
����������
�������

Citation: Loiseau, P.M.; Balaraman,

K.; Barratt, G.; Pomel, S.; Durand, R.;

Frézard, F.; Figadère, B. The Potential

of 2-Substituted Quinolines as

Antileishmanial Drug Candidates.

Molecules 2022, 27, 2313. https://

doi.org/10.3390/molecules27072313

Academic Editor:

Francesca Mancianti

Received: 22 February 2022

Accepted: 30 March 2022

Published: 2 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Review

The Potential of 2-Substituted Quinolines as Antileishmanial
Drug Candidates
Philippe M. Loiseau 1,* , Kaluvu Balaraman 2 , Gillian Barratt 3 , Sébastien Pomel 1, Rémy Durand 1,
Frédéric Frézard 4 and Bruno Figadère 5

1 Antiparasite Chemotherapy, CNRS, BioCIS, Université Paris-Saclay, 92290 Chatenay-Malabry, France;
sebastien.pomel@universite-paris-saclay.fr (S.P.); remy.durand@universite-paris-saclay.fr (R.D.)

2 Chemistry Department, Georgetown University, 37th and O Streets, Washington, DC 20057, USA;
bala04chem05@gmail.com

3 Institute Galien Paris-Saclay, CNRS, Université Paris-Saclay, 92290 Chatenay-Malabry, France;
gillian.barratt@universite-paris-saclay.fr

4 Department of Physiology and Biophysics-ICB, Universidade Federal de Minas Gerais,
Belo Horizonte 31270-901, Brazil; frezardf@gmail.com

5 Chimie des Substances Naturelles, CNRS, BioCIS, Université Paris-Saclay, 92290 Chatenay-Malabry, France;
bruno.figadere@universite-paris-saclay.fr

* Correspondence: philippe.loiseau@universite-paris-saclay.fr

Abstract: There is a need for new, cost-effective drugs to treat leishmaniasis. A strategy based on
traditional medicine practiced in Bolivia led to the discovery of the 2-substituted quinoline series
as a source of molecules with antileishmanial activity and low toxicity. This review documents
the development of the series from the first isolated natural compounds through several hundred
synthetized molecules to an optimized compound exhibiting an in vitro IC50 value of 0.2 µM against
Leishmania donovani, and a selectivity index value of 187, together with in vivo activity on the L. dono-
vani/hamster model. Attempts to establish structure–activity relationships are described, as well
as studies that have attempted to determine the mechanism of action. For the latter, it appears
that molecules of this series act on multiple targets, possibly including the immune system, which
could explain the observed lack of drug resistance after in vitro drug pressure. We also show how
nanotechnology strategies could valorize these drugs through adapted formulations and how a
mechanistic targeting approach could generate new compounds with increased activity.

Keywords: antiparasitic drugs; 2-substituted quinolines; leishmaniasis; antileishmanial agents;
mechanism of action; drug targeting

1. Introduction

Leishmaniases are a family of neglected tropical and sub-tropical diseases caused
by flagellated protozoan parasites of the Leishmania genus that are transmitted by the
bite of infected phlebotomine sandflies [1]. About twenty Leishmania species can infect
humans, resulting in three main types of leishmaniasis. The visceral leishmaniasis (VL)
form known as kala-azar is lethal in the absence of treatment. Its symptoms are anarchic
fever accompanied by a significant pallor due to anemia, weight loss and, occasionally,
abdominal pain. The spleen (significant splenomegaly), liver (moderate hepatomegaly)
and lymph nodes (lymphadenopathy) all increase in volume [2]. The most common form is
cutaneous leishmaniasis (CL), presenting with cutaneous lesions, while the mucocutaneous
leishmaniasis (MCL) form provokes deep lesions that are prone to bacterial superinfec-
tion. Leishmaniases mainly affect poor people in Africa, Asia and Latin America, and
98 countries were endemic for leishmaniasis in 2021 [1]. The majority of VL cases occur in
eight countries: Brazil, Eritrea, Ethiopia, India, Kenya, Somalia, South Sudan and Sudan;
CL cases are predominant in Afghanistan, Algeria, Brazil, Colombia, Iraq, Pakistan and
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Syria; and MCL cases are present in South America. Approximately 1 billion people are
thought to live in areas endemic for leishmaniasis, and more than 10,000 new cases of VL
occur every year, according to the WHO [3]. Some relapses of visceral leishmaniasis can
lead to post-kala-azar dermal leishmaniasis, while disseminated leishmaniasis is a severe
form of American tegumentary leishmaniasis [2]. Apart from some strictly anthroponotic
species, such as L. donovani and L. tropica, all Leishmania species are zoonotic. Thus, L. infan-
tum infects dogs in the Mediterranean basin and South America. The distribution of the
insect vector depends on climate changes and environmental criteria such as urbanization,
whereas the number of leishmaniasis cases is related to malnutrition, immunosuppression
and population movements.

Despite considerable progress in the understanding of the molecular biology of Leish-
mania sp., antileishmanial chemotherapy remains limited to a few chemical series. Thus,
for the last 70 years, pentavalent antimony compounds such as sodium stibogluconate
(Pentostam®, GSK) and meglumine antimoniate (Glucantime®, Sanofi) have been the
first-line treatment for leishmaniases [4]. Parenteral alternatives to antimonials such as
liposomal amphotericin B (AmBisome®, Gilead) have fewer side effects, while miltefosine
(Impavido®, Zentaris) was the first orally active antileishmanial drug to be developed.
Paromomycin can also be used, but resistance is developing rapidly, meaning that it is used
only in drug combinations [4]. These currently used drugs are presented in Figure 1.
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In general, antiparasitic drugs lack specificity and therefore evoke side effects. There-
fore, there is a crucial need for new chemical series that can act selectively against the
parasites, ideally without the risk of drug resistance. However, the development of new
drugs is increasingly difficult due to increasingly rigorous pharmacological requirements.
Thus, scientific studies regularly highlight new risk factors that need to be taken into
account in a risk–benefit analysis. In addition, the estimated research and development
investment needed to bring a new chemical entity to market is around USD 985 million,
jeopardizing the return on investment in the case of neglected diseases that affect poor
countries [5].

