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Abstract: Recently, the application of salicylic acid (SA) for improving a plant’s resistance to abiotic
stresses has increased. A large part of the irrigated land (2.1% out of 19.5%) is severely affected by
salinity stress worldwide. In 2020, total production of wheat (Triticum aestivum) was 761 million tons,
representing the second most produced cereal after maize; therefore, research on its salinity tolerance
is of world concern. Photosynthetic attributes such as net photosynthetic rate (PN), stomatal conduc-
tance (gs), intercellular CO2 concentration (Ci), and transpiration rate (E) were increased significantly
by the application of SA. Salt stress increased antioxidant enzyme activity; however, SA further
boosted their activity along with proline level. We conclude that SA interacts with meristematic cells,
thereby triggering biochemical pathways conductive to the increment in morphological parameters.
Further research is required to dissect the mechanisms of SA within the wheat plants under stress.
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1. Introduction

Salt stress is one of the major constraints for the environment; it reduces plant growth,
mainly in arid and semi-arid conditions [1]. Soil salinity affects almost 800 million hectares
of land all over the world [2]. Salt stress is primarily detected by the root system, and it
alters plant metabolism by activating osmotic stress due to less water availability and ion
toxicity because of nutrient imbalance [3,4]. The toxic impacts of salt stress can differ on
the basis of climatic conditions, intensity of light, plant type, and soil profile [5]. Salinity
stress also manifests as oxidative stress guided by ROS. As a result, ion toxicity directly
leads to chlorosis and necrosis, mostly due to Na+ accretion that obstructs with several
physiological practices in plants [6]. All these responses to salt stress have injurious effects
on plants [7]. To mitigate the toxicity caused by salt stress, various molecules have been
used. In the present study, SA was used as an anti-toxicity agent.

Plants are composed of various growth regulators commonly known as phytohor-
mones, which contribute to diverse plant activities, pathways, and regulating mechanisms
at minimum concentration. Some of the significant growth regulators are gibberellic acid
(GA), ethylene, auxin, cytokinins (CKs), salicylic acid, and brassinosteroids (BRs) [8]. These
hormones work in extreme abiotic stress conditions such as salinity, drought, heat stress,
waterlogging stress, heavy metal, and cold stress. Among them, salicylic acid (SA) is
a phenolic compound consisting of various antioxidant substances. SA comes from the
scientific name of the plant willow tree (Salix alba), and it was first extracted from bark of
the tree in 1928. At first, its name was salicin, but it later changed to SA for its oxidation
capability. It is also known as ortho-hydroxybenzoic acid, which is a colorless, complex,
crystalline compound that helps to produce aspirin. Various metabolic pathways, such as
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flowering and synthesis, can be used to isolate SA in free or conjugated form in the environ-
ment [9,10]. It widely contributes to plant growth, development, respiration, conductance,
and assimilation, especially in stress management. SA actively participates in stomatal
conductance, nutrient elevation, and mobility of enzymes [11]. Plant modulation in stress
is strengthened by the application of SA in oxidative stress. Physiological, morphological,
and biochemical metabolism is altered through the use of SA during environmental stress
in plants. Germination rate, transpiration, and defense mechanisms are also influenced
by SA. It acts as signaling molecule and activates enzymatic functions to trigger abiotic
stressors. The stress-responsive marker gene is associated with SA application under chal-
lenging ecological conditions [12]. Genes such as TLC1 are induced in in vivo conditions,
are activated transcriptionally, and promote signaling [13].

Exogenous SA application helps in improving antioxidant efficacy in various biological
schemes [14]. SA plays an indispensable role in reactive oxygen species (ROS) regulation,
e.g., hydrogen peroxide. Antioxidant enzyme (SOD, CAT, POD, and GR) regulation in
oxidative stress is increased by SA induction. In Haematococcus pluvialis, exogenous SA
induces the ROS activities of SO, APX, and CAT [15]. Antioxidant upregulation is also
found in wheat, pepper, and mustard. Biosynthetic enzyme regulators and proteins are
also induced. Phenylalanine acts as aromatic amino-acid precursor which leads to SA
synthesis [16]. Positive SA applications have been found in soybean, maize, rice, and
sunflower [17]. Cell-responsive and metabolic activities are found in various protein
components of Cucumis sativus which are SA-induced [18]. In maize, the photosynthetic
rate and carbohydrate metabolism are increased during salinity stress [19]. PSII activity is
controlled by SA application in wheat due to the upregulation of antioxidant activities [20].
ATP sulfurylase, enzymatic, and NR activity in mungbean is also stimulated through
SA application [21]. The enzymatic action of ascorbate–glutathione pathway synthase
maintains the redox balance of a plant [22]. SA decreases the proline contents in leaves
and stabilizes membrane activities. Proline accumulation causes deleterious effects in plant
metabolism, which can be mitigated by exogenous SA application [23]. K+ leakage in
root tissues is lessened and H+-ATPase activity is enhanced in Arabidopsis plants, thereby
increasing the plasma membrane exchange capacity and cytosol accumulation [24]. NahG
transgenic Arabidopsis lines are facilitated by the application of SA [25]. Rubisco activity
and pigmentation biosynthesis are stimulated by SA usage [22].

