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Abstract: Apple industrial by-products are a promising source of bioactive compounds with direct
implications on human health. The main goal of the present work was to characterize the Jonathan and
Golden Delicious by-products from their fatty acid, amino acid, and volatile aroma compounds’ point
of view. GC-MS (gas chromatography-mass spectrometry) and ITEX/GC-MS methods were used for
the by-products characterization. Linoleic and oleic were the main fatty acids identified in all samples,
while palmitic and stearic acid were the representant of saturated ones. With respect to amino acids,
from the essential group, isoleucine was the majority compound identified in JS (Jonathan skin)
and GS (Golden skin) samples, lysine was the representant of JP (Jonathan pomace), and valine
was mainly identified in GP (Golden pomace). A total number of 47 aroma volatile compounds
were quantified in all samples, from which the esters groups ranged from 41.55–53.29%, aldehydes
29.75–43.99%, alcohols from 4.15 to 6.37%, ketones 4.14–5.72%, and the terpenes and terpenoids group
reached values between 2.27% and 4.61%. Moreover, the by-products were valorized in biscuits
manufacturing, highlighting their importance in enhancing the volatile aroma compounds, color, and
sensorial analysis of the final baked goods.

Keywords: apple by-products; fatty acids; amino acids; gas chromatography; volatile profile

1. Introduction

Apples (Malus domestica Borkh.), a member of the Rosaceae family, represent one of the
most consumed fruits with a worldwide production of 86.1 million tons per year in 2018 [1]
occupying third place after bananas and watermelon production [2,3].

They are consumed as fresh fruits or can be used for apple juice, jam, cider, and vinegar
manufacture generating high amounts of residue, entitled apple pomace [4]. Apples are
considered low-calorie fruits, extremely rich in vitamins, dietary fiber, minerals, phenols,
and acids, and are able to prevent some diseases such as cancer, cardiovascular disease,
or asthma [3]. Moreover, apple phenolic compounds and triterpene acids exhibit anti-
inflammatory properties and have shown protective effects against Alzheimer’s disease [5].

Apple pomace (AP) represents 25% of the fresh apple weight and is an important
by-product rich in dietary fiber, pectin, polyphenols, and minerals [1]. Only the apple juice
industry claims to generate an annual AP quantity of about 10 million tones [6]. It seems
that every liter of conventional juice processing generates over 300 g of AP [7].
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AP is mainly composed of apple pulp, seeds, skin, and stalks, with a large moisture
content (80% fresh weight) [8]. Due to its high moisture and sugar content such as sucrose,
fructose, glucose, and xylose, the AP storage is difficult to realize. The most effective
method of storing AP is through drying at mild temperature, without significantly affecting
its bioactive compounds [7]. This by-product could be valorized as a gelling ingredient
through the extraction of pectin or as a natural color pigment in the food industry, while
polysaccharides such as cellulose and hemicellulose can be used in the paper-making
industry or as a food additive, respectively [8,9]. The use of AP in chocolate manufacturing,
aiming to partially replace sucrose, was recently studied by Büker et al. [10], while Masoodi
et al. [11] and Sudha et al. [12] valorized AP in the manufacture of cakes as a source of
dietary fiber and polyphenols, respectively. Furthermore, AP consumption can improve
human gastrointestinal health decreasing the excretion of lithocholic acid and can have
positive effects on cholesterol levels and inulin sensitivity [13].

Moreover, recently, AP was successfully used in the production of propionic acid,
bioethanol, biogas, and value-added products such as aroma compounds, enzymes, or
single-cell protein, but, unfortunately, even today, most of the AP amount is considered
waste and disposed of in landfills [7,14,15].

Golden Delicious apples are preferred by consumers mainly because of their sweetness,
color, firmness, intensive flavor, and light crunchiness [16]. They were characterized by
Acquavia et al. [17] as having a golden yellow color, a crunchy and juicy pulp with a very
sweet flavor being mainly used for juice, cider, jams, and canned goods manufacturing,
having, as a substantial disadvantage, compared with other varieties, thin skin. Due to this
drawback, they have a significant tendency to dehydration and more attention should be
paid to their storage [18]. On the other hand, Jonathan apples are mainly used in fresh and
frozen apple pies manufacturing, salads, apple sauce, and cobblers due to their specifical
texture and moderate tart characteristics [19].

A substantial amount of literature describes the AP bioactive molecules such as
polysaccharides, polyphenols, vitamins, dietary fiber, and minerals [3–5,10,14,15,20–29],
but as far as we know, there is a lack of knowledge regarding its content in fatty acids,
amino acids, and especially, aroma volatile compounds. Analytical techniques such as
HPLC (high-performance liquid chromatography), HS-SPME (headspace solid-phase mi-
croextraction) coupled with GC-MS (gas chromatography-mass spectrometry), GC-MS,
and HS–SPME/GC–qMS (headspace–solid-phase microextraction gas chromatography
combined with quadrupole mass spectrometry) were used by a large body of literature
for the identification and quantification of amino acids and aroma volatile compounds,
respectively [30–33]. Fatty acids were identified and quantified through GC-MS or GC-FID
(gas chromatography coupled with flame ionization detector) according to [16,34,35].

Therefore, the aim of the present study was to characterize Golden Delicious and
Jonathan apple by-products such as apple pomace and skin from their amino acids, fatty
acids, and aroma volatile compounds’ point of view. Furthermore, the addition of 25% AP
and skin in biscuits and its influence on their sensorial analysis, color, and aroma volatile
compounds were also studied, giving new insights into AP and skin valorization in the
food industry. The experimental design of the present study is briefly illustrated in Figure 1.
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Figure 1. Experimental design of the present work.

2. Results
2.1. By-Products Fatty Acids, Amino Acids and Volatile Profiles
2.1.1. By-Products Fatty Acids Content

Linoleic acid, the main representant of the PUFA (polysaturated fatty acids) group, was
identified in considerable amounts in JS (Jonathan skin) and GS (Golden skin) samples with
values of 85.08% and 83.44%, whilst the JP (Jonathan pomace) and GP (Golden pomace)
samples registered values of 37.86% and 38.27%, respectively. From the SFA (saturated fatty
acids) group, palmitic acid was mainly identified in the JS and GS samples (Table 1). With
respect to GS, linoleic acid was the main fatty acid, but with a significantly smaller amount
(83.44%) compared with JS (85.08%), followed by oleic (7.61%) and palmitic (2.97%) fatty
acids. Regarding MUFA (monosaturated fatty acids), the main amount was identified in GP
and JP, followed by GS and JS, as displayed in Table 1. Figure 2 displays the JP chromatogram.

Table 1. Apple by-products fatty acids content.