Among the various chemical scaffolds investigated worldwide, benzoxaborole, ni-
troimidazole and aminopyrazole have emerged as promising series which have provided
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some drug candidates with the help of the Drug for Neglected Diseases initiative [6]. Thus,
DNDI-6148, a novel benzoxaborole, and DNDI-0690, a nitroimidazole derivative, are now
preclinical candidates for the treatment of visceral leishmaniasis thanks to their promising
profile [7,8]. In parallel, two proteasome inhibitors, compound GSK 3186899, a pyrazolopy-
rimidine derivative [6], and compound LXE408, [9] a triazolopyrimidine derivative, are
now in preclinical development.

Quinolines are ubiquitous heterocyclic nitrogen used as components of dyes, or sol-
vents for resins, and in the production of various chemical products, including pesti-
cides [10]. In addition, the quinoline scaffold, first discovered in natural substances, is
present in a wide variety of biologically active compounds of both synthetic and natural
origin. After presenting some promising results obtained with the 4-aminoquinoline [11]
and 8-aminoquinoline [12] series, this review focuses on investigations performed on the
2-substituted quinoline series and its ability to provide drug candidates for the treatment
of leishmaniases.

2. The Place of Quinolines as Drug Candidates in the Treatment of Leishmaniases

Historically, quinolines have been among the most effective antimalarial drugs [13].
Quinine, extracted from quinquina bark, was the first isolated natural compound to be used
for the treatment of malaria. Many quinine derivatives were subsequently synthesized,
leading to chloroquine, the use of which became prominent in the early 1950s, through the
World Health Organization program to fight malaria. Thus, chloroquine rapidly became
the first-line treatment for this disease, saving millions of lives in endemic areas, until drug
resistance began to limit its usefulness [14]. As well as chloroquine, the quinoline series
contains a number of other compounds that are very efficient against malaria, including
mefloquine, amodiaquine and primaquine [13].

More recently, attention has been devoted to the possibility of repurposing antimalarial
drugs for the treatment of leishmaniases [15]. The chemical formulae of some quinolines
that are active against leishmaniasis are shown in Figure 2.
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Among the 4-substituted quinolines, chloroquine and mefloquine are active in vitro
against L. amazonensis intracellular amastigotes [15]. In a clinical trial, chloroquine ap-
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peared to be as effective as tetracycline for the treatment of cutaneous leishmaniasis [16].
Combination therapy with agents possessing different mechanisms of action has long been
investigated, with the aim of obtaining synergistic effects and delaying the emergence of
drug resistance. In this respect, chloroquine combined with diminazene merited further
development [17]; however, the combination with paromomycin did not yield encour-
aging results [18]. Several chloroquine derivatives have been evaluated on Leishmania
models in vitro and in vivo [19]. However, the major source of drug candidates was the
8-aminoquinoline series. A first attempt was to reconsider primaquine by using drug
carriers such as nanoparticles to concentrate the drug within the liver where the leishmania
parasites are located in order to diminish its problematic toxicity. Positive results with
efficient and nontoxic formulations were obtained in vitro and on the L. donovani/BALB/c
mouse model [20,21]. However, the use of nanotechnology would add to the final cost
of the drug, which could restrict its use in developing countries. Therefore, no further
investigations were carried out in this direction.

Sitamaquine is an 8-aminoquinoline that has been considered as a potential drug
candidate because of its aqueous solubility, antileishmanial activity by the oral route and
ADME data compatible with drug development [22–24]. One advantage of sitamaquine
is its short elimination half-life that could prevent the rapid emergence of resistance [23].
Studies of its mechanism of action have revealed an affinity for lipid membranes [25]. It
accumulates rapidly within the parasite by diffusion along an electro-chemical gradient and
is concentrated in the cytosol by an energy- and sterol-independent process. The binding
of sitamaquine to membranes was found to be transitory, and an energy-dependent efflux
was observed. This suggests the intervention of a transporter, but this has not yet been
characterized [26]. Sitamaquine provokes oxidative stress in Leishmania donovani promastig-
otes by targeting mitochondrial succinate dehydrogenase [27]. In addition, susceptibility to
sitamaquine does not seem to be mediated by drug accumulation in acidocalcisomes [28].
Since no exploitable activity was observed in experimental cutaneous leishmaniasis, this
compound was further developed for VL treatment only [29]. It reached phase 2 clinical
trials in humans, but adverse effects such methemoglobinemia and nephrotoxicity stopped
further development [30–32]. Furthermore, a sitamaquine-resistant clone of L. donovani was
easily selected by in vitro pressure in the laboratory; despite the absence of cross-resistance
with other antileishmanial drugs, the risk of emergence of sitamaquine resistance is not
negligeable, limiting further pharmaceutical development [33,34].

Another 8-aminoquinoline in clinical development for the treatment of malaria is
tafenoquine [35]. This drug also exhibits antileishmanial activity in vitro against several
Leishmania species, and in vivo in the L. donovani/BALB/c mice model, with 50% effective
dose (ED50) values of 1.2 to 3.5 mg/kg for 5 days [36]. Tafenoquine targets respiratory com-
plex III and provokes apoptosis [37]. Its uptake by Leishmania follows a sterol-dependent
diffusion process [38], and it causes increased glycolytic ATP synthesis [39].

As well as these 4- and 8-aminoquinoline series, many other derivatives have also
been reported to exhibit antileishmanial activity: for example, 6-methoxy-4-methyl-n-[6-
(substituted-1-piperazinyl)hexyl]-8-quinolinamines [40]. In this context, the 2-substituted
quinoline series emerged from an ethnopharmacological study in the 1990s and became a
subject of research as a source of new antileishmanial drugs.

