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Abstract: In recent years, transmission Raman spectroscopy (TRS) has emerged as a potent new tool
for rapid, nondestructive quantitation in pharmaceutical manufacturing. In order to expand the
applicability of TRS and enhance its use in product quality monitoring during drug production, we
aimed, in the present study, to apply partial least-squares (PLS) approaches to build a model consisting
of 150 handmade tablets and covering 15 levels through the use of a multifactor orthogonal design
of experiment (DOE), which was used to predict concentrations of validation tablets made by hand.
The difference between results according to HPLC and TRS were negligible. The model was used to
predict the active pharmaceutical ingredient (API) content in four random commercial paracetamol
tablets, and corrected with the spectra of the commercial tablets to obtain four corresponding models.
The results show that the content relative error in the model’s predictions after correction with
commercially available tablets was significantly lower than that before correction. The corrected
model was used to make predictions for 20 tablets from the brand Panadol. Compared with the
HPLC results, the prediction relative error was basically less than 4.00%, and the relative standard
deviation (RSD) of the content was 0.86%.

Keywords: transmission Raman spectroscopy; paracetamol; quantitation; chemometrics

1. Introduction

In pharmaceutical manufacturing and finished product testing, determining the con-
tent of drugs using high-performance liquid chromatography (HPLC) testing is not only
time-consuming but also destructive. In recent years, transmission Raman spectroscopy
(TRS) has been widely used in the quantification of API and excipients in drugs [1–3] and
the quantification of polymorphs in pharmaceutical formulations [4,5]. It is a fast and
practical technique and also has the ability to obtain highly chemical-specific information
and quantitative volumetric data from thick and highly turbid samples [6–8].

Compared to HPLC, TRS has the characteristics of no preprocessing, no damage to the
sample, and fast determination [9]. In addition, unlike the backscatter mode, transmission
Raman geometry can reduce the difference between the results of TRS and HPLC, offering
a much improved accuracy and precision by maximizing the sampling volume when the
laser beam is directed onto the sample from one side and the Raman signal is collected
from the other side, allowing the laser photons to move through the entire body of the
sample to convey molecular spectroscopic information on its volumetric content [10–13].
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An additional benefit of this method over conventional backscattering Raman spec-
troscopy is the ability to suppress Raman and fluorescence signals from a tablet coating
or capsule shell [14,15]. TRS typically exhibits excellent specificity with many sharp and
distinct features that can be assigned readily to individual components [16], while near-
infra-red spectroscopy (NIRS) results often contain broader and overlapping features [17,18].
This makes it easier to interpret TRS results and visualize changes in composition.

TRS spectra contain multiple peaks of the various Raman-active compounds in a
sample, which overlap with each other to form a starting point for a complex, informa-
tive analysis. Chemometrics (multivariate analysis) allows us to analyze these complex
data. The main multivariate analysis methods are partial least-squares (PLS), principal
component analysis (PCA), partial least-squares discriminant analysis (PLS-DA), and con-
strained regularization (CR) [19]. Compared to other methods, partial least-squares (PLS) is
a multivariate data analysis method based on principal component analysis and principal
component regression. It is one of the most widely used multivariable calibration methods;
it has good selectivity and prediction accuracy, and is suitable for complex multicomponent
spectra. PLS can eliminate the influence of data collinearity and effectively reduce the
dimensions of spectral data.

Paracetamol is a nonsteroidal antipyretic and analgesic mainly used to treat fever,
headache, joint pain, and other symptoms caused by the common cold or influenza [20].
Currently, in the manufacturing of paracetamol tablets and the quantitation of the final
product, HPLC is usually used to measure the API content, presenting disadvantages such
as the consumption of the chromatographic column and solvent, complicated preprocessing,
and deviations in results obtained by different operators. In addition, electroanalytical [21],
capillary electrophoretic [22,23], and spectrophotometric methods [24] have also been
applied to the determination of paracetamol content [25].

