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Abstract: A rapid and sensitive technique for frauds determination in vanilla flavors was developed.
The method comprises separation by liquid chromatography followed by an electrochemical detec-
tion using a homemade screen-printed carbon electrode modified with aluminium-doped zirconia
nanoparticles (Al-ZrO2-NPs/SPCE). The prepared nanomaterials (Al-ZrO2-NPs) were characterized
by using X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive
X-ray (EDX). This method allows for the determination of six phenolic compounds of vanilla flavors,
namely, vanillin, p-hydroxybenzoic acid, p-hydroxybenzaldehyde, vanillyl alcohol, vanillic acid and
ethyl vanillin in a linear range between 0.5 and 25 µg g−1, with relative standard deviation values
from 2.89 to 4.76%. Meanwhile, the limits of detection and quantification were in the range of 0.10
to 0.14 µg g−1 and 0.33 to 0.48 µg g−1, respectively. In addition, the Al-ZrO2-NPs/SPCE method
displayed a good reproducibility, high sensitivity, and good selectivity towards the determination
of the vanilla phenolic compounds, making it suitable for the determination of vanilla phenolic
compounds in vanilla real extracts products.

Keywords: aluminium doped zirconia nanoparticles; screen-printed carbon electrode;
HPLC-electrochemical detection; vanilla; food samples

1. Introduction

Nowadays, mixed food products are becoming very popular in the food industry [1],
and their consumption in Europe has significantly increased. Thus, the quality control in
this area is crucial to avoid the occurrence of any side effects. Vanilla is a type of tropical
climbing plant [2] that is considered a major flavouring product, finding its application in
many fields, namely food, cosmetics and pharmaceuticals. It is naturally obtained from
vanilla plantifolia extract and includes vanillin (Van) as the major constituent, together with
several related compounds such as p-hydroxybenzaldehyde (p-HB), p-hydroxybenzoic
acid (p-HBA), vanillic acid (VA) and vanillyl alcohol (V-OH) [3]. Given its popularity, the
high demand and cost of natural vanilla give rise to many adulterations carried out using
Ethyl vanillin (EVan) or synthetic Vanillin.

Until now, several analytical methods have been used for the determination of the
chemical constituents of vanilla flavour, including gas and liquid chromatography (GC &
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LC) [4–6] and capillary electrophoresis (CE) techniques [7]. Electrochemical detection (ECD)
methods are also used for the determination/detection of vanilla phenolic compounds
because of their electro-active properties. ECD is an important technique for the determi-
nation of vanilla phenolic compounds due to its simplicity, fast response, high sensitivity,
and cheap instrumentation [2,8–10]. For the time being, several analytical methods have
been used for the determination/detection of frauds in vanillin products, including CE [7],
CE microchip approach with ECD [11,12], and liquid chromatography-mass spectrometry
(LC-MS) [5]. Each one of these methods has drawbacks for the detection/determination of
the fraud in the vanilla product. Based on these publications, a new method was developed
for rapid screening for the authenticity controlling of vanilla flavours using LC and ECD.

A various number of newly developed electrochemical sensors were recently reported.
Screen printed carbon electrodes (SPCEs) were specially used in many fields including
food, environment and biomedicine [2,13]. In fact, SPCEs are inexpensive and could be
utilised with a small sample volume as a droplet in a miniaturised system. Nevertheless,
the over-potential in the oxidation of vanillin and the other related compounds on several
unmodified electrode surfaces is significant. The intervention of nanomaterials as electrode
surface modifiers provides both a better selectivity and sensitivity [14,15]. To remediate this,
several modified electrodes were tested, such as graphene [16], aluminum-doped titanium
oxide nanoparticles (Al-TiO2-NPs) [2], aluminium-doped copper selenide nanoparticles
(Al-CuSe-NPs) [17], silver nanoparticles (Ag NPs) [18], gold nanoparticles (Au NPs) [19],
reduced graphene oxide with copper selenide (CuSe@rGO) [15] and multi-walled carbon
nanotubes (MWCNTs) [20], molecularly imprinted polymer (MIP) [21], and others [22].

In this work, a new screening electrochemical method for the control of vanilla flavours
is developed using aluminium-doped zirconia nanoparticles as a modifying film for a
screen-printed carbon electrode (Al-ZrO2-NPs/SPCE). A comparison was then carried out,
proving that the homemade sensor provided a better sensitivity than both a non-modified
SPCE and carbon nanotubes-modified screen-printed carbon electrode (CNT-SPCE) while
being applied to phenolic vanilla compounds detection. The performances of the modified
electrode (Al-ZrO2-NPs/SPCE) were then used for the discrimination of frauds in vanilla
flavours and applied to numerous food samples.