3. The Potential of 2-Substituted Quinolines as Antileishmanial Agents
3.1. From the Plant to Experimental Models of Leishmaniasis

The group of Alain Fournet, from the IRD (Institut de Recherche sur le Développement,
France), observed that Bolivian traditional practitioners used extracts from the bark of
Galipea longiflora, a tree of the Rutaceae family, to treat cutaneous lesions of leishmani-
asis both as ointments and by infusing the stem bark to make decoctions for drinking.
The extraction of compounds from Galipea longiflora bark led to the identification of about
10 original structures with a quinoline scaffold substituted at the 2-position [41,42]. Of these
compounds, 2-n-propylquinoline, 2-propenylquinoline and 2-trans-epoxypropylquinoline
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exhibited moderate in vitro activity on promastigotes of several Leishmania species, with
IC50 values in the range of 100 to 250 µM; values that are high due to their poor aqueous
solubility [43]. Among other compounds identified in the leaves, 2-phenylquinoline and
2-pentylquinoline were also moderately active in vitro, while another active compound,
4-methoxy-2-phenylquinoline, was found in both the bark and roots. These compounds
were next evaluated in vivo on the L. amazonensis and L. venezuelensis/BALB/c mouse mod-
els by subcutaneous or intralesional routes at 100 mg/kg/day for 14 consecutive days [44].
In these models, animals treated with 2-n-propylquinoline or 2-trans-epoxypropylquinoline
according to this regime showed the same reduction in lesion size as those treated with the
reference drug, Glucantime®, administered as subcutaneous injections at 56 mg Sb/kg/day.
Despite the high dose of the tested compounds, no sign of toxicity was detected. In ad-
dition, treatment with the same dose of 2-propenyl quinoline, either by the oral route or
intralesionally, for four to six weeks after infection led to a 95% reduction in the parasite
load [42]. This activity was confirmed in different in vivo protocols using lower doses in
L. amazonensis and L. venezuelensis BALB/C mouse models. Treatment with the quinolines
was administered for 4 to 6 weeks post-infection either by the oral route at 50 mg/kg twice
daily for 15 days or by five intralesional injections at intervals of 4 days with a quino-
line at 50 mg/kg of body weight. The reference drug, N-methylglucamine antimoniate
(Glucantime®), was administered by subcutaneous or intralesional injection (regimes of
14, 28 or 56 mg of pentavalent antimony [Sbv] per kg of body weight daily). In this study,
2-trans-epoxypropyl quinoline was the most active compound: reducing the lesion weight
and parasite burden by 70–95% [44].

As far as VL is concerned, the antileishmanial activity of four 2-substituted quino-
line alkaloids, including 2-n-propylquinoline and 2-trans-epoxypropyl quinoline, was
studied in the L. donovani BALB/c mouse model [45]. Subcutaneous treatment with 2-trans-
epoxypropyl quinoline for 10 days at 100 mg/kg/day resulted in an 87% parasite reduction
in the liver, whereas oral administration of 100 mg/kg of 2-n-propylquinoline once daily
for 5 or 10 days reduced parasite burdens in the liver by 88% and almost 100%, respectively.
This study was the first to demonstrate the activity of 2-substituted quinoline alkaloids in
the experimental treatment of visceral leishmaniasis. Another study in the same model
showed that oral administration of 2-n-propyl quinoline and 2-trans-epoxypropyl quinoline
at 50 mg/kg/day for five consecutive days led to reductions in the parasitic load of 87%
and 70%, respectively. Furthermore, a ten-day treatment with 2-n-propyl quinoline resulted
in a reduction in the parasite burden of 99% [45].

The final selection of the potential drug candidate used chemical stability and acute
oral toxicity as the main discriminating criteria. On this basis, 2-trans-epoxypropyl quino-
line and (2-(2-methoxyethenyl)quinoline) were excluded from further development. Finally,
2-n-propylquinoline was chosen among the natural 2-substituted quinolines isolated from
Galipea longiflora for further studies as an antileishmanial agent [46]. It was the most stable
compound under a variety of conditions and only caused reversible toxicity after treatment
by the oral route at the single dose of 1000 mg/kg, while no sign of toxicity was detected
at 100 mg/kg. It is noteworthy that 2-substituted quinolines were active on a Leishma-
nia donovani line that was resistant to sitamaquine, an 8-aminoquinoline. This suggests
that 2-substituted quinolines and 8-aminoquinoline have at least one different target in
L. donovani [46]. Moreover, six natural 2-substituted quinolines were also active in vivo
in the Plasmodium vinckei petteri/BALB/c mouse model after a single oral treatment at
50 mg/kg [47].

3.2. From Natural Compounds to Synthetic Derivatives and Their Biological Evaluation

All the compounds cited above were synthesized in the laboratory in order to obtain
the quantities necessary to perform in vivo evaluations in different Leishmania species
as well as ADME studies [48]. For example, 2-n-propylquinoline could be prepared in
good yields by two different approaches (Figure 2). Starting from quinoline N-oxide, the
addition at room temperature of chloroformyl isobutanolate followed by the addition at
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low temperature of n-propylmagnesium bromide led to the desired compound with a 67%
yield [49]. However, when 2-chloroquinoline was treated directly with n-propylmagnesium
bromide in the presence of a catalytic amount of Fe(acac)3, 2-n-propylquinoline was ob-
tained with a 95% yield [50]. Several other compounds were subsequently obtained, using
either the iron-catalyzed approach [51–53] or N-oxide quinoline transformation [52–56].
Around 150 compounds were prepared and screened in both in vitro and in vivo models
of leishmaniases [49–55].

This synthesis is quite simple, requiring only a few steps and returning good yields.
As an example, the synthesis of 2-n-propylquinoline is presented in Figure 3.
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Starting from this lead compound, pharmacomodulation was carried out, resulting in
a library of more than 150 compounds designed to establish structure–activity relationships
and thereby optimize the series [49–55].

This process resulted in compounds that are more than 10 times more active in vitro
than 2-n-propylquinoline [55]. IC50 values in the range of 2–4 µM were obtained on
intramacrophage amastigotes of L. donovani and L. infantum in vitro, and in vivo, the
parasite burden was reduced by about 60–70% after an oral treatment at 12.5 mg/kg for
10 consecutive days in the L. donovani/BALB/c mouse model [55]. These compounds
were also active in vivo against L. infantum and L. amazonensis. The most promising were
2-(2-hydroxyprop-2-enyl)quinoline, and (E)-3-quinolin-2-yl-acrylonitrile [55–57] (Table 1).
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Table 1. In vitro and in vivo antileishmanial activity of some of the most promising 2-substituted quinolines.

