±

5.1

M1: drinking water from the supply network; influent water (M2) and effluent (M3) from a wastewater treatment
plant; M4: water from a natural source; M5: snow water; M6: water from the Segura river; M7: water from the La
Cierva reservoir (Mula, Murcia, Spain); M8: water from the Mar Menor. a mean value in Hg ± standard deviation
of three digestions.

Table 5 shows a comparison of the proposed procedure with others that, using different
microextraction techniques, have in common the determination of mercury by ETAAS.
As can be seen, the calibration interval and LOD were comparable to, or even better than
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many of the procedures listed in the table. The sample consumption in the determination
was very low, the adsorbent material was easy to prepare and the magnetic separation
facilitates the experimental procedure and the determination of the two main mercury
species in water.

Table 5. Some recent procedures for ETAAS determination and/or speciation of mercury using
microextraction techniques.

Specie Microextraction
Technique Remarks CM T, ◦C L, µg L−1

LOD,
µg
L−1

EF Ref.

Hg(II),
MeHg, PhHg SPE with MOF Thermal release. None 135–275/800 0.001–0.5 a 0.06 – [11]

Hg(II),
MeHg Double CPE 1: dithizone; 2: thiourea Pd(II) 200/1800 0.4–15 0.23 17.8 [46]

MeHg;
Hg(II) Double HF-LPME 1: MeHg (S2O3

=); 2: Hg(II)
(DDTC). Pd(II) 200;120/

1800; 1300 0.5–8; 0.2–12 0.143;
0.063

103;
95 [47]

MeHg;
Hg(II) SFODME in two steps 1: MeHg (1-undecanol); 2: MeHg

(4-NODP). Pd(II) 250/1300 0.8–8 0.24;
0.25

32.2;
25.7 [48]

Hg(II) LPME with eutectic solvent DDTP. Ir(IV) 210/1100 0.36–60 0.1 98 [49]

Hg(II) SPME with GO + (C4C12Im)Br Methodology in flow and elution
with HNO3. Pd(II) 250/1300 0.02–8 0.014 100 [50]

Hg(II) SPME with Fe3O4@SiO2@DPTH Methodology in flow and elution
in thiourea. Ir(0) 20/1200 0.1–10 0.00785.4 [44]

Hg(II);
MeHg,
Me2Hg,
EtHg,

PhHg,Ph2Hg

DSPME with
Fe3O4@Ag@MESNA
or Fe3O4@Ag@CYS

1: Fe3O4@Ag@MESNA for Hg(II);
2: Fe3O4@Ag@CYS for others.

Ag(I)
+

KMnO4

300/1300 0.03–3.5 0.01 200 [18]

Hg(II) AgNPs and DSPME The amalgamated Hg is dissolved
in HNO3.

Pd(II)
+

Mg(II)
300/1300 0.1–20 0.005 15 [51]

Hg(II) HS-SDME Hg(0) with SnCl2 and drop of
Pd(0). Pd(II) 200/1300 1.5–40 0.48 75 [52]

Hg(II)
DSPME with PdNPs
functionalized with

dodecanethiolate

The nanoparticles are in a mixture
of toluene and chloroform. Pd(II) 250/1300 0.1–10 0.0075 95 [17]

Hg(II),
MeHg HS-SDME with thiourea or APDC Generation of Hg(0) and MeHg

hydride with NaBH4. – 250/1100 17–355 5 35 [53]

Hg(II) HF-LPME three-phase
1: complexation of Hg(II) with
PAN; 2: toluene extraction; 3:

iodide back extraction.
Pd(0) 300/1100 0.2–3 0.06 270 [13]

Hg(II),
MeHg DSPME with Fe3O4@GO 1: Dithizone for total Hg; 2: NAC

for Hg(II). Pd(II) 300/1500 0.1–10 0.02 49 TW

CM: chemical modifier; T: ash and atomization temperatures; EF: enrichment factor; SPE: solid-phase extraction;
MOF: metal organic framework; CPE: cloud point extraction; HF-LPME: hollow fiber liquid phase microextraction;
DDTC: diethyldithiocarbamate; 4-NODP: 4-nitro-o-fenilen diamine; DDTP: diethyldithiophosphate; (C4C12im)Br:
1-butil 3-dodecilimidazolium bromide; Fe3O4@SiO2@DPTH: ferrite-silica-1,5-bis(di-2pyridyl)methylene thiocar-
bohydrazide nanocomposite; MESNA: sodium 2-mercapto ethane sulfonate; CYS: cysteine; HS-SDME: head space
single drop microextraction; DSPME: dispersive solid-phase microextraction; NAC: N-acetyl-L-cysteine; TW: this
work. a mean value in Hg ± standard deviation of three digestions.