Shorthand
Nomenclature Fatty Acid Name Type JS (%) JP (%) GS (%) GP (%)

12:0 Lauric SFA 0.08 ± 0.02 a n.d. 0.06± 0.01 a n.d.
14:0 Myristic SFA 0.13±0.01 a n.d. 0.09 ± 0.02 a n.d.
16:0 Palmitic SFA 3.83 ± 0.14 ab 9.27 ± 0.31 c 2.97 ± 0.06 a 9.17 ± 0.15 c

16:1 (n−9) Z-7-Hexadecenoic MUFA n.d. 0.29 ± 0.02 a n.d. 0.27 ±0.02 a

17:0 Margaric acid SFA 0.39 ± 0.02 a 0.70 ± 0.02 ab 0.17 ± 0.02 a 0.77 ± 0.03 ab

18:0 Stearic acid SFA 2.78 ± 0.21 a 9.93 ± 0.34 b 2.53 ± 0.57 a 9.70 ± 0.05 b

18:1 (n−9) Oleic acid MUFA 3.17 ± 0.03 a 13.27 ± 0.05 c 7.61 ± 0.25 b 13.64 ± 0.05 c

18:1 (n−7) Vaccenic acid MUFA n.d. 0.11 ± 0.02 a n.d. 0.19 ± 0.02 a

18:2 (n−6) Linoleic acid PUFA 85.08 ± 0.63 b 37.86 ± 0.33 a 83.44 ±0.31 c 38.27± 0.03 a

18:3 (n−3) α-linolenic acid PUFA 0.39 ± 0.02 a 3.92 ± 0.05 b 0.41 ±0.03 a 3.99 ± 0.21 b

20:0 Arachidic SFA 1.36 ± 0.05 b 7.52 ± 0.03 c 0.58 ± 0.03 a 7.26 ± 0.05 c

21:0 Heneicosanoic SFA n.d. 1.88 ± 0.12 b 0.08 ± 0.02 a 1.93 ± 0.02 b

22:0 Behenic acid SFA 1.88 ± 0.03 ab 9.32 ± 0.11 c 1.34 ± 0.05 a 9.46 ± 0.04 c

23:0 Tricosanoic SFA n.d. 0.40 ± 0.03 a n.d. 0.43 ± 0.02 a

24:0 Lignoceric SFA 0.90 ± 0.03 a 5.52 ± 0.05 bc 0.72 ± 0.03 a 4.92 ± 0.04 b

∑ SFA 11.37 ± 0.69 b 44.55 ± 0.99 c 8.54 ± 0.74 a 43.63 ± 0.40 c

∑ MUFA 3.17 ± 0. 0.03 a 13.67 ± 0.09 c 7.61 ± 0.56 b 14.11 ± 0.09 c

∑ PUFA 85.47 ± 0.65 b 41.78 ± 0.38 a 83.85 ± 0.34 bc 42.26 ±0.24 a

∑ n−3 PUFA 0.39 ± 0.02 c 3.92 ± 0.05 b 0.41 ± 0.03 a 3.99 ± 0.21 b

∑ n−6 PUFA 85.08 ± 0.63 b 37.86 ±0.33 a 83.44 ± 0.31 bc 38.27 ± 0.03 a

∑ n−6/n−3 216.67 c 9.66 ± 0.28 a 203.30 b 9.59 a

∑ PUFAs/SFAs 7.52 b 0.94 a 9.82 c 0.97 a

JS: Jonathan skin; JP: Jonathan pomace; GS: Golden Delicious skin; GP: Golden Delicious pomace; different
superscript letters in a row indicate significant difference between samples (p < 0.05).
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Figure 2. GC-MS chromatogram of FAMEs in the TLs of dried JP analyzed on a SUPELCOWAX 10
capillary column. Peaks: Palmitic, (16:0); Z-7-Hexadecenoic, 16:1(n−9); Margaric,17:0; Stearic, 18:0;
Oleic, 18:1(n−9); Vaccenic, 18:1(n−7); Linoleic, 18:2(n−6); α-Linolenic, 18:3(n−3); Arachidic, 20:0;
Heneicosanoic, 21:0; Behenic, 22:0; Tricosanoic, 23:0; Lignoceric, 24:0.

2.1.2. By-Products Amino Acids Content

The amino acid samples content is displayed in Table 2. For a better explanation, the
14 identified amino acids were divided into two groups: essential (EAA) and non-essential
(NEAA) ones. The identified essential amino acids are: threonine (Thr), valine (Val), leucine
(Leu), isoleucine (Ile), methionine (Met), phenylalanine (Phe), lysine (Lys), while alanine
(Ala), glycine (Gly), serine (Ser), γ-aminobutyric acid (GABA), proline (Pro), asparagine
(Asp), and glutamic acid (Glu) are considered NEAA amino acids. On the other hand,
according to Chis, et al. [36] and Katina et al. [37], amino acids can be divided into five
groups: aliphatic, which include prolamine, valine, leucine, glycine, alanine, aromatic
(phenylalanine), acids (glutamic acid and aspartic acid), γ-aminobutyric acids (serine,
threonine, proline, methionine, and γ-aminobutyric) and basic group (lysine).

With respect to the total amino acids content, GP was the richest sample with a value
of 94.38 mg/100 g, followed by JP with a value of 87.37% and 60.58% and 56.82% for GS
and JS, respectively.

From the essential group, the highest value was identified in JS (12.25 mg/100 g),
followed by GS (10.86 mg/100 g), while JP and GP reached values of 9.95 mg/100 g and
7.37 mg/100 g, respectively. The main JS representants of EAA were Ile (3.41 mg/100 g),
followed by Val (3.14 mg/100 g) and Lys (1.82 mg/100 g), while higher amounts were regis-
tered by NEAA with Asp (28.10 mg/100 g), Gly (6.66 mg/100 g), and Ala (4.09 mg/100 g).
Asp (31.05 mg/100 g), Gly (7.57 mg/100 g), and Ala (5.14 mg/100 g) were the majority
representants of NEAA from GS, while Ile (4.14 mg/100 g), Lys (1.56 mg/100 g), and
Met (1.32 mg/100 g) were principal compounds of the EAA group. Lysine, one of the
first aliphatic-limiting cereals amino acids [38], was mainly identified in JP and JS was
statistically different (p < 0.05) from GP and GS, respectively.
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Table 2. Apple by-products amino acid content.