Compound Chemical Formula

In Vitro Activity Expressed as IC50 (µM) Selectivity In Vivo Significant Activity Monitored

References
L. donovani L. infantum L. ama-

zonensis
Index =

CC50/IC50
on the Leishmania sp./BALB/c Mice Model

Oral Sub-Cutaneous Intralesional Intraperitoneal

2-n-propylquinoline
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Among many other compounds synthesized, some were found to be active in vitro but
not in vivo. This is the case for a series of 18 styrylquinolines for which the
7-aroylstyrylquinoline scaffold appeared to be the most promising, with the most ac-
tive compound, exhibiting a 50% inhibitory concentration of 1.2 µM and a selectivity index
value of 121.5 [62]. This compound was 10-fold and 8-fold more active than miltefosine
and sitamaquine, the reference compounds, with 607-fold and 60-fold higher selectivity
indexes, respectively. However, these encouraging results in vitro were not confirmed
in vivo [62]. Another study on styrylquinolines reported the in vitro activity of the original
styrylquinolines on L. panamensis [63]. In parallel, other series have been prepared with
the aim of optimizing 2-substituted quinolines with similar biological properties [64–67].
Moreover, quinoline-2-one derivatives exhibited in vitro antileishmanial activity in the
range from 1 to 15 µM [68–71].

3.3. Formulations of the Natural 2-n-Propyl Quinoline

Three formulations were prepared for particular in vivo applications. The first was
developed to improve the aqueous solubility of the compound for oral administration [59];
the second was designed to concentrate the compound within the liver as a liposomal
formulation administered by the intravenous route [72]; and the third attempted to enhance
drug solubility for intravenous administration followed by a wide biodistribution by
inclusion in a cyclodextrin [73].

3.3.1. Preparation, Characterization and Biological Activity of a 2-n-Propylquinoline Salt to
Improve Aqueous Solubility

Since 2-n-propyl quinoline is an oil, a camphor sulfonic salt designed to facilitate
in vivo administration was prepared and characterized (Table 1) [59].

This new salt formulation did not alter the intrinsic activity, which remained sim-
ilar to that of the reference oral drug, miltefosine, in the Leishmania donovani/BALB/c
mouse model after treatment by the oral route at 10 mg/kg/day for ten consecutive days
(Table 1). The salt formulation reduced the parasite burden by 76% compared with 89%
for miltefosine, demonstrating the suitable druggability of 2-n-propylquinoline for further
studies [59]. Although this 2-n-propyl quinoline camphor sulfonic acid salt formulation
improved the conditions of oral administration, its solubility was still not sufficient for use
by the intravenous route.

3.3.2. Preparation, Characterization and Biological Activity of a Liposomal Formulation of
2-n-Propylquinoline for the Treatment of Visceral Leishmaniasis by the Intravenous Route

A liposomal formulation of the hydrophobic 2-n-propylquinoline was prepared to
permit intravenous administration and concentrate the drug within the liver, which harbors
a large proportion of the parasites during VL [72]. This formulation, denoted 2-n-PQ-Lip,
had a particle diameter of about 160 nm and an encapsulation yield of 53% of added
drug, so the final 2-n-propylquinoline content of the liposomes used in the biological
experiments was 5% in molar proportions. The liposomal formulation exhibited activity
in vitro, with IC50 values in the range of 3–6 µM against L. donovani intramacrophagic
amastigotes (Table 2).
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Table 2. In vitro and in vivo antileishmanial activity of liposomal formulations of 2-n-propyl quinoline and amphotericin B.

Compound/Formulation

In Vitro Activity on L. donovani
Cytotoxicity

CC50 (µM ± SD)
RAW 264.7 Cells

SI = CC50/IC50

Treatment Regimen
(Intravenous Route)
× 5 Consecutive Days

Number
of Mice

In Vivo Activity
Reduction of Parasite

Burden (%)
IC50 (µM ± SD)

Axenic
Amastigotes

Intramacrophage
Amastigotes

2-n-PQ-Lip 3.10 ± 0.25 Eq 2-n-PQ 5.84 ± 0.31 Eq 2-n-PQ 74.09 ± 6.47 Eq 2-n-PQ 12.7 3 mg/kg Eq 2-n-PQ 8 83.8 a

1.5 mg/kg Eq 2-n-PQ 8 32.5 a

0.75 mg/kg Eq 2-n-PQ 8 5.2
2-n-PQ-AmB-Lip 2.02 ± 0.23 Eq 2-n-PQ 4.50 ± 0.23 Eq 2-n-PQ 58.31 ± 7.32 Eq 2-n-PQ 4.3 (1.5 mg Eq 2-n-PQ + 0.012 mg Eq AmB)/kg 8 89.0 a

0.003 Eq AmB 0.006 Eq AmB 0.08 Eq AmB (0.75 mg Eq 2-n-PQ + 0.006 mg Eq AmB)/kg 8 86.5 a

(0.37 mg Eq 2-n-PQ + 0.003 mg Eq AmB)/kg 8 10.3
AmBisome® 2.54 ± 0.70 Eq AmB 1.51 ± 0.22 Eq AmB 38.50 ± 2.37 Eq 2-n-PQ 25.5 1 mg Eq AmB/kg 8 88.7 a

0.25 mg Eq AmB/kg 8 27.1
0.006 mg Eq AmB/kg 8 2.3

Blank liposomes Inactive Inactive / / Same suspension 10 5.7
2-n-propylquinoline (2PQ) >100 >100 / / / / /

Control (vehicle) Inactive Inactive Inactive / 0.2 mL 12 0

2-n-PQ: 2-n-propyl quinoline; AmB: Amphotericin B; AmBisome®: Liposomal formulation of amphotericin B; 2-n-PQ-Lip: Liposomal formulation of 2-n-propyl quinoline; 2-n-PQ-
AmB-Lip: Liposomal formulation of 2-n-propyl quinoline and amphotericin B; Eq 2-n-PQ: Equivalent 2-n-PQ; Eq AmB: Equivalent AmB; SI = Selectivity Index = CC50/IC50 on
intramacrophage amastigotes; a Significant versus control mice: p < 0.05.