The use of TRS for quantification has been previously reported [26,27]; for example,
Griffen et al. [1] studied the quantification of all the constituents in a set of tablets consisting
of five components (containing paracetamol) using this method. Their study was a proof-
of-concept study, which provided sufficient theoretical support for our experiments. The
authors demonstrated the feasibility of the technology using a compound handmade
tablet, but commercially available tablets are often not suitable for evaluation with the
established model due to changes in the composition, proportion, and shape of the tablets.
Additionally the study of modeling process parameters such as acquisition time, laser
power, and wavelength has not been optimized. In this study, we made use of the spectra of
the commercially available tablets to correct the established model, which made the model
more applicable and reduced the time required for modeling so that it could be used for
high-throughput overall analysis, realizing online batch quality control and nondestructive
analysis of continuous production processes.

The purpose of this research was to develop a method for determining the content of
paracetamol tablets using transmission Raman spectroscopy in combination with PLS. The
model was optimized by changing the type of signal collector, wavelength, preprocessing
method, and other parameters, and was corrected by HPLC in order to predict the contents
of paracetamol tablets. The API contents in currently marketed paracetamol tablets were
predicted and measured and the results were compared with the HPLC results, with the
comparison suggesting that the model can be used in pharmaceutical production processes.
The specific process is shown in the Figure 1 below.
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In the feasibility stage, we assessed the viability of a TRS application without ventur-
ing into a complete method development effort; we compared the API and excipients us-
ing a Principal Component Analysis (PCA) dose–response analysis or other appropriate 
assessment of method feasibility [28,29]. The powdered material of the API and mixture 
of excipients were dispensed into small, clear 7.5 cm2 plastic bags and scanned by TRS 
with the best acquisition parameters. Because of the large quantity of powder and the high 
volumetric sensing capability of TRS, the signal contribution of the thin plastic bag here 
can be considered negligible. 

The original spectrum in Figure 2 shows that paracetamol has unique characteristic 
absorption peaks at 840 cm−1, 1170 cm−1, 1240 cm−1, 1324 cm−1, and 1550–1670 cm−1, com-
pared to the other components. The peaks at 840 cm−1 and 1550–1670 cm−1 originated from 
out-of-plane C-H bending and amide I and amide II bands, respectively [30]. The peaks at 
1170 cm−1, 1240 cm−1, and 1324 cm−1 were separately derived from the symmetric stretching 
vibration of C-N-C, the stretching vibration of benzene –OH, and the symmetric variant 
of CH3. This was recognized by TRS after mixing with other substances so that TRS could 
be used to quantify the API values of paracetamol tablets.  

Figure 1. The process of the study.

2. Results and Discussion
2.1. Method Development
2.1.1. Method Feasibility

In the feasibility stage, we assessed the viability of a TRS application without ven-
turing into a complete method development effort; we compared the API and excipients
using a Principal Component Analysis (PCA) dose–response analysis or other appropriate
assessment of method feasibility [28,29]. The powdered material of the API and mixture
of excipients were dispensed into small, clear 7.5 cm2 plastic bags and scanned by TRS
with the best acquisition parameters. Because of the large quantity of powder and the high
volumetric sensing capability of TRS, the signal contribution of the thin plastic bag here
can be considered negligible.

The original spectrum in Figure 2 shows that paracetamol has unique characteristic
absorption peaks at 840 cm−1, 1170 cm−1, 1240 cm−1, 1324 cm−1, and 1550–1670 cm−1,
compared to the other components. The peaks at 840 cm−1 and 1550–1670 cm−1 originated
from out-of-plane C-H bending and amide I and amide II bands, respectively [30]. The
peaks at 1170 cm−1, 1240 cm−1, and 1324 cm−1 were separately derived from the symmetric
stretching vibration of C-N-C, the stretching vibration of benzene –OH, and the symmetric
variant of CH3. This was recognized by TRS after mixing with other substances so that TRS
could be used to quantify the API values of paracetamol tablets.
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s × 30 accumulations) acquisition time was most suitable, and the optimum processing 
method for spectra was derivative, multiplicative scatter correction, and mean center 
(DMM) instead of baselined, standard normal variate, and mean center (BSM) (date not 
shown). In order to make the model more available, we increased the number of levels 
from 7 to 15 (all levels in Table 1) and changed the tablet number at each level from 5 to 
10 (data not shown). Additionally, we selected the latent variable number 3 instead of 4 
to avoid interference by other non-characteristic peaks, although the RMSEC and 
RMSECV values associated with the number 4 were more closed. 