2. Results
2.1. Characterisation of Aluminium-Doped ZrO2 Nanoparticles (Al-ZrO2-NPs)

The XRD patterns of Al nanoparticles and Al-ZrO2-NPs illustrated in Figure S1 show
the predominance of Al-NPs and represent the face-centered cubic (fcc) form of aluminium.
Otherwise, the Al-ZrO2-NPs is shown to be constituted from Al-NPs as a major compound
together with ZrO2-NPs with less presence. Using the Scherrer equation (D = Kλ/βcosθ),
it was also concluded that the average particle sizes varied for the films as Al (7.63 nm)
and Al-ZrO2 (12.75 nm). TEM and EDX micrographs for the Al-NPs and Al-ZrO2-NPs
are shown in Figure S2. The EDX micrographs show the surface morphology difference
between the different materials. Figure S2a,c shows the TEM and EDX micrographs of the
Al-NPs without doping with ZrO2-NPs. A large number of precipitates were distributed
homogeneously in the aluminium grains. The homogenous distribution of the Al-NPs
leads to an increase in the hardness and tensile properties. Figure S2b,d shows the TEM
and EDX micrograph of the Al-ZrO2-NPs; the ZrO2-NPs were homogeneously distributed
through the Al grains, indicating that a large amount of Al-NPs had been doped in the
ZrO2-NPs. The TEM and EDX micrograph results confirm the XRD results.

2.2. Optimisation the Experimental Parameters

The detection conditions of the vanilla relative compounds were optimised, starting
with the Al-ZrO2-NPs modification volume. After testing 2.0, 4.0 and 6.0 µL, the optimum
volume was 2.0 µL. Then, a pH condition study showed that the optimum results were
reached under pH 7.4, after testing a pH range from 1 to 12.
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For the chromatographic analysis, different mobile phase compositions of water con-
taining 0.1% (formic acid, acetic acid and phosphoric acid) were tested, and the best results
were accomplished when water/phosphoric acid (0.1% v/v) was used. Methanol, ethanol
and acetonitrile were tested as organic solvents, and due to its compatibility with the mobile
phase, acetonitrile was selected.

The flow rate effect was then studied between 0.5–1.0 mL min−1, and 1.0 mL min−1

provided the best compromises between the retention times and peak area. Moreover,
the injection volume was studied within the 10–40 µL range, demonstrating that a 40 µL
aliquot provided optimum retention times and peak area.

Different electrodes were then tested and illustrated in Figure 1, which shows the
comparison of LC chromatograms obtained at non-modified SPCE, CNT-SPCE and Al-
ZrO2-NPs/SPCE for 40 µL of 25 mg L−1 solutions of Van, Evan, p-HB, p-HBA, V-OH and
VA injected in the mobile phase H2O:H3PO4 (0.1%, v/v) at pH 7.4 and 1.0 mL min−1 flow
rate. As can be seen, the peak currents are considerably larger for all vanilla phenolic
compounds at Al-ZrO2-NPs-SPCE than at CNT-SPCE and bare SPCE. The performance of
the new sensor was also evaluated by a cyclic voltammetry comparison with a non-modified
electrode, as shown in (Figure S1).
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regenerated every 20 analyses, and the modifier dispersion was prepared every week to 
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Figure 1. Comparison between the electrochemical response of vanilla phenolic compounds at
(A) Al-ZrO2-NPs/SPCE, (B) non-modified SPCE and (C) CNT-SPCE. Peak identification; 1: V-OH,
2: p-HBA, 3: VA, 4: p-HB, 5: Van and 6: Evan.

The choice of the applied potential to Al-ZrO2-NPs/SPCE as an amperometric detector
was carried out by plotting the measured current values at different applied potentials
within the range of 0.3–1.1 V after the injection of a 40 µL aliquot of 25 µg mL−1 Van, Evan,
p-HBA, p-HB, VA and VOH solution. The maximum current was obtained at +0.9 V for
the six phenolic compounds (Figure 2). Under the previous conditions, only conditioning
the prepared electrochemical sensor at the beginning of every experiment was enough,
and no cleaning or pretreatment step was needed. Moreover, the modified electrode was
regenerated every 20 analyses, and the modifier dispersion was prepared every week to
maintain the same electrochemical detection and to avoid any type of contamination.