Physiological parameters of plants such as relative water content (RWC) are also
controlled by SA. In plants, an increase in RWC contributes to adaptation in adverse climatic
conditions, sustainability, and water balance [26]. SA treatment works to counterbalance
chlorophyll content, and the chl a/b ratio varies in different stress conditions. SA represents
the genotype-dependent marker responses of chlorophyll [27]. Pretreatment with SA
maintains quick leaf senescence and prevents oxidation damage in plants, which led to
improved RWC levels in barley [28]. Lower SA concentration contributes to enhanced
wheat seed pigmentation and a reduction in transpiration rate, thus evoking stomatal
closure [29]. The uptake of micro- and macro-mineral components from underground is
mitigated in saline conditions through foliar SA application. The interactive role in mineral
and nutrient uptake still needs to be explored. Synergistic and antagonistic crosstalk
between plant hormones plays a vital role in abiotic stress management. ABA and IAA
accumulation occurred due to SA application in wheat and corn [30]. Cd stress is alleviated
by SA application with an auxin-mediated responsive state, and SA is sensitized in the
indole-3-acetic acid (IAA) pathway in the roots of maize [31]. An antagonistic effect is
regulated between SA and jasmonic acid (JA) signaling by the mitogen-activated protein
kinase (MAPK) signaling pathway [32]. Wheat (Triticum aestivum) is the most important
staple food crop produced all over the world, native to Southeast Asia and widely cultivated
since prehistoric times in temperate zones. Wheat not only is an important source of starch
and energy in the diet, but also provides a substantial amount of various essential and
beneficial components [33].
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From the published literature, it is hypothesized that SA can also be used as a mi-
cronutrient to enhance plant growth and development under normal and saline conditions.
Considering the above-described data, an experiment was conducted to dissect the impact
of SA on the improvement of the morpho-physiology of the wheat plants. Seeds were
primed with SA (500 µM) before sowing, whereas NaCl (150 mM) was given through soil.

2. Results
2.1. Effect of SA on Growth Attributes under NaCl Stress

The growth parameters revealed that application of SA through seed soaking signifi-
cantly increased all growth indices in wheat plants compared to control (Figure 1A–F). It
was observed that NaCl drastically reduced plant growth and development when applied
via soil. However, SA significantly reduced the toxicity caused by NaCl in wheat plants. It
is clearly displayed in the Figure 1A–F that plants whose seeds were soaked in SA prior to
sowing and NaCl after sowing led to renewed growth and development of wheat plants
(Figure 1A–F).
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Figure 1. Effect of salicylic acid (500 µM) on shoot length (A), root length (B), shoot fresh mass (C),
root fresh mass (D), shoot dry mass (E), and root dry mass (F) of wheat at 30 DAS under NaCl
(150 mM) stress. All data are the mean of five replicates (n = 5), and vertical bars shows standard
errors (±SE).
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2.2. Photosynthesis and Related Attributes Influenced by NaCl

Figure 2A–E demonstrate the toxicity of wheat plants exposed to NaCl. The effects of
SA are also shown in the same figure, illustrating the positive effects on the chlorophyll
index and photosynthesis attributes. The phytotoxicity of wheat caused by NaCl was also
reduced by SA (Figure 2A–E) following completion of the experiment.
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2.3. Activity of Antioxidant Enzymes in the Presence of SA and/or NaCl

Antioxidant enzyme activity plays an important role in the plant defense mechanism.
In this experiment, SOD, CAT, and POX activities and proline content were significantly in-
creased in the plants that received NaCl. However, these activities were further augmented
with SA, as shown in Figure 3A–D.
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3. Discussion