Table 1. Formulation of tablets. 

Sample Mixture ♦ (mg) 
Calcium  

Carbonate 
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Pregelled  
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1 ∗ 266.6 992.9 1125.9 7607.4 9992.8 76.13 
2 299.2 1199.7 892.8 7591.4 9983.1 76.04 

3 ∗ 300.1 1198.0 1361.7 7122.7 9982.5 71.35 
4 ∗ 300.9 783.1 889.8 8009.9 9983.7 80.23 

Figure 2. TRS spectra of the samples.
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2.1.2. Development of PLS Calibration Model

PLS is a calibration algorithm, namely a kind of multivariate analysis (MVA) method
used for the analysis of mixtures [31]. In the development of the PLS calibration model,
seven levels were selected for calibration (* in Table 1). In this study, we explored acquisition
parameters such as the type of signal collector, laser power, acquisition time, preprocessing
method, and so on, in order to build the most suitable model by assessment of the root mean
square error of correction (RMSEC), root mean square error of cross-validation (RMSECV),
root mean square error of prediction (RMSEP), and linearity (R2) of each model, and made
good use of the PLS method to process and analyze the raw data. In a suitable calibration
model, there should be no significant differences between RMSEC and RMSECV; if such
differences are present, it means the sample is not representative or the model information
is not sufficiently extracted. RMSEP was used as the model evaluation index to evaluate
the accuracy of prediction. The most suitable models were selected because they combined
a low RMSECV and RMSEC with good linearity.

Table 1. Formulation of tablets.

Sample Mixture �

(mg)
Calcium

Carbonate (mg)
Pregelled

Starch (mg) API (mg) Total
(mg) API (%)

1 * 266.6 992.9 1125.9 7607.4 9992.8 76.13
2 299.2 1199.7 892.8 7591.4 9983.1 76.04

3 * 300.1 1198.0 1361.7 7122.7 9982.5 71.35
4 * 300.9 783.1 889.8 8009.9 9983.7 80.23
5 • 299.4 783.1 1363.3 7560.5 10,006.3 75.56
6 379.0 990.4 790.1 7832.2 9991.7 78.39

7 * 378.6 989.5 1125.0 7500.5 9993.6 75.05
8 378.5 990.9 1464.6 7162.5 9996.5 71.65

9 • 379.0 1288.5 1125.6 7195.3 9988.4 72.04
10 377.7 693.8 1126.0 7794.4 9991.9 78.01

11 * 457.5 1198.9 889.6 7454.0 10,000.0 74.54
12 457.6 1198.2 1362.2 6970.3 9988.3 69.78

13 • 457.2 783.7 889.9 7862.2 9993.0 78.68
14 * 408.2 729.4 1271.3 6885.2 9294.1 74.08
15 * 490.1 990.3 1126.0 7400.5 10,006.9 73.95

* Indicates calibration samples, • indicates samples removed from calibration for use as independent validation
samples, � indicates the mixture of crospovidone (23.41%), sodium propyl p-hydroxybenzoate (2.34%), povidone
k25 (9.93%), alginic acid (59.48%), silica (1.63%), and magnesium stearate (3.21%).

The quality of the model has an important relationship with the instrument param-
eters and data processing methods. Comparing the results from the varying acquisition
parameters, as shown in Figure 3, we can conclude that the model with a 4 mm laser
illumination spot diameter at 0.5 w laser power with an M-type signal collector for 10.5 s
(0.35 s × 30 accumulations) acquisition time was most suitable, and the optimum process-
ing method for spectra was derivative, multiplicative scatter correction, and mean center
(DMM) instead of baselined, standard normal variate, and mean center (BSM) (date not
shown). In order to make the model more available, we increased the number of levels
from 7 to 15 (all levels in Table 1) and changed the tablet number at each level from 5 to 10
(data not shown). Additionally, we selected the latent variable number 3 instead of 4 to
avoid interference by other non-characteristic peaks, although the RMSEC and RMSECV
values associated with the number 4 were more closed.