2.3. Validation of the Methodology

Under the optimised conditions, concentrations ranging between 0.5–25 µg g−1 of
vanilla phenolic compounds standard solution were injected, separated and determined. As
shown in Figure 3, the analysis was achieved in less than 11 min, providing a high resolution.
The precision of the present method was expressed by relative standard deviation (RSD%)
for each one of the vanilla relative compounds. The intercept, the regression coefficient of
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the respective calibration curves as well as the theoretical limits of detection (LODs) and
limits of quantification (LOQs) were also calculated (Table 1).
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Figure 3. Chromatogram of the six vanilla phenolic compounds with amperometric detection at
Al-ZrO2-NPs/SPCE.

Table 1. Figures of merit for the determination of vanilla phenolic compounds by LC-ECD devel-
oped method.

Markers Linear Range
(µg g−1) A = (a ± Sa)C + (b ± Sb) R2 LOD

(µg g−1)
LOQ

(µg g−1)
RSD
(%)

V-OH 0.5–25 A = (9.76 × 10−7 ± 7.68 × 10−9 )C
+ (1.27 × 10−7 ± 3.59 × 10−8)

0.9997 0.11 0.36 3.94

p-HBA 0.5–25 A = (3.62 × 10−7 ± 3.4 × 10−9)C
− (1.16 × 10−7 ± 1.73 × 10−8)

0.9997 0.14 0.47 4.32

VA 0.5–25 A = (1.06 × 10−6 ± 1.07 × 10−8)C
− (1.01 × 10−8 ± 5.01 × 10−8)

0.9995 0.14 0.46 2.89

p-HB 0.5–25 A = (1.63 × 10−7 ± 1.07 × 10−9)C
− (1.88 × 10−8 ± 5.46 × 10−9)

0.9998 0.10 0.33 4.33

Van 0.5–25 A = (1.31 × 10−6 ± 1.37 × 10−8)C
+ (1.15 × 10−7 ± 6.39 × 10−8)

0.9995 0.14 0.48 4.76

EVan 0.5–25 A = (1.39 × 10−6 ± 1.44 × 10−8)C
+ (3.68 × 10−7 ± 6.75 × 10−8)

0.9995 0.13 0.48 3.54
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2.4. Analytical Application

The efficiency and reliability of the proposed method was tested by looking into the
origin of the natural vanilla extract samples (A)–(D), as demonstrated in Table 2. First,
the identification of Van together with secondary markers (p-HBA, p-HB and VA) and the
absence of Evan authenticate the natural origin of the sample. This case was illustrated by
the phenolic profile of sample (A) (Figure 4A). The second case, showed by the detection of
Evan in both samples (B) and (D) (Figure 4B,D), lead to the conclusion of the non-natural
origins of the vanilla extract products.

Table 2. Analysis of vanilla real extracts products (A–D) by LC-ECD method.

Markers

Vanilla Natural Extract (A);
µg g−1

Vanilla Extract Product (B);
µg g−1

Vanilla Extract Product (C);
µg g−1

Vanilla Extract Product (D);
µg g−1

ED
Detector

DAD
Detector

ED
Detector

DAD
Detector

ED
Detector

DAD
Detector

ED
Detector

DAD
Detector

V-OH ND ND 31.07 ± 0.32 33.07 ± 1.21 ND ND ND ND

p-HBA 6.67 ± 0.39 7.12 ± 0.5 ND ND ND ND ND ND

VA 9.15 ± 0.19 8.84 ± 0.07 ND ND ND ND ND ND

p-HB 5.10 ± 0.01 6.05 ± 0.14 ND ND ND ND ND ND

Van 98.57 ± 3.61 101.5 ± 1.38 61.62 ± 0.36 59.2 ± 0.81 10.25 ± 0.31 11.06 ± 0.85 ND ND

EVan ND ND 66.02 ± 0.9 68.41 ± 0.22 ND ND 11.7 ± 0.08 10.2 ± 0.26
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Figure 4. Chromatograms obtained by the analysis of four different selected vanilla extract prod-
ucts (A–D).

The analysis of the last real vanilla extract product (C) (Figure 4C) presented a com-
plicated case. In fact, only Van was detected, without the related phenolic compounds
(p-HBA, p-HB and VA). This absence could be confirmed, leading to the conclusion that the
sample was from a non-natural origin or that perhaps the lack of sensitivity of the present
method led to its absence. To elucidate this last situation, a study of the concentrations of
secondary markers, associated with the Van concentration found in sample (C), was carried
out and evaluated by a comparison with typical ratio values (p-HB/Van, p-HBA/Van
and VA/Van) of natural vanilla extracts [5,12,23–25]. As reported in Table 3, the expected
concentration of p-HB ranged between 0.51–1.02 µg g−1, providing an interval higher than
the LOQ of the marker. Thus, the real absence of p-HB can be concluded. On the other
hand, the LOQs were respectively lower and within the expected concentration ranges for
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p-HBA and VA (Table 3). Despite this, the non-natural providence of sample C could be
concluded owning to the absence of p-HB. The developed method provides clear and good
advantages in terms of method sensitivity when compared to previously published reports
on the electrochemical determination of vanillin involving the use of other vanillin sensors
and electrochemical detections (Table 4).