Amino Acid Name Type JS mg/100 g JP mg/100 g GS mg/100 g GP mg/100 g

Ala NEAA 4.09 ± 0.03 a 7.16 ± 0.05 d 5.14 ± 0.04 b 5.69 ± 0.07 bc

Gly NEAA 6.66 ±0.04 a 14.24 ± 0.16 d 7.57 ± 0.11 b 12.53 ± 0.16 c

Thr EAA 0.57 ± 0.07 a 0.56 ± 0.12 a 0.88 ± 0.03 ab 0.70 ± 0.03 a

Ser NEAA 0.78 ± 0.05 a 1.24 ± 0.03 b 1.17 ±0.09 b 1.58 ± 0.05 bc

Val EAA 3.14 ± 0.08 d 1.13 ± 0.05 a 1.58 ± 0.05 ab 2.21 ± 0.12 c

Leu EAA 1.14 ± 0.11 c 1.71 ± 0.09 d 0.72 ± 0.05 ab 0.52 ± 0.03 a

Ile EAA 3.41 ± 0.06 c 1.85 ± 0.08 b 4.14 ± 0.11 d 1.10 ± 0.06 a

GABA NEAA 1.06 ± 0.03 b 0.40 ± 0.03 a 3.38 ± 0.22 c 1.01 ± 0.02 b

Met EAA 1.35 ± 0.02 a 1.22 ± 0.11 a 1.32 ± 0.02 a 1.92 ± 0.07 b

Pro NEAA 2.79 ± 0.07 b 0.14 ± 0.04 a 0.24 ± 0.03 a 0.06 ± 0.02 a

Asp NEAA 28.10 ± 0.19 a 51.06 ± 0.16 c 31.05 ± 0.17 b 63.57 ± 0.05 d

Phe EAA 0.82 ± 0.03 a 0.46 ± 0.09 a 0.67 ± 0.05 a 0.66 ± 0.02 a

Lys EAA 1.82 ± 0.06 c 3.02 ± 0.09 d 1.56 ± 0.03 b 0.25 ± 0.02 a

Glu NEAA 1.09 ± 0.05 a 3.17 ± 0.05 c 1.16 ± 0.01 a 2.56 ± 0.01 b

∑ TAA 56.82 ± 0.89 a 87.37 ± 1.15 c 60.58 ± 1.01 b 94.38 ± 0.73 d

∑ EAA 12.25 ± 0.43 d 9.95 ± 0.66 b 10.86 ± 0.32 c 7.37 ± 0.35 a

∑ EAA/TAA 0.22 b 0.11 a 0.18 b 0.08 a

JS: Jonathan skin; JP: Jonathan pomace; GS: Golden Delicious skin; GP: Golden Delicious pomace; different
superscript letters in a row indicate significant difference between samples (p < 0.05).

2.1.3. Apple By-Products Aroma Volatile Profile

The aroma volatile compounds are displayed in Table 3. A total number of 48 com-
pounds have been identified and divided into the groups: alcohols, esters, aldehydes,
ketones, terpenes, acids, and others. The most representative group was that of esters,
ranging between 44.81% to 53.29%, followed by aldehydes (29.75% to 43.99%) and ketones
(4.14% to 5.72%). The main compound from the aldehydes group was hexanal, scoring
the highest value for GP (20.68%), while from the esters group, butyl acetate reached the
highest value of 19.47% for the JS sample. With respect to the alcohols group, the most
important compound was 1-hexanol, ranging from 2.18% to 4.11%, while acetophenone
and 6-methyl-5-hepten-2-one were the main representants from the ketones group. From
terpenes, α-farnesene and D-limonene, responsible for wood, sweet, floral, and citrus,
fresh odors perception, were mainly identified in the JS sample with values of 1.54% and
1.5%, respectively.

Table 3. Apple by-products volatile aroma compounds.

Volatile Compounds JS JP GS GP Odor Perception

Alcohols

1-Pentanol n.d. 0.12 ± 0.02 a n.d 0.38 ± 0.03 ab Pungent, fermented, bready, fusel, wine, solvent
2-methyl-1-butanol 0.75 ±0.03 a 0.80 ± 0.03 a 1.12 ±0.02 b 1.26 ± 0.02 b Acidic, sharp, spicy, fusel, wine

1-butanol 2.93 ± 0.03 c 1.25 ± 0.05 b 0.27 ± 0.02 a n.d. Sweet, balsamic, oily, whiskey
1-octanol 0.29 ± 0.02 ab 0.79 ± 0.02 c 0.13 ± 0.01 a 0.45 ±0.01 b Herbal, waxy, fruity nuance

(Z)-hexen-3-ol 0.22 ± 0.02 ab n.d. 0.13 ± 0.01 a n.d. Fresh, green, raw fruity with a pungent depth

1-hexanol 2.18 ± 0.11 a 3.73 ± 0.02 b 2.50 ± 0.02 a 4.11 ± 0.03 c Green, sweet, herbaceous, fermented note, fruity,
apple skin, and oily

Total 6.37 ± 0.04 b 6.69 ± 0.04 bc 4.15 ± 0.03 a 6.20 ± 0.01 b

Esters

Ethyl hexanoate 5.29 ± 0.13 d 3.51 ± 0.02 c 0.11 ± 0.02 a 1.23 ± 0.03 b Fruity, apple peel fruits, pineapple, green banana
nuance, waxy, fatty

Ethyl butanoate 0.57 ± 0.03 a 5.19 ± 0.04 c n.d. 0.94 ± 0.03 ab Fruity, pineapple, apple, cognac

Ethyl 2-methylbutanoate n.d. 0.12 ± 0.02 a 1.8 ± 0.02 c 1.14 ± 0.03 b Sharp sweet, fruity, green, apple peel,
pineapple skin

Butyl acetate 19.76 ± 0.05 d 3.18 ±0.05 a 16.20 ± 0.03 c 3.83 ± 0.04 ab Sweet, ripe banana, ethereal
2-methylbutanoate 0.21 ± 0.03 a 0.32 ± 0.02 a n.d. 0.79 ± 0.03 b Fruity, apple, fresh pear, and tropical nuance

2-methylbutyl acetate 9.23 ± 0.04 b 17.57 ± 0.03 d 4.93 ± 0.05 a 12.04 ± 0.06 c Sweet, fruity, ripe banana, pear, apple
Hexyl acetate 7.18 ± 0.21 c 4.26 ± 0.07 a 6.30 ± 0.04 b 4.71 ± 0.04 a Fresh, fruity, apple, pear, and banana note
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Table 3. Cont.

Volatile Compounds JS JP GS GP Odor Perception

Butyl-butyrate n.d. 0.80 ± 0.02 ab n.d. 0.49 ± 0.03 a Sweet, fresh, fruity, slightly fatty
Butyl 2-methylbutanoate 2.11 ± 0.03 d 1.29 ± 0.03 b 1.70 ± 0.02 c 0.85 ± 0.02 a Fruity, apple, tropical, cocoa

Butyl hexanoate n.d. 0.61 ± 0.03 ab n.d. 0.14 ± 0.02 a Fruity, pineapple, waxy, green, juicy
2-methylbutyl

2-methylbutanoate 4.11 ± 0.05 d 0.83 ± 0.03 a 2.54 ± 0.04 c 1.36 ± 0.05 b Fruits, apple, with green, waxy, and
woody nuances

Hexyl butanoate 0.81 ± 0.02 c 0.34 ± 0.02 ab 0.11 ± 0.05 a n.d. Green, sweet, fruity, apple waxy, wine

Hexyl 2-methylbutanoate 3.59 ± 0.06 b 3.12 ± 0.22 a 11.12 ± 0.11 c 16.30 ± 0.21 d Green, waxy, fruity, apple, banana, and woody
with a tropical, spicy nuance