Salinity stress is a severe serious abiotic stress affecting plant productivity worldwide.
The Food and Agricultural Organization (FAO) published a report describing the annual
agricultural loss, which is approximately 20–40% due to salinity stress [34]. At the global
level, salt stress negatively influences crop growth, disrupts the cellular, metabolic, and
physiological performance, and ultimately reduces the growth of developing crops [35].
Salinity stress may disturb the Calvin cycle, photosystems, stomatal functioning, and
electron transport chain [36]. To overcome the toxicity generated by salt stress, SA is a very
good molecule, because SA is an endogenously secreted signaling molecule that triggers
plant defense mechanisms against stresses. It plays a significant role in regulating abiotic
stress tolerance via thermoregulation, protects against oxidative stress, and influences
different phases of the plant life cycle [37]. SA results in the accumulation of osmolytes,
disturbs mineral nutrition uptake, enhances the scavenging power of ROS, boosts the
deposition of secondary metabolites, and initiates the biosynthesis pathways of other plant
hormones [38]. It was confirmed from the present experiment that NaCl severely reduced
wheat growth; however, SA increased plant growth in the presence/absence of salt stress
in comparison with control plants (Figure 1). The reason behind the growth enhancement
by SA is that it can regulate growth by altering cell division and expansion. Investigations
revealed that NahG transgenic plants showed higher expression of the cell-cycle G1/S
transition regulator cyclin D (CYC3) and increased endoreduplication concentrations, which
led to larger cells [39]. Another way to increase plant growth is through the accumulation
of tryptophan biosynthesis, which is responsible for a speedy growth rate. This evidence
confirms that SA plays an important role in increasing the growth of wheat plants in the
presence/absence of NaCl, which is in accordance with a previous study on maize after SA
treatment [40].

During salinity stress, the leaf chlorophyll index and plant photosynthetic rate are
significantly decreased [41]. The leaf is the primary site of photosynthesis, and the ac-
cumulation of chlorophyll is directly related to the performance of photosynthesis [42].
Results of the present study revealed that NaCl significantly degraded chlorophyll in leaves,
while SA (seed soaking) significantly alleviated the phytotoxicity caused by NaCl in terms
of the chlorophyll index, as shown in Figure 2. Basirat and Mousavi [43] reported that
SA recovered the chlorophyll content under high-temperature stress in Cucumis sativus.
Salinity stress can also reduce PN and the synthesis of organic matter, thus influencing
plant growth [44]. In Gossypium, salinity toxicity considerably reduced growth, weight,
photosynthesis, and related attributes [45]. Results of this study concluded that NaCl
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decreased PN, gs, Ci, and E while SA increased these attributes in the presence/absence of
salt stress (Figure 2). These results are in line with previous studies in Zea mays under salt
stress [19] and Triticum aestivum under drought stress [46].

One of the damaging factors of salinity stress is the induction of ROS production, such
as superoxide (O2

−) and hydrogen peroxide (H2O2) [47]. Antioxidant enzymes protect the
cell structure against ROS formation under stress conditions [48]. Salt stress tolerance can
be certified to increase antioxidant enzyme activity, thus reducing oxidative damage in
plant cells. In the present study, under salinity stress conditions, a considerable increase
in the activities of CAT, POX, and SOD was observed in response to oxidative damage.
ROS production is an important mechanism to maintain the tolerance of plants under
stress conditions. CAT and SOD are defense enzymes that scavenge O2

− radicals into
H2O2, which is further detoxified to water [49]. The increased activities of antioxidative
enzymes under salinity stress indicate that CAT, POX, and SOD play an important role in
scavenging superoxide radicals during salt stress. Application of SA further boosted the
activity of CAT, POX, and SOD, as displayed in Figure 3A–C. Therefore, the cumulative
impact of CAT, POX, and SOD plays a prime role in the detoxification of ROS in plants,
thus minimizing cellular injury due to ROS under salinity stress. The application of SA in
salt-stressed plants induced CAT, POX, and SOD activity in the leaves. SA increases the
activity of antioxidant enzymes, decreases ROS content, and consequently reduces oxidative
damage to the membranes [21,50]. The stimulatory effects of SA on SOD, POX, and CAT
performance were previously confirmed by various researchers in pistachio [51,52]. In line
with the previous reports, the present study showed that SA can play an important role
in modulating CAT, POX, and SOD activity in wheat under salinity stress (Figure 3A–C).
Along with antioxidant enzyme activity, the proline content also increased with salt stress,
and the level further increased upon the application of SA (Figure 3D). Previous studies
also revealed that salinity impacts the proline content in Triticum aestivum [53], Hordeum
vulgare [23], Torreya grandia [54], and soybean [55]. In plants, proline may also help to
regulate leaf water potential (LWP) under salt stress [56].