Molecules 2022, 27, 2313 10 of 21

Intravenous 2-n-PQ-Lip was active in the L. donovani mouse model at 3 mg equivalent 2-
n-propylquinoline/kg/day × 5 days, a dose level that could be achieved in clinical settings.
In addition, a liposomal formulation combining 2-n-propylquinoline at 0.75 mg/kg and
amphotericin B at 6 µg/kg/day for 5 days showed a significant synergistic effect in vivo
(Table 2) [72]. These results indicate the potential of 2-n-PQ-Lip as a promising formulation
for further investigation in various leishmaniasis models (Figure 4).
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3.3.3. Preparation, Characterization and Biological Activity of a Formulation of
2-n-Propylquinoline with Hydroxypropyl Beta-Cyclodextrin for the Treatment of Different
Manifestations of Leishmaniasis

Since 2-n-propylquinoline had good antileishmanial activity in vivo after adminis-
tration by the oral route in various animal models, there was an interest to develop an
intravenous formulation of 2-n-propylquinoline for use in disseminated leishmaniasis.
However, the lipophilicity of this compound necessitates a suitable formulation for the
intravenous route. With this in mind, a formulation of 2-n-propylquinoline with hydrox-
ypropyl beta-cyclodextrin (2-n-PQ-HPC) was prepared, characterized and evaluated on
Leishmania donovani in vitro and in vivo [73]. This formulation enhanced the in vitro activ-
ity of the compound, with an IC50 value of 6 µM on intramacrophagic amastigotes, and
was active both on wild-type and drug-resistant parasites. An interesting point was that
2-n-PQ-HPC did not generate drug resistance after in vitro drug pressure. 2-n-PQ-HPC
was also active on the L. donovani/BALB/c mouse model with an intravenous treatment
regime of 10 mg/kg/day on 10 consecutive days, without toxicity. A pharmacokinetic
study in rats after intravenous administration of the formulation at 10 mg/kg showed that
the plasma concentrations of 2-n-propylquinoline rapidly declined bi-exponentially with
a half-life of 58.7 min, and that the apparent volume of distribution was high, indicating
that 2-n-propylquinoline was well distributed throughout the tissues, favoring parasite
elimination in disseminated leishmaniasis [73]. This formulation merits further investiga-
tion on other Leishmania models, such as L. infantum in the dog for a potential veterinary
development (Figure 4).

3.4. Entering the DNDi Pipeline to Obtain Second-Generation 2-Substituted Quinolines

Taking into account the published data concerning the activity of 2-substituted quino-
lines, DNDi accepted a project aimed at optimizing the chemical series of 2-substituted
quinolines in partnership with Advinus Therapeutics, Bangalore, India. Thus, a library of
more than three hundred 2-substituted quinoline compounds was synthesized to identify
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a potential drug candidate to treat VL [61]. These compounds were evaluated for their
in vitro and in vivo biological activity against Leishmania donovani at the CDRI, Lucknow,
India, according to the workflow presented in Figure 5. The metabolic stability of these
compounds with improved metabolic stability was also generated by the introduction
of halogen substituents. As a result, compound 26 g (3-(6-chloro-7-fluoro-4-morpholino)
quinoline prop-2-en-1-ol) was found to be the most active, with an IC50 value of 0.2 µM and
a selectivity index of more than 180 (Table 1) [61]. The hydrochloride salt of compound 26 g
showed an 84% reduction in the parasite burden after oral treatment at 50 mg/kg twice
daily for 5 days in the L. donovani hamster model. The efficacy correlated well with the
pharmacokinetic data that indicated a wide distribution of the compound. In vitro ADME
characterization of the lead compound 26 g was undertaken, and some structural deriva-
tives were synthesized and evaluated for their antileishmanial activity [74]. Compound
26 g appeared to permeate very well in the intestinal PAMPA model and was moderately
bound to mouse and human plasma proteins (85–95% bound), and its blood-to-plasma
concentration ratio was less than one, but it was instable in blood [74]. Compound 26 g
was not a substrate of CYP450 forms CYP2C9, 2C19, 2D6 and 3A4. It showed inhibition of
CYP1A2, with an IC50 value of 0.50 µM. Some derivatives of compound 26 g were synthe-
sized and tested for their in vitro antileishmanial activity against Leishmania donovani. Since
these compounds exhibited similar activity to compound 26 g, this original compound
remains the drug candidate to be investigated further.
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3.5. Structure–Activity Relationships
3.5.1. Natural Compounds and Synthetic Compounds of the First Generation

When considering the 2-substituted quinolines of the first generation, a collection of
about 150 compounds, there were no clear-cut structure–activity relationships emerging
from the in vitro results. However, two structural parameters seem to predict the best
combination of in vitro and in vivo activity: the carbon-2 substitution being an alkyl chain
of three carbon atoms, with one unsaturation at the alpha or beta position [41–46,48–57].

3.5.2. DNDi Series

Structure–activity studies were carried out with two objectives: to increase the an-
tileishmanial activity and to improve the metabolic stability by introducing halogens,
amines and aromatic rings at different positions on the quinoline ring. The structure–
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activity relationships can be summarized as follows: The best side chain on the carbon-2
position is a propenyl-alcohol, but this is oxidized to an inactive carboxylic acid. The best
substituents on the carbon-4 position were found to be the following groups: morpholino,
4-F-phenyl and 4-OMe phenyl, providing better activity and solubility. On the carbon-6 and
carbon-7, the best substitutions were 6-Cl and 7-F, improving metabolic stability rather than
increasing activity [61,74] (Figure 6). Finally, all these modifications led to compound 26 g:
3-(6-chloro-7-fluoro-4-morpholino) quinoline prop-2-en-1-ol, as the most potent derivative,
with an IC50 value of 0.22 µM and a selectivity index value of 187 [61] (Table 1). This
compound exhibited improved metabolic stability in human and mouse liver microsomes
but not in hamster liver microsomes [61,74]. As stated above, compound 26 g reduced the
parasite burden by 84% after an oral treatment at 50 mg/kg/day × 5 twice daily on the
L. donovani/hamster model, whereas miltefosine, the reference drug, reduced the parasite
burden by 96% after an oral treatment at 30 mg/kg × 5 once daily [61].