3. Materials and Methods
3.1. Materials and Instrumentation

All experiments were carried out using high purity water (resistivity 18 MΩ cm)
obtained with a Millipore system (Millipore, Bedford, MA, USA). The Hg(II) standard solu-
tion (1000 mg L−1 in 1% HNO3, 250 mL) was purchased from Fluka (Buchs, Switzerland).
The standard solution of MeHg 1000 mg L−1 was prepared by dissolving the appropriate
amount of its chloride (Merck, Darmstadt, Germany) in the smallest possible volume
of methanol and diluting to volume with water. Standard solutions of 100 mg mL−1 of
EtHg, PhHg and Ph2Hg were prepared in the minimum amount of acetone or hexane from
the products also supplied by Sigma. Working standard solutions were obtained by an
appropriate dilution and were prepared daily by dilution with ultrapure water. Caution:
all forms of mercury are toxic and suitable precautions must be taken when handling
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them [54–56]. Mercury poisoning can result from inhalation, ingestion, and injection or ab-
sorption through the skin. All forms of mercury penetrate the placental barrier and should
be considered teratogenic and reproductive effectors. The effects may not be noticeable for
months or years. Inorganic mercury salts are toxic (LD50 from 6–200 mg kg−1). Dimethyl
mercury is even more toxic (LD50: 50 µg kg−1) and extreme caution is required when
working with this material.

The solutions of dithizone, L-cysteine, N-acetyl-L-cysteine, 2-Amino-2-hydroxymethyl-
propane-1,3-diol (TRIS), tetramethyl ammonium hydroxide (TMAH), and other reagents
were prepared from reagents supplied by Sigma-Aldrich. The dithizone solution was
prepared by dissolving, with the help of ultrasound, 0.05 g of the product in 100 mL
of a 4:1 (v/v) mixture of acetone and an aqueous solution adjusted to a pH = 9 with
ammonium hydroxide.

The Fe(II) and Fe(III) salts used were FeCl2·4H2O and FeCl3·6H2O, respectively, which
were obtained from Sigma. The graphene oxide was provided by Timesnano (Chengdu
Organic Chemicals Co. Ltd., Chinese Academy of Sciences, Chengdu, China). The manu-
facturer’s specifications indicate a purity > 98%, ash < 1.5%, 1–2 layers and a 1–5 µm of
diameter. The atomic percentage of C and O are 64.71 and 35.29, respectively.

The materials used as the water reference samples were SRM 1640a (trace elements
in natural water) from the National Institute of Standards and Technology (Gaithersburg,
MD, USA), SRMs SPS-SW2 (surface water) and ERM CAO11b (natural water) from LGC
Limited (Teddington, UK), and the NASS-6 material (seawater) from the National Research
Council of Canada, Ottawa, Canada (NRC-CNRC).

To verify the reliability of procedures, the results obtained in the determination of the
total mercury, Hg(II) and MeHg were compared with certified reference materials: DORM-4
(fish protein), DORM-2 (fish muscle) and DOLT-2 (fish liver), supplied by the NRC-CNRC,
as well as the material DC 73347 (human hair) that was supplied by the China National
Analysis Center for Iron and Steel, Beijing, P. R. China.

An Analytik Jena ContrAA 700 high-resolution atomic absorption spectrometer,
equipped with a 300 W xenon short-arc lamp as a continuous radiation source (Analytik
Jena, Germany) was used to carry out all the measurements. A transversely heated graphite
atomizer with pyrolytically coated graphite tubes and a L’Vov platform was used for the
analyte atomization. The data were evaluated using the summed integrated absorbance for
3, 5 or 7 pixels using the software (ASPECT CS v5.1) provided by Analytik Jena.

For the ultrasonic treatment, a 50 W thermostatted ultrasound bath (ATU, Valencia,
Spain) was employed. In the desorption species process, a vortex, Reax model from
Heidolph (Schwabach, Germany) was used. The digestion of the reference materials was
carried out with a microwave oven (Multiwave 3000 Anton-Paar, Perkin Elmer, Shelton,
CT, USA) equipped with pressure and temperature control.