As shown in Figure 4, when the acquisition wavelength was 1700–170 cm−1, the
RMSEP was the lowest and the RMSEC and RMSECV were the closest with no significant
difference, so that the model had a good prediction accuracy. Furthermore, the excipients
had a very distinctive peak at about 180 cm−1 (as shown in Figure 2), which the acquisition
wavelength range should contain, so that the relative intensities of the API and excipient
signals could be compared during the modeling process.
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In order to make the results predicted by the model closer to the true values, the API
theoretical concentration (in Table 1) in the original model was replaced with the actual con-
centration measured by HPLC and the model was corrected after optimizing parameters.

The scores of the model built using 15 levels are exhibited in Figures 5 and 6. As shown
in Figure 5, we assessed the degree of dispersion of the data from different perspectives,
examining whether there were particularly extreme points in the data. Hotelling and
Q-residuals are further model statistics that can be used to judge model performance and
sample quality within a calibration sample set. The two statistics describe the similarities
of samples within the calibration space. From Figure 5A, it can be seen that most of the
samples sat within the reduced statistic threshold, but the red (samples of level 15 in Table 1)
samples were outliers and sat away from the other samples. It may be that there were
unknown compounds that produced noise interference during the mixing with API. The
score of Residuals vs. Leverage in Figure 5B was used to judge whether there were extreme
points, and we found one yellow point (one sample of level 10 in Table 1) that sat away
from the other samples of the same level. In the manual tableting process, mixing time
affects the similarity of tablets at the same concentration level. However, Figure 5C shows
that 150 samples were all located within the 95% confidence level, and the samples of the
same color were close to each other, so outliers did not need to be excluded and the model
score was acceptable.
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The RMSEC (1.0144), RMSECV (1.0972), and R2 (0.881, 0.861) values are shown in
Figure 6. The closeness in values of RMSEC and RMSECV indicates that the model
scores were acceptable. The 150 points were a bit scattered, which may have been caused
by insufficient mixing of materials during the sample preparation process, and can be
improved by increasing the mixing time to improve R2. The quality of the model should
not be judged only by the model score, but also by the relative error between the predicted
value and the true value during the validation process, which is mentioned in Section 2.1.3.

2.1.3. Model Validation

In order to evaluate whether the model was established successfully, it was necessary
to use the model to predict results for actual tablets. The established model was validated
by taking the HPLC result as the true value and the TRS result as the predicted value. The
established models with 15 levels were used to predict the contents of 15 samples (3 levels
(• in Table 1) × 5 tablets) using TRS and HPLC, in order to validate the feasibility of the
model. The results in Figure 7 show that the relative errors between TRS and HPLC were
basically within 2%, which indicates that the model predicted the API content feasibly and
accurately. Although there were three samples that exceeded 2%, due to the high concen-
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tration of API used in this study, the API and excipients may not have been uniformly
mixed during the self-made tablet process, which may have caused difference in tablets.
Tablets could be mixed by machine or over an increased mixing time to eliminate this differ-
ence. Additionally, as shown in Table 2, the linear regression equation y = 0.7672x + 16.79
(x means the content measured by HPLC, y means the content measured by TRS) was
applied and the R2 was 0.9099. These results show that TRS guaranteed the accuracy and
precision of the measurement with high speed and saved time.
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Table 2. The comparison of content measured between HPLC and TRS.

Sample HPLC (%) TRS (%) Relative Error (%)

13-1 77.74 76.84 −1.16
13-2 77.34 76.62 −0.93
13-3 76.95 76.74 −0.27
13-4 76.87 76.78 −0.12
13-5 76.67 75.07 −2.09
9-1 70.46 70.30 −0.23
9-2 69.55 70.17 0.89
9-3 70.26 70.34 0.11
9-4 71.35 70.59 −1.07
9-5 67.62 70.13 3.71
5-1 74.24 73.61 −0.85
5-2 73.86 73.63 −0.31
5-3 74.67 74.27 −0.54
5-4 76.36 73.90 −3.22
5-5 74.40 73.21 −1.60

Linear regression equation y = 0.7672x + 16.79
R2 0.9099

2.2. Quantification of Marketed Paracetamol Tablets

The composition and proportions of the commercially available tablets are often
different from those of the handmade tablets used to build the model. In order to prove the
availability of the model built, four commercially available paracetamol tablets (Panadol,
Anlipai, Guike, and Jinlu) were randomly selected (four brands × five tablets) and two
tablets of each brand were scanned using TRS to obtain eight spectra (four brands × two
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tablets). We used the spectra in the model that had already been built to correct the model,
so that each brand corresponded to a model which was used to predict the contents of
other three tablets. The predicted contents were then compared with the results of HPLC
(shown in Table 3).