Molecules 2022, 27, x FOR PEER REVIEW 13 of 22 
 

 

3.5.2. DNDi Series 
Structure–activity studies were carried out with two objectives: to increase the an-

tileishmanial activity and to improve the metabolic stability by introducing halogens, 
amines and aromatic rings at different positions on the quinoline ring. The structure–ac-
tivity relationships can be summarized as follows: The best side chain on the carbon-2 
position is a propenyl-alcohol, but this is oxidized to an inactive carboxylic acid. The best 
substituents on the carbon-4 position were found to be the following groups: morpholino, 
4-F-phenyl and 4-OMe phenyl, providing better activity and solubility. On the carbon-6 
and carbon-7, the best substitutions were 6-Cl and 7-F, improving metabolic stability ra-
ther than increasing activity [61,74] (Figure 6). Finally, all these modifications led to com-
pound 26g: 3-(6-chloro-7-fluoro-4-morpholino) quinoline prop-2-en-1-ol, as the most po-
tent derivative, with an IC50 value of 0.22 µM and a selectivity index value of 187 [61] 
(Table 1). This compound exhibited improved metabolic stability in human and mouse 
liver microsomes but not in hamster liver microsomes [61,74]. As stated above, compound 
26g reduced the parasite burden by 84% after an oral treatment at 50 mg/kg/day × 5 twice 
daily on the L. donovani/hamster model, whereas miltefosine, the reference drug, reduced 
the parasite burden by 96% after an oral treatment at 30 mg/kg × 5 once daily [61]. 

 
Figure 6. Structure–activity relationships of the 2-substituted quinolines. 

3.6. Mechanism of Action 
The mechanism of action of small molecules such as quinolines can be determined in 

a number of ways. The first approach is to understand the biodistribution of 2-substituted 
quinolines, which requires an analytical method to quantify them. For this, a 
SPE/HPLC/DAD method was developed for the in vivo monitoring of several antileish-
manial 2-substituted quinolines [75]. Two linear gradients were used to ensure the reso-
lution of metabolites. The recovery of quinolines from rat plasma was in the range of 80 
to 88%. From a drug development perspective, the apparent pK(a), lipophilicity and sol-
ubility were determined, as well as the extent of binding to albumin and other plasma 
proteins [75]. Using this method, liver microsome and hepatocyte-mediated biotransfor-
mation of some 2-substituted quinolines could be studied [76], as well as the different 
isoforms of rat cytochrome P450 responsible for the biotransformation of 2-n-propyl quin-
oline. Incubation of 2-n-propylquinoline with microsomes led mainly to hydroxylation of 
the side chain, involving many cytochromes: predominantly CYP2B1, CYP2A6 and 
CYP1A1 (at more than 80%). In contrast, minor metabolites hydroxylated on the quinoline 
ring involved fewer cytochromes [76]. The hydroxylated products of 2-n-propyl quinoline 
were conjugated with glucuronic acid in rat hepatocyte systems. Compounds containing 
a propenyl chain functionalized at the gamma position by either a nitrile or an alcohol 
(the latter compound being 2-(2-hydroxyprop-2-enyl)quinoline) mainly reacted with glu-
tathione and underwent no further metabolism. However, since this reaction is reversible, 

N
OH

Best side-chain : propenyl alcohol, 
however gets oxidised to inactive acid 
carboxylic.
Other side-chains : im proved m etabolic 
stability but loss of activity

Best substitutions (potency and solubility 
im provem ent) : 
- morpholine
- 4-F-phenyl
- 4-OMe-phenyl

Best substitution pattern
(m etabolic stability and bioactivity) :
6-Cl and 7-F

Figure 6. Structure–activity relationships of the 2-substituted quinolines.

3.6. Mechanism of Action

The mechanism of action of small molecules such as quinolines can be determined in
a number of ways. The first approach is to understand the biodistribution of 2-substituted
quinolines, which requires an analytical method to quantify them. For this, a SPE/HPLC/
DAD method was developed for the in vivo monitoring of several antileishmanial 2-
substituted quinolines [75]. Two linear gradients were used to ensure the resolution of
metabolites. The recovery of quinolines from rat plasma was in the range of 80 to 88%.
From a drug development perspective, the apparent pK(a), lipophilicity and solubility were
determined, as well as the extent of binding to albumin and other plasma proteins [75].
Using this method, liver microsome and hepatocyte-mediated biotransformation of some
2-substituted quinolines could be studied [76], as well as the different isoforms of rat
cytochrome P450 responsible for the biotransformation of 2-n-propyl quinoline. Incubation
of 2-n-propylquinoline with microsomes led mainly to hydroxylation of the side chain,
involving many cytochromes: predominantly CYP2B1, CYP2A6 and CYP1A1 (at more than
80%). In contrast, minor metabolites hydroxylated on the quinoline ring involved fewer
cytochromes [76]. The hydroxylated products of 2-n-propyl quinoline were conjugated
with glucuronic acid in rat hepatocyte systems. Compounds containing a propenyl chain
functionalized at the gamma position by either a nitrile or an alcohol (the latter compound
being 2-(2-hydroxyprop-2-enyl)quinoline) mainly reacted with glutathione and under-
went no further metabolism. However, since this reaction is reversible, the compound
2-(2-hydroxyprop-2-enyl)quinoline could be released from glutathione and underwent
alternative reaction pathways [75,76]. Therefore, this analytical method revealed that the
nature of the substitution on the carbon-2 position determines the metabolic routes that
the compound follows [75]. Moreover, some quinolines substituted on their carbon-2
could not be detected in plasma during pharmacokinetic studies, suggesting their possible
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sequestration by blood components. 2-(2-Hydroxyprop-2-enyl)quinoline showed a strong
affinity for red blood cells (RBCs), whereas 2-n-propylquinoline did not bind [58]. This
binding was a saturable, temperature-dependent process and was positively correlated
with the in vitro antileishmanial activity of the quinolines, with those that bound most
to RBCs being the most active. A rapid and spontaneous reaction with thiol groups was
demonstrated for unsaturated quinolines such as 2-(2-hydroxyprop-2-enyl)quinoline, sug-
gesting a mechanism of binding to proteins [58]. This reactivity with RBCs could play a role
in targeting compounds to the parasite, since senescent RBCs are destroyed in the spleen
where parasites also are located. These results illustrate that quinoline analogues with
similar antileishmanial activity in vivo can behave differently in the blood compartment.

A series of 2-substituted aryl quinolines was synthesized and evaluated for activity
against L. braziliensis [77]. One of them, 6-ethyl-2-phenylquinoline, was active in vitro
without toxicity for macrophages. The mechanism of action described for this compound
involves an alteration of parasite bioenergetics, through a disruption of the mitochondrial
electrochemical potential, an alkalinization of acidocalcisomes and the inhibition of ergos-
terol biosynthesis in promastigote forms [77]. It is not surprising that, as small molecules,
the 2-substituted quinoline series may have plurifactorial mechanisms of action.