Hexyl hexanoate 0.43 ± 0.11 a 0.41 ± 0.03 a n.d. 3.98 ± 0.05 b Fruity, wine, orange peel, apple, cucumber

Total 53.29 ± 0.76 d 41.55 ± 0.63 a 44.81 ± 0.38 b 47.80 ± 0.64 c

Aldehydes

Hexanal 13.17 ± 0.03 a 17.58 ± 0.05 c 20.68 ± 0.23 d 14.11 ± 0.06 b Intense green, fruity, aldehydic odor, green apple
Furfural 0.71 ± 0.05 a 1.25 ± 0.05 b 1.88 ± 0.02 c 3.32 ± 0.04 d Caramel, bitter almond, nutty, baked bread

2-hexenal 0.96 ± 0.03 a 2.79 ± 0.02 b 4.65 ± 0.02 c 5.72 ± 0.03 d Fruity, green leaf, apple
Heptanal 0.80 ± 0.03 a 1.95 ± 0.04 c 1.92 ± 0.02 c 1.15 ± 0.04 b Green, oily, citrus

2-heptenal 2.85 ± 0.02 a 3.13 ± 0.02 b 4.27 ± 0.03 c 2.79 ± 0.03 a Intense green, sweet, oily, apple skin nuances,
fruity overtones

Benzaldehyde 4.21 ± 0.02 c 6.21 ± 0.03 d 0.19 ± 0.04 a 1.55 ± 0.05 b Almond, fruity, powdery, nutty
Octanal 1.91 ± 0.02 a 4.17 ± 0.07 c 1.81 ± 0.03 a 3.38 ± 0.04 b Green, fat, citrus peel

E-2-octenal 3.77 ± 0.03 c 2.70 ± 0.02 b 2.54 ± 0.06 b 1.61 ± 0.04 a Honey, green, fatty, walnut
Nonanal 0.35 ± 0.04 a 2.18 ± 0.03 c 0.85 ± 0.01 b 4.24 ± 0.05 d Green, floral, sweet orange, rose, waxy
Decanal 1.02 ± 0.02 b 2.03 ± 0.05 c 0.74 ± 0.03 ab 0.54 ± 0.02 a Waxy, fatty, citrus peel, green melon nuance

Total 29.75 ± 0.27 a 43.99 ± 0.38 d 39.53 ± 0.49 c 38.41 ± 0.40 b

Ketones

Acetophenone 2.88 ± 0.03 d 2.08 ± 0.02 c 1.12 ± 0.05 b 0.84 ± 0.03 a Floral, almond, nutty, must, spicy
1-octen-3-one n.d. n.d 1.34 ± 0.02 a 1.93 ± 0.03 b Mushroom, herbal, earthy

6-methyl-5-hepten-2-one 2.52 ± 0.04 ab 2.06 ± 0.03 a 3.26± 0.03 c 2.13 ± 0.05 a Citrus, green, musty, lemongrass, apple,
bittersweet taste

Total 5.40 ± 0.06 c 4.14 ± 0.05 a 5.72 ± 0.10 d 4.90 ± 0.11 ab

Terpenes and terpenoids

Camphene 0.31 ± 0.02 ab 0.21 ± 0.01 a 1.10 ± 0.03 c 0.17 ± 0.02 a Camphoraceous, green spicy nuances
Sabinene 0.15 ± 0.01 ab 0.07 ± 0.02 a 0.11 ± 0.02 ab n.d. Woody, citrus, oily, fruity, pine, spice nuance

ß-pinene n.d. n.d. 0.40 ± 0.02 a 0.36 ± 0.02 a Woody, pine, resinous, camphoreous
balsamic, spicy

ß -myrcene n.d. n.d. 0.35 ± 0.03 a 0.20 ± 0.01 a Herbaceous, woody, spice, balsamic
3-carene n.d. n.d. 0.50 ± 0.02 n.d. Harsh, terpene-like, coniferous

1,3,8-p-menthatriene 0.47 ± 0.01 b 0.20 ± 0.02 a 1.09 ± 0.03 c 0.18 ± 0.03 a Camphor, herbal, turpentine, woody
p-cymene 0.49 ± 0.02 ab 0.35 ± 0.02 ab 0.23 ± 0.02 a n.d. Solvent, citrus, woody, spicy

D-limonene 1.50 ± 0.03 b 1.27 ± 0.04 b 0.30 ± 0.02 a 1.16 ± 0.05 b Citrus, fresh, sweet
γ-terpinene n.d. n.d 0.24 ± 0.02 n.d Herbal, citrus, lemon, spicy
Terpinolene 0.05 ± 0.02 a n.d 0.07 ± 0.01 a n.d Sweet, fresh, piney, old lemon peel nuance
ß- linalool 0.10 ± 0.01 a 0.26 ± 0.02 ab n.d n.d Fresh, floral-woody, sweet, citrus
α-farnesene 1.54 ± 0.03 d 0.40 ± 0.03 ab 0.75 ± 0.04 c 0.20 ± 0.01 a Wood, sweet, floral

Total 4.61 ± 1.04 c 2.76 ± 1.05 ab 5.14 ± 1.15 d 2.27 ± 0.14 a

Acids

Benzoic acid 0.06 ± 0.02 a 0.45 ± 0.03 b 0.36 ± 0.02 b 0.12 ± 0.04 ab Fade balsamic

2-methylbutanoic acid n.d. 0.11 ± 0.05 a 0.29 ± 0.03 ab 0.30 ± 0.02 ab Acidic, fruity, fatty, cheesy with
fermented nuance

Total 0.06 ± 0.02 a 0.56 ± 0.03 ab 0.56 ± 0.02 ab 0.42 ± 0.02 ab

Others

2-pentyl furan 0.52 ± 0.02 a 0.31 ± 0.01 a n.d. n.d. Green, earthy, beans, musty, cooked, caramel like

Total 0.52 ± 0.02 a 0.31 ± 0.01 a n.d. n.d.

JS: Jonathan skin; JP: Jonathan pomace; GS: Golden Delicious skin; GP: Golden Delicious pomace; different
superscript letters in a row indicate significant difference between samples (p < 0.05).
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2.2. Biscuit’s Aroma Profile, Color Characteristics and Sensory Analysis
2.2.1. Biscuit’s Aroma Profile

A total number of 20 aroma volatile compounds were identified in the final baked
goods, as follows: 2 alcohols, 4 esters, 8 aldehydes, 2 ketones, 2 terpenes, and terpenoids,
1 acid, and 1 other compound (Ethyl 2,4-dioxohexanoate), as presented in Table S1, Sup-
plementary Materials. From the esters group, acetic acid (14.96%) was only identified in
BCS, while in the BJS sample, hexyl acetate scored the highest value of 14.8%. From the
aldehydes group, hexanal was mainly present in BCS, while benzaldehyde was the main
representant of the BJS sample; 2-heptanone was the major compound of the ketones group
with the highest score in the BJS sample (13.99%) and D-limonene (2.99%) was the main
representant of the terpenes and terpenoids group.