Table 3. Predicted values for the assessment of the reliability of the methodology based on non-
detected markers involved in the fraud confirmation in sample (C).

Ratio Level Limits (1):
Van/p-HBA = 110 − 53

Ratio Level Limits (1):
Van/p-HB = 20 − 10

Ratio Level Limits (1):

Van/VA = 29 − 15

p-HBA (µg g−1) p-HB (µg g−1) VA (µg g−1)

Expected Concentration (2) LOQ Expected Concentration (2) LOQ Expected Concentration (2) LOQ

0.093–0.19 0.47 0.51–1.02 0.33 0.35–0.68 0.46
(1) Bibliographic values obtained for both limits in the ratio: owest and highest limit values in the ratio [5,23–26].
(2) Expected values calculated for the lowest and highest limit values.

Table 4. Comparison of different electrochemical electrodes for vanillin determination.

Electrode Electrochemical Detection Detection Limit Ref.

Glassy carbon electrode
Linear sweep voltammetry

and square-wave
voltammetry

16 µM [27]

PVC/graphite electrode Amperometric 290 µM [28]

Al-ZrO2-NPs/SPCE Amperometric 0.6 µM This work

3. Materials and Methods
3.1. Materials and Standards

Aluminium acetylacetonate (Al(acac)3, 99%), lithium tetrahydruroaluminate (LiAlH4,
95%), mesitylene (97%), polyacrilyc acid, hexafluorozirconic acid, EVAN (ethyl vanillin
98%), V-OH (vanillic alcohol 98%), p-HB (p-hydroxybenzaldehyde 98%) were purchased
from Sigma-Aldrich (St. Louis, MO, USA), while Nafion 117 solution (5% in a mixture
of lower aliphatic alcohols and water), VAN (vanillin), p-HBA (p-hydroxybenzoic Acid)
and VA (vanillic acid) were purchased from Fulka chemie (Buchs, UK). Hydrofluoric
and phosphoric acid (85%) were obtained from Panreac Applichem (Barcelona, Spain).
Methanol, acetonitrile and ethanol (HPLC Grade) were purchased from Fisher Chemical
(Hampton, NJ, USA). Vanilla real extract products (A–D) were purchased from local markets
(Ciudad Real, Spain). High-quality water purified in a Milli-Q system was used (18.2 MΩcm
(25 ◦C) and a TOC value below 5 ppb).

All stock solutions were dissolved in ethanol to obtain a final concentration of 0.1 M
and were preserved at 4 ◦C. The working solutions were made by dilution in the LC mobile
phase solution to the desired concentrations.

3.2. Instruments and Apparatus

The liquid chromatography system used for all determinations was an Agilent 1200 com-
posed of an LC pump, an auto sampler (40-µL injection loop), a degasser and a thermostat
column compartment. A reversed-phase Luna 5 µm PFP (2) 100 A (150 × 4.6 mm) analytical
column was used for the chromatographic separation (no pre-column was used). The sys-
tem was coupled to a CHI812D electrochemical analyzer with an amperometric detection
from CH Instruments (Austin, TX, USA), and the data was processed using CHI812D
electrochemical software. Screen-printed carbon electrodes (SPCE) provided by Dropsens
were utilised for all the measurements. A philips model X’Pert MPD diffractometer using
a CuKα source (λ = 1.5418 Å), programmable divergence slit, graphite monochromator
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and proportional sealed xenon gas detector was used under 40 KV, intensity 40 mA and
an angular range of 20 to 70 degrees (2 Theta), a step of 0.02 degrees 2 Theta and a time
per step of 1.50 s. A Jeol JEM 2011 operating at 200 kV and equipped with an Orius Digital
Camera (2 × 2 MPi) was used for TEM measurements. A Digital Micrograph TM 1.80.70
for GMS 1.8.0 Gatan was employed for HRTEM analysis. A lacey carbon/format-coated
copper grid was used as a support for the sample preparation by deposition of a drop of
the synthesised material suspension. A basic 20 pH-meter (Crison Instruments S.A, Alella,
Spain) and an ultrasound bath (Selecta, Barcelona, Spain) were also used.