Some 2-substituted indolyl quinolines have been described as inhibiting the relaxation
and decatenation reactions catalyzed by type I and type II DNA topoisomerases of L. dono-
vani [78]. In this study, three compounds acted as inhibitors of two types of topoisomerase
in Leishmania, with the parasitic enzymes being more susceptible to these compounds than
other eukaryotic topoisomerases [78]. Unfortunately, there are no published data about
the in vitro antileishmanial activity of these compounds. Since topoisomerases have been
identified as interesting biological targets in Leishmania, it would be interesting to determine
structure–activity relationships to select more specific compounds, as no other 2-substituted
quinolines have yet been studied on these targets [79].

A study reported the synthesis and antileishmanial evaluation of hybrid tetrahydro-
quinoline and 2-substituted quinoline derivatives with phosphorated groups, on intra-
macrophagic amastigotes of L. infantum [80]. Some compounds in this series displayed an
activity and a selectivity index similar to those of the standard drug amphotericin B (SI
between 43 and 57). One of them showed a high degree of inhibition towards Leishmania
topoisomerase IB. A theoretical study of their stereoelectronic properties, of the application
of docking-based virtual screening methods and of the molecular electrostatic potential
with predictive druggability analyses was also described [80].

Although an unpublished metabolomic analysis has been performed on two 2-substituted
quinolines (Pomel S., personal communication), it did not reveal a clear over/under-
expression of metabolites, suggesting a multitarget mechanism of action. A complementary
pharmacoproteomic approach would yield conclusive information. In parallel, a study has
reported on the relationship between the antileishmanial activity of quinolinic alkaloids
from Galipea longiflora Krause, known as Evanta, and their effect on the immune system [81].
Thus, pretreatment of spleen cells in vitro with an alkaloid extract of Evanta (AEE) was
found to interfere with proliferation and interferon-γ (IFN-γ) production in lymphocytes
polyclonally activated with either concanavalin A or anti-CD3. In addition, in vitro and
in vivo treatment reduced recall lymphocyte responses, as measured by IFN-γ production
(55% and 63% reduction compared to untreated cells, respectively), and the production of
IL-12 and TNF was inhibited. In contrast, meglumine antimoniate (SbV) did not provoke
these effects. The footpad thickness and the parasite load were efficiently controlled after
treatment with AEE in the L. braziliensis mouse model. A combination treatment of AEE
and meglumine antimoniate returned better results compared with AEE or SbV alone [81].
These results suggest that it would be interesting to test the effects of pure 2-substituted
quinolines from this Galipea longiflora extract in the immune system.
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3.7. Drug Resistance

In order to appreciate the risk of drug resistance, in vitro drug pressure with a hydrox-
ypropyl beta-cyclodextrin formulation of the natural compound 2-n-propylquinoline was
applied to promastigote cultures of L. donovani, L. chagasi and two strains of L. major [73].
This drug pressure did not lead to an increase in the IC50 values of the 2-n-propylquinoline
formulation to more than twice those of the wild-type parent strains (Figure 7). With
the exception of L. major CRE26, for which no difference in IC50 was observed, the drug
susceptibility slowly decreased and reached a plateau after 7 months of drug pressure [73].
However, the difference in IC50 values could not be considered as drug resistance because
the resistance index, as the ratio of IC50 after drug pressure/IC50 before drug pressure, was
less than 4. This absence of drug resistance is interesting for potential drug development.
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Figure 7. Kinetics of Leishmania sp. susceptibility to 2-n-propyl quinoline hydroxypropyl beta-
cyclodextin under in vitro stepwise drug pressure [73].

The absorption of drugs through the oral route can be affected by their susceptibility
to efflux mediated by intestinal P-glycoprotein (P-gp). Overexpression of this protein is
often a mechanism of drug resistance in Leishmania. Thus, the possible inhibitory effect
of 2-n-propylquinoline on P-gp activity was investigated, at the level of the intestine [82].
Rat everted gut sacs and human intestinal Caco-2 cell lines were used in this study. It was
observed that 2-n-propylquinoline inhibited P-gp activity with two substrates (rhodamine
123 and digoxin), and two inhibitors (cyclosporin A and verapamil) [82]. These results
suggest that 2-n-propylquinoline could be associated with another antileishmanial drug in
oral treatment to obtain better bioavailability of the second drug by inhibiting P-gp. Further-
more, this also suggests, by analogy, that 2-n-propylquinoline could inhibit Leishmania ABC
transporters, which could help to explain the absence of drug resistance. Although these
results remain to be confirmed on Leishmania, they suggest that it could be possible to use
2-substituted quinolines to control multi-drug resistance in Leishmania. Another advantage
is that no cross-resistance was observed between 2-n-propylquinoline and amphotericin
B, miltefosine or antimonials. When these drug combinations were studied in vitro, the
interactions between 2-n-propylquinoline and amphotericin B, miltefosine and antimonials
were found to be additive [73]. An unpublished metabolomics analysis performed on
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2-(2-hydroxyprop-2-enyl)quinoline (Pomel, data not shown) did not identify a specific
target, suggesting that the drug could affect multiple targets, which is another factor that
could explain the absence of significant drug resistance.

3.8. Orientating the Mechanism of Action of 2-Substituted Quinolines: Mechanistic Targeting for a
New Series of Compounds
3.8.1. Targeting an Enzyme Involved in Host Cell Recognition

Another strategic approach to valorize 2-substituted quinolines would be to re-direct
the series towards a specific target for which the preliminary results are encouraging, since
the generation of new inhibitors directed against a leishmania-specific target is an attrac-
tive strategy to expand the chemotherapeutic arsenal. GDP-Mannose Pyrophosphorylase
(GDP-MP) is an enzyme involved in host–parasite recognition considered to be essential
for parasite infection [83,84]. GDP-MPs were purified from L. mexicana (LmGDP-MP) and
L. donovani (LdGDP-MP), and their enzymatic properties were compared with the human
enzyme (hGDP-MP) [60,85–87]. From a rationale design strategy including molecular mod-
eling of 100 potential inhibitors, four compounds were identified as having a promising
and specific inhibitory effect on parasite GDP-MP associated with antileishmanial activ-
ity. One of them, belonging to the 2-substituted quinoline series, exhibited competitive
inhibition on LdGDP-MP [88,89]. This compound, 99 (tetraisopropyl (1-(1-(2-(quinolin-2-
ylmethoxy)ethyl)-1H-1,2,3-triazol-4-yl)but-3-yne-1,1-5,3 diyl)bis(phosphonate), showed
promising in vitro activity against intramacrophagic amastigotes of L. donovani, with an
IC50 value of 0.63 µM (Table 2) [60]. These encouraging results suggest that compound
99 merits further investigation: in particular, by using nanotechnology to concentrate
the molecule in the organs harboring the parasites, particularly the liver in the case of
visceral leishmaniasis.