2.2.2. Biscuits and By-Products Color Characteristics

The color parameters of the final baked products and by-products are displayed in
Table 4 and illustrated in Figure 3, showing the final aspect of the by-products and final
baked goods.

Table 4. Apple biscuits and by-products color characteristics.

Color Parameters

Samples L* a* b*

BCS 68.50 ± 0.11 e 5.70 ± 0.09 a 30.48 ± 0.13 b

BJS 51.25 ± 0.55 a 12.32 ± 0.72 d 27.64 ± 0.55 a

BJP 59.31 ± 0.66 c 10.79 ± 0.55 c 31.89 ± 0.22 c

BGS 58.44 ± 0.28 b 10.86 ± 0.19 c 39.05 ± 0.55 e

BGP 64.47 ± 0.33 d 9.00 ± 0.07 b 36.96 ± 0.91 d

JS 59.93 ± 0.05 A 12.46 ± 0.04 D 15.22 ± 0.08 A

JP 71.8 ± 0.32 B 9.22 ± 0.06 C 19.05 ± 0.12 B

GS 78.52 ± 0.22 C 0.46 ± 0.03 A 29.50 ± 0.33 D

GP 80.96 ± 0.17 D 2.82 ± 0.05 B 27.64 ± 0.55 C

BCS: biscuits control sample; BJS: biscuits with JS; BJP: biscuits with JP; BGS: biscuits with GS; BGP: biscuits with
GP; JS: Jonathan skin; JP: Jonathan pomace; GS: Golden skin; GP: Golden pomace; L* (luminosity), a* (red/green
coordinate), b* (yellow/blue coordinate) color; different small superscript letters in a column indicate significant
difference between final baked goods (p < 0.05), meantime, different big superscript letters in a column indicate
significant difference between apple by-products.
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The highest L* value was reached by the biscuits control sample (BCS), while the
highest a* value was registered by biscuits manufactured with BJS. With respect to the
b* parameter, significant differences were registered between all samples (Table 4). With
respect to apple by-products, parameter a* had the highest value in the JS sample, while the
lowest value was registered for the GS sample. Contrariwise, the b* parameter registered
values ranging from 15.22 to 29.50, the biggest one being highlighted by the GS sample.
With respect to the L* parameter, there were significant differences between the sample
(p < 0.05), as presented in Table 4.

2.2.3. Sensory Analysis

The final baked goods were evaluated by panelists with respect to their appearance,
taste and aroma, hardness, crispiness, chewiness, aftertaste, and overall appreciation. The
highest score for taste and aroma, appearance, overall appreciation, and aftertaste were
registered by the BJS sample, while the control sample registered the lowest value, as
presented in Figure 4. Textural parameters such as hardness, crispiness, and chewiness de-
creased through AP addition, being significantly different compared to the control sample.
Hardness is characterized as the force of the first compression cycle, while crispiness is de-
fined as the combination between force and noise caused by the molar teeth when breaking
down the sample, [39]. Chewiness is defined as the difficulty level needed for a panelist in
order to chew the sample and to form the bolus before the swallowing process [40].
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3. Discussion

The cultivation conditions and techniques, species, and variety have a significant
impact on the chemical composition of apples [3]. The quality of apples is related also to
their fatty acids and free amino acids content [41]. Fatty acids are crucial components of the
fruit cell membrane being involved in the majority of physical, functional, and chemical
reactions and their imbalance could lead to different storage fruits disorders [42].

In the present study, C18 family fatty acids accounted for more than 91.59%, 91.42%,
65.79, and 65.10% for GS, JS, JP, and GP, respectively. Results are consistent with Wu
et al. [35] who showed that the C18 family registered more than 70% of the total fatty
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acid content in eight apple cultivars from Shandong Province, China. Recently, Di Matteo
et al. [2] showed that in apples from the Piedmont region, Italy, polyunsaturated fatty acids
were the most abundant ones ranging between 30% and 45%, and the monounsaturated
fatty acids content was between 5% and 25%. Moreover, authors reported significant
differences between fatty acids samples content, showing that, for instance, Canditina
cultivar had the highest concentration of unsaturated fatty acids, while Dominici registered
the lowest value.

Linoleic, α-linolenic, and oleic acids were also identified in apple pomace by several
authors such as Radenkovs et al. and Rodríguez et al. [42,43], while Dadwal et al. [31]
showed that the wild crab seed apples (Malus baccata) from the Himalayan region were
mainly rich in palmitic acid, ethyl palmitate, and linolein. In line with this, Rodríguez
et al. [43] showed that the main identified fatty acids in apple pomace were linoleic and
oleic acids, which represent more than 70% of the total fatty acids amount.

Recently, Lamani et al. [34] showed that wood apples (Limonia acidissima L.) collected
from India contained 51.98 ± 0.94% unsaturated fatty acids from which the most abun-
dant were oleic acid (23.89 ± 0.06%), α-linolenic, and linoleic acid with percentages of
16.55 ± 0.26% and 10.02 ± 0.43%, respectively.

According to Berto et al. [44], a PUFA/SFA ratio larger than 0.45 value is considered
positive for human health, while a value smaller than 0.45 could lead to an increased blood
cholesterol level. In the present study, all samples registered values larger than 0.45 ranging
from 0.94–9.82%.

Considering the above, we can assess that the extraction procedure, method used for
analysis, pedo-climatic conditions, genetic factors, and apple maturity stage are the main
factors that could influence the fatty acid by-product total amount. For instance, fatty acids
could be extracted with different solvents such as hexane or petroleum ether and be further
analyzed through GC-FID (gas chromatography coupled with flame ionization detector) or
GC-MS (gas chromatography coupled with mass spectrometry) [17].

Amino acids are defined as essential biomolecules with a tremendous role in tissue
protein blocks and human health. They are claimed to have positive results in diseases
such as infertility, intestinal disorders, and neurological dysfunction and could be used as
fingerprints to uncover the fruits varietal origin [45,46].

Free amino acids are defined as fatty acids that result from lipase activity that are
metabolized by enzymes such as β-oxidative and lipoxygenase, which are the main precur-
sors of aroma compounds (e.g., esters, alcohols, and aldehydes). The harvesting time is a
crucial factor involved in the aroma of apple production, with earlier harvesting causing
a decrease in the aroma spectrum [42]. Amino acids are considered aroma precursors
during fruit maturation and are utilized for the synthesis of aroma components [47], being
the second most important source in the development of volatile aroma compounds [48].
Free amino acids are important for food flavoring, improving its palatability, and helping
in the development of amines and volatile compounds [49]. For instance, tyrosine and
phenylalanine can be substrates for the further development of aroma compounds [41].
The presence of amino acids such as Gly, Ala, and Pro influences the taste of fruits in a
positive way, providing sweetness [47].