3.3. Preparation of Aluminum-Doped ZrO2 Nanoparticles (Al-ZrO2-NPs)

At first, Al(acac)3 was used for the preparation of Al-NPs by mixing the Al(acac)3 with
LiAlH4 and refluxing at 165 ◦C for about 72 h. To prepare Al-NPs, LiAlH4 (30 mmol) was
added to a solution of Al(acac)3 (10 mmol) and Mesitylene already mixed in a three-necked
round-bottom flask. The reaction was refluxed, meanwhile purged with N2 and stirred
for 72 h at 165 ◦C. Then, the mixture was cooled down to room temperature. The formed
precipitate was then crushed and vacuum-dried for 3–4 h. Using 25 mL of cold methanol,
the crude product was washed three times in the aim of avoiding any exothermic reaction
between the solvent and Al-NPs. The excess starting materials were washed with methanol,
filtered, and finally dried under low pressure. Polyacrylic acid (12.06% w/w) was taken in
(87.9% w/w) of pure water, (0.04% w/w) of hydrofluoric acid was added, and the mixture
was mixed for 15 min. In a separate beaker, hexafluorozirconic acid solution (83.7% w/w)
was taken in (83.7% w/w) of pure water and mixed for 10 min. In another separate beaker,
(1.2%) of the first bath and (1.7%) of the second bath were taken. Al-NPs (0.5 g) were taken
in a zirconium bath (25 mL). The mixture was mixed for 3 h, filtrated and dried.

3.4. Preparation of Modified Electrode

A concentration of 1 mg/mL was prepared by dispersing Al-ZrO2-NPs in water (0.5%
Nafion, v:v) [2,17]. Then, the modified SPCEs were prepared by dropping 2 µL of the
previously dispersed Al-ZrO2-NPs on the electrode surface. The modified sensor was then
dried under infrared light for 20 min. The electro-active surface area of the non-modified
electrode was compared with the new sensor by a cyclic voltammetry run of 0.1 mM of
dopamine in a phosphoric acid solution (0.1 M) as electrolyte (Figure S3).

3.5. Sample Preparation

The real samples (A, B, C, and D) were prepared by accurately weighting and dis-
solving 25 mg in 25 mL of ethanol using a volumetric flask and were preserved at 4 ◦C.
All prepared samples were protected from the light, filtered with a 0.45 mm nylon filter
(Millipore Millex-HN) prior to their use and used within 24 h after preparation.

3.6. Chromatographic Conditions and Amperometric Detection at Al-ZrO2-NPs/SPCE

Anterior LC methods used C18 columns with distinct characteristics and different
mobile phase compositions for the separation of vanilla phenolic compounds [5]. A mobile
phase consisting of (A) water: phosphoric acid (0.1% v/v) and (B) acetonitrile with the
following gradient: 20% B for 7 min, 40% B until 14 min and 20% B for one minute was
used. A flowrate of 1.0 mL/min and an injection volume of 40 µL were chosen. The
column temperature was maintained at 25 ◦C. The applied potential for the amperometric
detection was +0.90 V for both standard real sample solutions. A post-run time of 20 min
was performed for the re-equilibration of the column. 0.45 µm nylon membranes were
used to filtrate the solvents before their use.

4. Conclusions

In this work, a new analytical method was developed for spotting frauds in vanilla
products by the selective detection of vanillin and five other related compounds. This
method used liquid chromatography with amperometric detection on a newly modified
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screen-printed carbon electrode (Al-ZrO2-NPs/SPCE). A simple, effective, and rapid elec-
trochemical detection approach was proposed using a home-made sensor for the control of
adulterations in vanilla food samples. By increasing the sensitivity and providing a higher
stability and selectivity, vanilla together with five other related compounds were success-
fully discriminated in order to distinguish the natural origins from the non-natural ones.
Nevertheless, some limitations of the use of Al-ZrO2-NPs/SPCE involve the short electrode
lifetime, poor inter-electrode reproducibility, and the fact that they are not user-friendly.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27092915/s1. Figure S1: XRD patterns measured for
(A) Al-NPs and (B) Al-ZrO2-NPs. Figure S2: TEM and EDX micrographs of (a,c) Al-NPs and (b,d)
Al-ZrO2-NPs. Figure S3: The cyclic voltammograms of 0.1 mM of dopamine in phosphoric acid
solution (0.1 M) as the electrolyte, 50 mV/s scan rate. (a) SPCE and (b) Al-ZrO2-NPs/SPCE.
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