3.8.2. Conferring Chelating Properties on 2-Substituted Quinolines

Chelating agents can inhibit parasite growth, presumably by depriving them of iron,
an essential nutrient for cell growth and division. Computational methods were used
to explore the Fe3+-chelating abilities of a set of quinoline–hydrazone hybrids. A direct
relationship between biological activity and the Fe3+-chelating ability was observed for
these compounds, thereby enriching the range of mechanisms of action of 2-substituted
quinolines [90]. In addition, the metabolic stability of compounds can be modulated by
their coordination to the heme-iron cytochrome P450 [91].

Another series of quinoline derivatives were found to interact with hemin, inhibiting
its degradation and generating oxidative stress that could not be counteracted by the
antioxidant defense system of the parasite [92].

3.8.3. Obtaining New Metallodrugs

A study evaluated the potential interest of combining 2-substituted quinolines with
gold to produce gold(I) complexes, given that metal drugs are an important field of research
for antileishmanial drug discovery [93]. In vitro activity was observed for some compounds
at submicromolar concentrations on L. infantum intramacrophagic amastigotes, with a
selectivity index for the best compound of around 10 [93].

3.8.4. Mechanism of Action of Dual Compounds

Metronidazole, an antiprotozoal drug with interesting antileishmanial activity, has
been combined chemically with a series of 2-substituted quinolines, leading to metron-
idazole hybrid compounds [94]. These derivatives were tested against L. donovani in vitro
and in vivo. They exhibited activity in vitro, with IC50 values in the range of 4 to 10 µM,
and were effective in vivo on the L. donovani/BALB/c mouse model, reducing the parasite
burden in the liver and spleen by 80%. The best compound, 15i, triggered oxidative stress
that provoked a bioenergetic collapse and apoptosis, as revealed by a decrease in ATP
production and the mitochondrial membrane potential [94].
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4. Antiviral Activities of 2-Substituted Quinolines and the Interest of this Series
in Co-Infections

Recently, there has been interest shown in the antiviral properties of molecules based
on a quinoline scaffold, particularly for coronavirus infection [95]. Persoons et al. (2021)
performed a systematic scan of the anti-coronavirus potential of a range of quinoline-
based antimalarial drugs and found broad-spectrum in vitro activity for chloroquine, hy-
droxychloroquine, mefloquine, ferroquine and amodiaquine [96]. 4-Anilinoquinolines
and 4-anilinoquinazolines have been screened against dengue virus, and several active
molecules with low toxicity have been identified [97,98].

Taking this into account, and since co-infection with leishmaniasis and HIV enhances
immunosuppression, it is worth evaluating whether 2-substituted quinolines could pro-
vide a double pharmacological benefit by combining an antileishmanial and an antiviral
effect. Some of these compounds were first evaluated in vitro at 10 µM against HTLV-1-
transformed cells and were active under these conditions [99,100]. Some 2-substituted
quinolines were able to downregulate the spontaneous in vitro cell proliferation of HTLV-
1-transformed cell lines that is an immunological hallmark of viral infection. Among the
22 compounds evaluated, 4 were found to inhibit spontaneous proliferation by more than
80% at 25 µM [101].

Although this level of antiviral activity was not sufficient to merit further investigation
of this series as antiviral agents, these preliminary results initiated a study of the effect of
2-substituted quinolines against Ebola virus. There is a need for drugs to treat the disease
caused by this pathogen (EVD) [102]. An in vitro screening study evaluating the inhibition
of Ebola Zaire replication using a transcription-competent virus-like particle (trVLP) was
performed with a library of active compounds. Three 2-substituted quinolines showed
IC50 values in the range of 1 to 5 µM. This study highlights the potential of quinoline
compounds, and particularly 2-substituted quinolines, for the treatment of EVD [102].

5. Conclusions

The 2-substituted quinoline series emerged from an ethnopharmacological inves-
tigation based on the knowledge of traditional practitioners of the Chimane in Bolivia
concerning the treatment of leishmaniasis. From the first isolated natural compounds,
several hundred compounds were designed and synthesized, leading to an efficient, safe
and cheap chemical series that can be easily synthesized with good yields. 2-Substituted
quinolines were active in vitro and in vivo in various experimental leishmaniasis models in
BALB/C mice or golden hamsters without toxicity that would limit further development.
While structure–activity relationships were not easy to establish, some characteristics that
enhanced activity and limited metabolization could be identified, leading to an optimized
compound selected by DNDi, designated compound 26 g, that is very active in vitro, with
an IC50 value of 0.2 µM, but not active enough on the L. donovani hamster model to be com-
petitive on the market. Some mechanisms of action of several 2-substituted quinolines have
been identified as a function of the substituents on the quinoline scaffold. The possibility of
a multitarget mechanism of action could explain the low level of drug resistance obtained
after in vitro drug pressure and the absence of cross-resistance, which are both essential
criteria for the development of new drugs against leishmaniasis. However, a pharmacopro-
teomic approach is necessary to identify the biochemical targets in each Leishmania species.
Some data obtained from a Galipea longiflora extract suggest that 2-substituted quinolines
could have inhibitory effects in the immune system, but these require further investigation
and extension to purified 2-substituted quinolines.

Although some antiviral activity has been observed for this series, it is not strong
enough to control both the virus and Leishmania during an HIV/leishmaniasis co-infection.

A 2-n-propyl quinoline salt has been developed to improve oral activity as well as
two formulations of the natural compound: liposomes to treat visceral leishmaniasis, and
a cyclodextrin formulation to treat cutaneous/disseminated leishmaniasis. All three of
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these will help to valorize the compound. In parallel, some new synthetic derivatives merit
further exploration.
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