Table 3. The results of the model of 150 spectra and 152 spectra.

Brand
The Model of 150 Spectra 1 The Model of 152 Spectra 2

HPLC (%) TRS (%) Relative Error (%) HPLC (%) TRS (%) Relative Error (%)

Panadol
1 82.30 85.44 3.68 82.30 80.67 −2.02
2 80.82 85.44 5.72 80.82 80.62 −0.25
3 80.82 85.24 5.47 80.82 80.78 −0.05

Anlipai
1 86.12 91.35 6.07 86.12 88.60 2.88
2 85.39 91.52 7.18 85.39 88.82 4.02
3 86.82 91.49 5.38 86.82 88.66 2.12

Guike
1 84.27 90.91 7.88 84.27 87.74 4.12
2 86.02 90.72 5.46 86.02 87.49 1.71
3 85.83 88.00 2.53 85.83 84.28 −1.81

Jinlu
1 80.34 87.93 9.45 80.34 79.59 −0.93
2 79.87 89.00 11.43 79.87 80.95 1.35
3 78.51 88.32 12.50 78.51 79.76 1.59

1 The model of 150 spectra was built with the 15 levels in Table 1; each level contains 10 handmade tablet spectra
(150 spectra in total). 2 The model of 152 spectra was built on the basis of the model of 150 spectra, with each
commercial brand model including two commercially available tablet spectra to correct the model (152 spectra in
total). Each brand corresponded to its own exclusive model.

As shown in Figure 8, in the process of quantifying the API contents of commercially
available drugs, the models established using two tablets of the commercial drugs and
15 levels (152 spectra in total) were more accurate in predicting the content. Compared
with the model built with only 15 levels (150 spectra in total), the relative error was greatly
reduced. In the four corrected models, the relative errors of the content predicted by TRS
were less than 5% compared with the results of HPLC. Because the compositions and
proportions of the four branded tablets were different from the tablets made by hand, the
relative error values in the prediction process were within the acceptable range, which
shows that the model is suitable for determination of API content of commercially available
paracetamol tablets. For different manufacturers, their tablets were used to correct the
model and make it suitable for determination of the manufacturer’s paracetamol tablets,
which makes the model widely applicable.

Repeatability is one of the most important factors in quantitative assays using TRS. A
total of 20 paracetamol tablets sold under the brand of Panadol (17.60 × 7.42 × 5.00 mm3,
with white coating) was selected and the content was measured by TRS (shown in Table 4
and Figure 9). The RSD of the content measured by TRS was 0.86% and the relative error of
the results between HPLC and TRS was basically within 4.00%. For the determination of
the API content of 20 tablets, TRS was able to complete determination rapidly. Compared
with HPLC, it greatly saves analysis time, and has good accuracy and repeatability.
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Table 4. The comparison of content measurements between HPLC and TRS.

Sample HPLC (%) TRS (%) Relative Error (%)

1 79.81 82.20 2.99
2 79.45 82.33 3.62
3 80.60 81.96 1.69
4 81.19 81.66 0.58
5 81.86 83.02 1.42
6 81.00 82.79 2.21
7 80.72 82.77 2.54
8 81.23 82.32 1.34
9 81.41 82.98 1.93
10 80.89 82.68 2.21
11 82.38 82.96 0.70
12 80.74 82.57 2.27
13 81.35 82.61 1.55
14 81.92 82.66 0.90
15 81.40 82.28 1.08
16 81.56 82.51 1.16
17 80.58 82.16 1.96
18 81.31 81.99 0.84
19 81.55 82.03 0.59
20 81.72 82.12 0.49

RSD (%) 0.46 0.86
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3. Materials and Methods
3.1. Materials