In the present study, Asp was the most abundant amino acid identified in all samples,
ranging from 28.10 to 63.57 mg/100 g. Recently, it has been shown that Asp could be
successfully used in the prevention of diabetic kidney mice disease, highlighting the
importance of this non-essential amino acid in kidney oxidative stress reduction [50]. Asp
was identified in high amounts also by Zhang et al. [51] at the maturity stage of Honeycrisp
apples, but also as the second most abundant amino acid in apple Malus domestica Borkh cv.
Annurca, a variety from Southern Italy [52].

On the other hand, in our study, Gly was the second most identified amino acid from
6.66 to 14.24 mg/100 g. It was mentioned by Mosa et al. [53] that using Gly and tryptophan
as alternatives for chemical fertilizers leads to an improvement in apple quality playing a
key role in increasing the total chlorophyll amount and viability of some minerals. Alanine
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was the third most abundant amino acid in the analyzed samples and was also identified by
Di Matteo et al. [2] in apples from the Piedmont region, Italy, ranging from 1 to 11 mg/100 g
for Canditina and Grenoble cultivars, respectively. On the other hand, Dadwal et al. [31]
mentioned that in the pulp extract of Malus baccata crab apple, amino acids such as tyrosine,
cysteine, glycine, alanine, serine, and histidine were identified.

It is worth noting that recently, more attention is being paid to γ-aminobutyric acid
which is formed via the enzymatic reaction of glutamic acid with several important roles
in human metabolism such as hypotensive, diuretic, neurotransmitter, and inhibitor of
leukemia cell proliferation [54,55]. Furthermore, in all samples, Val, Ile, and Leu were
identified and claimed by the literature to have an essential role in human muscle damage
recovery, fatigue, and soreness due to physical effort. Val, Ile, and Leu are entitled branched-
chain amino acids and are essential amino acids that are able to stimulate insulin production,
prevent or even cure hepatic encephalopathy, and act as neurotransmission modulators [56].

Wicklund et al. [33] mentioned that the accumulation of amino acids such as aspartic
and glutamic acid are in direct correlation with horticultural conditions, mainly the pres-
ence of nitrogen. More broadly, cultivar and year of cropping could influence the apple fruit
composition, considering their primary and secondary metabolites [57]. Strengthening this
idea, di Marro et al. and Eleutério et al. [30,52] underlined that water stress, mineral nutri-
tion, fruit maturity, pedo-climatic conditions such as light, and soil treatments (fertilization
with nitrogen) could affect the amino acid amount. Di Maro et al. [52] identified a total
amount of amino acids from 10 apple cultivars ranging from approximately 1 mg/100 g
of dry weight to 340 mg/100 g dry weight, emphasizing once again the difference of total
amino acids due to their varieties.

Apple chemical compounds and the ratio between them are considered the main
factors that could influence the flavor, taste, consistency, and health benefits [2]. For
instance, taste is mainly influenced by sugars and the organic acid content, and aroma
by the volatile profile [48]. On the other hand, fatty acids and lipids play a key role as
precursors of aroma volatile compounds [23]. Oleic and linoleic acids emphasized a strong
relationship with aroma production [41]. It was stated that the unsaturated fatty acids
are directly correlated to the storage and release of aroma components, acting as flavor
precursors [34].

In the present study, esters were the main aroma compounds identified in JS, GP, GS,
and aldehydes in the JP sample. The presence of esters in apples such as butyl acetate,
2-methylbutyl acetate, hexyl acetate, and 2-methylbutanoate was also claimed by Espino-
Díaz et al. [48] as the principal esters with a high impact on the final apple aroma. In
line with this, Coelho et al. [32] mentioned that the major volatile aroma compounds of
industrial apple aroma were composed of esters and aldehydes. Moreover, from our results,
a strong Pearson correlation was identified between esters and fatty acids and fatty acids
and aldehydes, respectively. For instance, in the JS and GS samples, correlations of 0.998
and 0.997 were identified between linoleic acid and esters and aldehydes, respectively.
The same trend was observed between JP and GP, highlighting once again the strong
relationship between linoleic acid, esters, and aldehydes. The results are explained by the
fact that unsaturated fatty acids play a paramount role in aroma apple development, as
described by a large body of literature [34,41,48].

Aldehydes are formed as a result of two different reactions: fatty acid catabolism
and the metabolism of branched-chain amino acids such as valine, leucine, isoleucine.
Alcohols are released through the reduction of aldehydes by the alcohol dehydrogenase
enzyme [48]. Aldehydes are correlated with the ripening stage of apples, and decrease
during the maturity stage, leading to the formation of esters and alcohols [48].

The presence of alcohols is generally explained as a result of the fermentation between
amino acids and carbohydrates, but the presence of 1-hexanol, which is responsible for
green, sweet, herbaceous, fermented notes, fruity, apple-skin, and oily, is varietal [58]. On
the other hand, 1-butanol, which possesses sweet, balsamic, oily, and whiskey aromas, is
involved in a positive way in the aroma characteristics and intensity of apples [59].
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From the terpenes and terpenoids group, a total of 12 volatile compounds were
identified, from which D-limonene, 1,3,8-p-menthatriene, α-farnesene, and camphene were
identified in all samples. Moreover, as far as we know, for the first time in the literature,
compounds such as terpinolene, 3-carene, sabinene, ß-pinene, ß-myrcene, and 1,3,8-p-
menthatriene were identified in AP by-products.

With respect to the volatile biscuit’s aroma compounds, BCS (biscuits control sample)
registered the lowest amounts for esters, ketones, and terpenes and terpenoids, mainly
because wheat flour is not a rich raw material in aroma volatile compounds. In line with
this, our recent publication Fărcas, et al. [60] identified only five aroma volatile compounds
from wheat flour, mainly composed of aldehydes and ketones in percentages of 91.99%
and 8.02%, respectively. The presence of aldehydes and ketones could be explained by the
non-enzymatic Maillard reaction, as a consequence between amino acids and sugars [60].

The presence of 3-metyl-butanal, 2-methyl-butanal, and 2-methyl-propanal in the
samples manufactured with apple by-products could be attributed to the branched-chain
amino acids such as leucine, isoleucine, and valine, which are claimed to be involved in
the aforementioned aroma volatile compounds synthesis [61,62]. Strong Pearson’s corre-
lations were identified between the total amount of branched-chain amino acids and the
total amount of the three mentioned aldehydes. For instance, between the JS and JP total
amount of branched-chain amino acids and BJS and BJP 3-metyl-butanal, 2-methyl-butanal,
and 2-methyl-propanal total amount, a strong relationship of 0.998 was identified. A
strong Pearson correlation (0.997) was identified also in GS and GP samples between the
aforementioned amino acids and BGS and BGP aldehydes, respectively.