3.2. Preparation of Fe3O4@GO

The Fe3O4@GO was prepared by the precipitation of Fe(II) and Fe(III) salts in the
presence of graphene oxide and ammonium hydroxide. Firstly, a suspension of 0.1 g of
graphene oxide in 50 mL of water was prepared and sonicated for one hour. Then, under a
nitrogen atmosphere, 10 mL of FeCl3·6H2O (0.1475 g mL−1) and FeCl2·4H2O (0.046 g mL−1)
solutions were added dropwise. The mixture was heated at 80 ◦C while being stirred for 10
min. Concentrated ammonium hydroxide was then added slowly until reaching a pH =
11. In this way, a black precipitate of Fe3O4 particles was obtained. The magnetic particles
were separated with the help of an external magnet. The supernatant was decanted and
discarded. The magnetic particles were washed 3 times with 25 mL aliquots of ethanol in
order to remove the excess salts and ions. Finally, they were suspended in 30 mL of water.
The estimated concentration of Fe3O4@GO obtained was 24 mg mL−1.
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3.3. Sample Treatment

For the determination of the total mercury in the reference materials, 0.5 g of this
material was placed into a digestion vial. Then, 4.0 mL of HNO3 acid and 4 mL of 30%
v/v H2O2 were added. The vial was placed into the microwave oven and a power of 1400
W was applied for 20 min. At the end of the digestion program, the mixture was cooled
down before being removed from the microwave unit (about 15 min). Finally, the pH was
adjusted to 5.0 by the addition of a concentrated NaOH solution and the liquid was diluted
to 25 mL with pure water in a volumetric flask.

For the determination of Hg(II) and MeHg, a procedure based on previous studies was
carried out [57,58]. To achieve the solubilization of these mercury species, 0.5 g amounts of
the certified reference materials were accurately weighed into a conical tube. Then, 2 mL
of a 25% (m/v) TMAH solution were added to the sample and the mixture was first kept
at room temperature for three hours and then heated in a water bath at 80 ◦C for 30 min.
Finally, the mixture was cooled and diluted to 25 mL with pure water.

The water samples were filtered immediately after collection using a cellulose nitrate
filter membrane (with a 0.45 µm pore size). Subsequently, they were stored in low-density
polypropylene bottles at 4 ◦C until analysis within 3 days.

3.4. Procedure for the Determination of Total Mercury

A 10 mL sample was placed in a 15 mL tube, and 400 µL of a 0.1 M acetate/acetic
buffer (pH = 5) and 1 mL of a 0.05% w/v dithizone solution were added. The solution was
manually homogenized and 300 µL of the Fe3O4@GO suspension was added. The mixture
was stirred for 10 min. Afterwards, the magnetic particles were separated by action of the
magnet and the supernatant liquid was discarded. The solid residue was suspended in 50
µL of HNO3 at 8% v/v and 50 µL of H2O2 at 30% v/v using ultrasound into a thermostatic
bath at 80 ◦C for 10 min.

An amount of 10 µL of this suspension was injected into the atomizer where 20 µL of
a Pd(II) solution at 125 mg L−1 was previously injected. The heating program shown in
Table 1 was applied, thus obtaining an analytical signal corresponding to the total mercury
content in the sample.

Figure 4 shows a scheme of the extraction process. Complete and incomplete retentions
of the analytes are represented by (1) and (2), respectively.
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3.5. Procedure for the Determination of Hg(II)

A 300 µL volume of a 0.1 mol L−1 buffer solution (TRIS/HNO3 with a pH = 9) was
added to 10 mL of water. The solution was mixed and 300 µL of the Fe3O4@GO suspension
was added then the mixture was stirred for 10 min. Next, the magnetic nanoparticles were
separated by a magnet and the supernatant liquid was discarded. Afterwards, the particles
were washed with 1 mL of 0.01 M N-acetyl-L-cysteine. Finally, the magnetic particles were
suspended in 50 µL of HNO3 at 8% v/v and 50 µL of H2O2 at 30% v/v using ultrasound in
a thermostatic bath at 80 ◦C for 10 min.

A 10 µL volume of this suspension was injected with 20 µL of the Pd(II) solution at
125 mg L−1 and the heating program shown in Table 1 was applied. The measured signal
corresponded to the content of Hg(II) in the sample.

3.6. Procedure for the Determination of MeHg

Since the level of organomercurials different to MeHg was considered negligible for
the samples considered, the content of MeHg was estimated as the difference between the
total content of total mercury and the content of Hg(II).

4. Conclusions

A novel procedure based on a dispersive solid-phase microextraction with Fe3O4@GO
as the adsorbent material for the determination of different forms of mercury is proposed.
For this approach, it is not necessary to resort to sophisticated and relatively expensive
analysis techniques, instead it employs a robust and economical methodology accessible to
many laboratories such as ETAAS. The coupling of an adequate microextraction technique
allowed for reaching the necessary detection limits for mercury and the validation of the
method of analysis of this species. The proposed procedure presents an enrichment factor
of 49 and the determination presents a linear interval between 0.1 and 10 µg L−1 of mercury.
Furthermore, the method was successfully applied to the determination of mercury in
waters of different origins and reference materials.
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