The materials used were: TRS instrument (Agilent TRS 100, Wokingham, UK),
high-performance liquid chromatograph (Thermo Ultimate 3000, Thermo Fisher Scientific,
Waltham, MA, USA) with Chromeleon 7 software, acetaminophen (Anqiu Lu’an
Pharmaceutical Co., Ltd., Weifang, China), pregelled starch (Kolorcon, Shanghai, China),
calcium carbonate (Spectrum Chemical Manufacturing Corp., Shanghai, China), crospovi-
done (Anhui Sunhere Pharmaceutical Excipients Co., Ltd., Anhui, China), sodium propyl
p-hydroxybenzoate (Xuzhou Donghe, Jiangsu, China), povidone K25 (BASF SE), alginic acid
(Qingdao bright moon seaweed group CO., LTD., Qingdao, China), silica (Anhui Sunhere
Pharmaceutical Excipients Co., Ltd., Anhui, China), magnesium stearate (Huzhou Zhan-
wang Pharmaceutical Co., Ltd., Huzhou, China), Panadol paracetamol tablets
(17.60 × 7.42 × 5.00 mm3, with white coating, SK&F), Anlipai paracetamol tablets
(17.10 × 7.86 × 5.40 mm3, Anhui Yongshengtang, Pharmaceutical Co., Ltd., Fuyang, China),
Guike paracetamol tablets (diameter 12.06 mm, height 4.5 mm, Shijiazhuang Shi Huaxin
Pharmaceutical Co., Ltd., Luancheng, China), Jinlu paracetamol tablets (diameter 12.06 mm,
height 4.6 mm, Beijing Shuguang Pharmaceutical Co., Ltd., Beijing, China).

3.2. Preparation of Samples

According to the preparation instructions, the prescriptions were determined and pow-
der mixtures were prepared according to DOE to make the samples. A total of 150 samples
(15 levels × 10 tablets) were prepared according to the design shown in Table 1. Each
powder with multiple ingredients of each level was enough to make 10 tablets. This al-
lowed us to cover the whole calibration space while minimizing the number of samples
to be prepared. The mixtures of API and excipients were mixed and compressed using a
17.5 × 7.5 × 5.5 mm3 flat surface tablet die in a DP30A single-punch tablet machine into
10 tablets per level. The tablets weighed on average ~660 mg with a range between 650 and
670 mg.
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3.3. Experimental Conditions
3.3.1. Transmission Raman Spectroscopy Conditions

The TRS spectra of API and mixture of excipients were collected using a TRS in-
strument and ContentQC software. The acquisition parameters employed a 4 mm laser
illumination spot diameter at 0.5 W laser power with an M-type signal collector, and the
acquisition time was 10.5 s (0.35 s × 30 accumulations). The processing method of spectra
was derivative, multiplicative scatter correction, and mean center (DMM). All TRS spectra
were recorded from 1700 cm−1 to 170 cm−1 and brought into the Solo software with the
corresponding concentrations (%) to build a calibration model.

3.3.2. Chromatographic Conditions of HPLC-UV

The API contents of the tablets were evaluated using an HPLC-UV method. The
separation was carried out at 30 ◦C using an MGIIC18 250 mm × 4.6 mm × 5 µm column
(Capcell pak, Shiseido, Japan), with a mobile phase containing methanol: water (1:3) at a
flow rate of 1.5 mL min−1 for 6 min. Detection was carried out at 243 nm. Under these
conditions, paracetamol had a retention time of 3.95 min. The results of API content
measured by HPLC were brought into the model to replace the original contents in order
to calibrate the model.

4. Conclusions

This study demonstrated the feasibility of quantifying the content of pharmaceutical
tablets noninvasively using TRS. The model was established and optimized by chang-
ing the parameters, then used to measure the contents of four commercially available
paracetamol tablets. For the quantification of active ingredients, TRS was found to be
suitable for multivariate regression model development, resulting in models with increased
predictive capacity. The method can greatly reduce the analysis period and sample con-
sumption, achieve online analysis on the production line, and realize the quality control
of drugs during the production process. The ability to yield spectrum-specific informa-
tion and rapidly predict the content of API will unlock a range of new applications in
pharmaceutical settings.
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