4. Materials and Methods
4.1. Growth Conditions and Treatments

Triticum aestivum seeds were surface-sterilized with sodium hypochlorite for 5 min
and then washed with double-distilled water (DDW). The sterilized seeds were sown in
pots, which were filled with soil and manure, and then allowed to grow under natural en-
vironmental conditions with photosynthetically active radiation (PAR) of 960 µmol/m2/s.
Prior to sowing, seeds were soaked in 500 µM SA for 12 h. At 15 days after sowing
(DAS), NaCl (150 mM) was administered to the seedlings through the soil. The treat-
ments of this experiment were as follows: control, SA (500 µM), NaCl (150 mM), and
NaCl (150 mM) + SA (500 µM). A simple randomized block design was followed, and dif-
ferent parameters were studied at the stage of 30 days.

4.2. Growth Parameters

Plant growth was measured in the form of length and weight. Shoot and root length
were measured using a meter scale, whereas fresh weight was calculated using a weighing
machine and dry weight was recorded after drying in an oven at 70 ◦C for 72 h.

4.3. Chlorophyll Index

The chlorophyll index was calculated using a SPAD chlorophyll meter (SPAD-502;
Konica, Minolta Sensing, Inc., Sakai, Osaka, Japan).

4.4. Photosynthesis and Related Attributes

The net photosynthetic rate (PN), stomatal conductance (gs), intercellular CO2 concen-
tration (Ci), and transpiration rate (E) of the plant were measured using a portable infrared
gas analyzer (LiCOR 6200, Portable Photosynthesis System, Lincoln, NA, USA).
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4.5. Antioxidant Enzymes

For the estimation of antioxidant enzymes, the leaf tissue (0.5 g) was homogenized in
50 mM phosphate buffer (pH 7.0) containing 1% polyvinylpyrrolidone. The mixture was
centrifuged at 15,000× g for 10 min at 4 ◦C, and the resulting supernatant was used as a
source for estimating the enzyme activities of catalase (CAT, 1.11.1.6), peroxidase (POD, EC
1.11.1.7), and superoxide dismutase (SOD, EC 1.15.1.1). For the estimation of POX activity,
the enzyme extract (0.1 mL) was added to a reaction mixture of pyrogallol, phosphate
buffer (pH 6.8), and 1% H2O2. The change in absorbance was read every 20 s for 2 min
at 420 nm [57]. A control mixture was prepared by adding double-distilled water (DDW)
instead of enzyme extract. The reaction mixture for CAT consisted of phosphate buffer
(pH 6.8), 0.1 M H2O2, and enzyme extract (0.10 mL). Sulfuric acid (H2SO4) was added to
the reaction mixture, and, after its incubation for 1 min at 25 ◦C, it was titrated against
potassium permanganate solution (KMnO4) [57]. The activity of SOD was assayed by
measuring its ability to inhibit the photochemical reduction of nitroblue tetrazolium (NBT)
following the method of Beauchamp and Fridovich [58]. The reaction mixture consisted
of 50 mM phosphate buffer (pH 7.8), 20 µM riboflavin, 75 mM NBT, 13 mM methionine,
and 0.1 mM ethylenediaminetetraacetic acid (EDTA). The mixture was illuminated with
two fluorescent light tubes (40 µmol·m−2·s−1) for 10 min. The absorbance was measured
at 560 nm using a UV–visible spectrophotometer.

The method of Bates et al. [59] was used for the identification of proline content in
young leaves. Leaves were extracted in sulfosalicylic acid, and equal volumes of glacial
acetic acid and ninhydrin solution were also added. The sample was heated at 100 ◦C, and
then 5 mL of toluene was added. Absorbance of the aspired layer was read at 528 nm on a
spectrophotometer. The proline content was expressed as µg·g−1 FW.

4.6. Statistical Analysis

SPSS was used to conduct the analysis of variance (ANOVA). A significant difference
was considered at p < 0.05.

5. Conclusions

From the present study, it can be concluded that NaCl significantly reduced wheat
growth and photosynthesis, along with the chlorophyll index. However, SA treatment
of the seeds through soaking overcame the toxicity caused by NaCl. Proline content and
antioxidant enzymes also played an important role in minimizing the deleterious effects
of ROS within the plant cell. Salinity stress increased the activities of CAT, POX, and
SOD, which were further augmented upon the application of SA. In the future, the exact
mechanism of action of SA under salinity stress will be investigated.
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