Moreover, recently, Garvey et al. [62] suggested that the presence of aldehydes such as
phenylacetaldehyde and methional in the final baked samples could be explained through
the presence of amino acids such as phenylalanine and methionine in apple by-products
(Table 2). The phenylacetaldehyde compound is responsible for sweet, rose, or honey
aroma, while methional is characterized as being responsible for exhibiting a potato-like
odor [62]. From the ketones group, 2-heptanone scored the highest value from the BJS and
BGP samples, being responsible for cheese, fruity, ketonic, green banana, with a creamy
nuance odor. It is worth noting that D-limonene was identified mainly in the BJS and BJP
samples, providing the final baked samples odor perceptions such as citrus, fresh, and
sweet. It is also important to mention that apple by-products are a rich source of sugars
such as fructose, glucose, sorbitol, and saccharose [15], enhancing the Maillard reaction
and therefore, facilitating the development of new aroma volatile compounds.

The Jonathan red coloration skin is mainly due to the presence of anthocyanins, a class
of flavonoids that are directly influenced by genetic factors and pedo-climatic conditions
such as temperature, light, and nutrition [63]. According to Honda et al. [63], there are
five genes responsible for the red coloration in apples and at the ripe final stage, the genes
reached the highest expression levels. In line with this, Melnic et al. [64] supported the idea
that anthocyanin compounds are responsible mainly for the peel redness apple color and
further studies are still needed to better elucidate the mechanism. With respect to Golden
Delicious apple color, higher values of b* are related to higher amounts of carotenoids and
xanthophylls which are a result of the decrement in greenness appearance and increasement
in yellowness through the apple ripening stage [65].

The WF (wheat flour) substitution with apple by-products caused a change in color
on the final baked products—biscuits becoming darker and redder. The redness value (a*)
of the BJS sample reached the highest value, being significantly different from the other
samples; while the lowest value was represented by the control sample (BCS). This could
be explained by the chemical composition of JS, rich in anthocyanins which are responsible
for the red color. In red apples, cyanidin is the most representative anthocyanin [66]. With
respect to yellowness (b* value), the highest value was registered for the BGS sample and
could be due to the Golden delicious skin color. The color of Golden Delicious apples is
explained by their rich flavanols content, claimed to be responsible for the yellow color
of apple skins [67]. Furthermore, Golden Delicious is described as an apple with low
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browning potential [68]; therefore, the color of the final baked goods is lighter than those
manufactured with the Jonathan variety. The results are in line with those of Sudha
et al. [69] and Jung et al. [7] who showed that the AP addition in bakery products caused
changes in the color of the final baked goods.

The appearance of the final baked goods was significantly different (p < 0.05), and the
BJS sample recorded the highest score (Figure 4). It seems that panelists gave the highest
score to the darker samples, probably considering it healthier. The idea that products with
a darker color are healthier than conventional ones is supported by the literature [60,70,71].
For instance, Drogoudi et al. [70] showed through PCA (principal component analysis)
and correlation analysis between seven apple varieties and their phenolic and antioxidant
activity that apple skin with a darker, redder, or bluer color are more nutritious than the
uncolored ones.

With respect to taste and aroma, all final baked samples were accepted by consumers
reaching scores ranging from 8.2−8.7, while the control samples registered a value of only 7.
This could be justified by the AP aroma. According to Sudha et al. [12], cakes manufactured
with increased levels of AP were considered by panelists as having a pleasant fruit flavor.

The hardness value of biscuits was significantly different from the control sample
(p < 0.05). This could be justified by the apple fiber content and by gluten reduction through
replacing WH with AP. With respect to the crispiness value, a significantly increased
value was observed in AP biscuits compared with the control sample, while chewiness
slightly increased compared to the control sample. This could be explained by the AP-rich
fiber content (with a value in the range of 4.4–47.3% fresh weight) which, according to
Skinner et al. [13], has strong water-binding properties [12]. Furthermore, Sudha et al. [12]
mentioned that AP fibers are considered to be superior to oat bran and wheat, having a
better quality of dietary fiber.

4. Materials and Methods
4.1. Materials, Reagents

Golden Delicious and Jonathan apples were purchased from a local supermarket
in Cluj-Napoca, having Romania as the producer country. The Jonathan and Golden
apple skins were provided from the bakery and pastry pilot station from the University of
Agricultural Sciences and Veterinary Medicine, Faculty of Food Science and Technology
from Cluj-Napoca, Romania. In this pilot station, there is a daily production of a total
amount of 40 kg apple cakes, resulting in approximately 10 kg of apple skins that are
discarded and considered waste (according to the apple cake recipe, data not shown). On
the other hand, a beer pilot station from the same faculty produces an annual amount of
250 L apple cider, manufactured with Golden and Jonathan apples. The residue obtained
after the apples were pressed to obtain the juice is generally entitled apple pomace (mainly
composed of apple pulp and skin) and is also discarded as food waste. All reagents were
analytical grade and purchased from Sigma-Aldrich (Steinheim, Germany), as presented in
Table S2.

4.2. Apple Pomace (AP) and Biscuits Manufacturing

Apple pomace (AP) and apple skin were dried at a temperature of 55 ◦C using a
professional dehydrator (Hendi Profi Line, Utrecht, The Netherlands) and ground through
a laboratory professional mill (IKA A10, Staufen, Germany). Afterward, the AP and skins
were sieved through a sieve (0.42–0.60 mm) in order to obtain a fine powder, as illustrated
in Figure 5.

The biscuits manufacturing was carried out according to our previous research stud-
ies [39,60]. The vegetable fat was first mixed with sugar using an automatic mixer (Kitchen
Aid Precise Heat Mixing Bowl, Greenville, OH, USA), low speed, until a cream base was
obtained. The wheat flour (WF) was manually mixed with baking powder and AP and
skin, respectively. The WF that replaced 25% of AP and skin was based on our previously
obtained products and considered from already publicized articles [69,72]. The technologi-
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cal parameters and biscuits recipes are presented in Table 5. A thickness dough of 0.8 cm
was obtained by using a semiautomatic laminator (Flamic SF600, Vicenza, Italy). After
baking in an electric oven (Zanolli, Verona, Italy), the samples were cooled down at bakery
pilot station temperature and used for further analysis. From a microbiological point of
view, the safety of the final baked goods was according to Romanian Regulations (Order
No. 27/2011) and SR ISO 21527-2/2008 standard, [73,74].
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Table 5. Biscuit’s recipes and technological parameters.

Ingredients (g)
Biscuits Samples

BCS BJS BJP BGS BGP

Wheat flour (WF) 100 - - - -
JS 75 25 - - -
JP 75 - 25 - -
GS 75 - - 25 -
GP 75 - - - 25

Vegetable fat 40 40 40 40 40
Powdered milk 20 20 20 20 20

Sugar 30 30 30 30 30
Baking powder 2.5 2.5 2.5 2.5 2.5

Water 25 25 25 25 25

Technological Parameters

Mixing time (minutes) 7 7 7 7 7
Dough temperature (◦C) 20 20.5 20.3 21.0 20.5

Resting time (minutes) 45 45 45 45 45
Temperature (◦C) 4–6 4–6 4–6 4–6 4–6

Baking time (minutes) 15 15 15 15 15
Temperature (◦C) 180 180 180 180 180

BCS: control sample; BJS: biscuits with JS; BJP: biscuits with JP; BGS: biscuits with GS; BGP: biscuits with GP; JS:
Jonathan skin; JP: Jonathan pomace; GS: Golden skin; GP: Golden pomace.

4.3. Fatty Acids

Folch’s total lipids extraction procedure was carried out according to the method
described by [75] and [76]. Briefly, 3 g of samples was mixed for 1 min with 5 mL of
methanol using a high-power homogenizer (MICCRA D-9, ART Prozess-und Labortechnik,
Mullheim, Germany). Afterward, 10 mL of chloroform was added, and the homogenization
process continued for 2 more minutes. A solution with chloroform/methanol (2:1, v/v,
15 mL) was used for the re-extraction of the solid residue, previously filtered. The resulted
filtrates were washed with 0.88% aqueous potassium chloride in a separation funnel to
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purify the lipids, dried over anhydrous sodium sulphate, and the solvent was removed
through a rotary evaporator (Rotavapor R-124, Buchi, Flawil, Switzerland).

Total lipids fatty acid methyl esters (FAMEs) were analyzed as described by Fărcas,
et al. [77] through GC-MS (gas chromatography-mass spectrometry) using a PerkinElmer
Clarus 600 T GC-MS (PerkinElmer, Inc., Shelton, CT, USA) equipped with a Supelcowax
10 capillary column (60 m × 0.25 mm i.d., 0.25 µm film thickness; Supelco Inc., Bellefonte,
PA, USA). The initial temperature of the column was 140 ◦C and reached a final temperature
of 220 ◦C through an increase of 7 ◦C/min. The final temperature was kept for 23 min.
Helium was used as the carrier gas with a flow rate of 0.8 mL/min and mass spectra were
recorded in EI (positive ion-electron impact) mode with mass scans performed in the range
of 22 to 395 m/z. FAMEs were identified by comparing their retention time with those of
the known standards (37 components FAME Mix, Supelco No. 47885-U) and the obtained
mass spectra with those from the NIST MS Search 2.0 software database (Gaithersburg,
MD, USA). The amount of each fatty acid was expressed as the peak area percentage of
total fatty acids.

4.4. Amino Acids

A DSQ Thermo Finnigan quadrupole mass spectrometer coupled with a Trace GC
was used for the analytical investigation. The samples were dried and crushed and 100 mg
of each sample was extracted with 1 mL of 6% trichloroacetic acid in an ultrasonic bath
and then purified on an ion-exchange solid phase column, as described by Culea et al. [51].
Quantitation of amino acids was performed by adding 15N-glycine 99 atom % as an internal
standard. Amino acids were derivatized as trifluoroacetic butyl esters, separated on a
nonpolar capillary chromatographic column (Rtx-5MS capillary column: 30 m × 0.25 mm,
0.25 mm film thickness) with the following temperature program: 70 ◦C, 2 min, 5 ◦C/min
to 110 ◦C, 10 ◦C/min to 290 ◦C, and 16 ◦C/min to 300 ◦C. Helium was used as the carrier
gas with a flow rate of 1mL/min, under the next conditions: ion source temperature of
250 ◦C, injector temperature 200 ◦C, splitter: 10:1, electron energy of 70 eV and with a line
transfer temperature of 250 ◦C.

4.5. Aroma Volatile Compounds

The extraction of aroma volatile compounds was performed through the in-tube
extraction technique (ITEX) and the analysis was carried out on a GCMS QP-2010 gas
chromatograph-mass spectrometer instrument (Shimadzu Scientific Instruments, Kyoto,
Japan) as described in our previous works [77,78]. Briefly, 3 g of each sample was introduced
into a headspace vial of 20 mL, incubated for 20 min at a temperature of 60 ◦C, and
the volatile compounds in the gas phase were absorbed through a fiber syringe (ITEX-
2TRAPTXTA, Tenax TA 80/100 mesh) and directly desorbed into the GC-MS injector.

A Zebron ZB-5MS (Phenomenex) capillary column was used for the separation of
the volatile compounds with helium as the carrier gas, a split ratio of 1:5, and a flow rate
of 1 mL/min. The chromatographic column program was as follows: 35 ◦C (for 5 min)
rising to 155 ◦C with 7 ◦C/min and then heated to 260 ◦C with 10 ◦C/min and held for
5 min. NIST27 and NIST147 mass spectra libraries were used for identifying the spectra of
the reference compounds and checked by comparison with retention indices drawn from
www.pherobase.com or www.flavornet.org [79,80]. The peaks that were identified at least
in two of the three total ion chromatograms (TIC) were considered in calculating the total
area of peaks (100%) and the relative areas of the volatile compounds [44].

4.6. By-Products and Biscuits Color Characteristics

The color characteristics of the final biscuits were analyzed according to our recent
work [50], by using an NH 300 portable colorimeter (Shenzhen ThreeNH Technology Co.,
Ltd., Shenzhen, China), having a color system based on CIE L* (luminosity), a* (red/green
coordinate), b* (yellow/blue coordinate) color. The colorimeter was previously calibrated

www.pherobase.com
www.flavornet.org
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using its own black and white calibration system. All measurements were made in triplicate
and presented as the mean ± sd (standard deviation).

4.7. Sensory Analysis

Sensory analysis was carried out according to the method described in our previous
study [60] and was based on a nine-point hedonic scale. The panelists were students or
staff members of the Faculty of Food Science and Technology, and the sensorial analysis
took place in a laboratory near the bakery pilot station. A total of 35 panelists participated
in the analysis, previously selected due to their regular biscuit consumption, from which
25 were females and 10 were males. A nine-point hedonic scale was based on the following
attributes of the final baked goods: appearance, hardness, crispiness, chewiness, and taste
and aroma. The attributes were rated with notes from 1 to 9, in which 1 means extremely
dislike and 9 was the maximum note meaning extremely like.

5. Conclusions

In the present study, a total number of 15 fatty acids, 14 amino acids, and 47 aroma
volatile compounds were identified in apple by-products samples. Strong Pearson cor-
relations were highlighted between branched amino-acids such as leucine, isoleucine,
and valine and apple by-products volatile aroma compounds (mainly 3-methyl-butanal,
2-methyl-butanal, and 2-methyl-propanal). From the esters group, butyl acetate reached
the highest value in JS (19.76%), while hexanal from the aldehydes group was the main
representant of GS (20.68%). In the present research, terpinolene, 3-carene, sabinene, ß-
pinene, ß-myrcene, and 1,3,8-p-menthatriene were first identified in apple by-products.
The valorization of 25% apple by-products in biscuits manufacturing exhibited a positive
influence on nutritional, volatile, and sensorial characteristics of the final baked goods.
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