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Abstract: Heparin is one of the most valuable active pharmaceutical ingredients, and it is generally
isolated from porcine intestinal mucosa. Traditionally, different types of commercial resins are
employed as an adsorbent for heparin uptake; however, using new, less expensive adsorbents has
attracted more interest in the past few years to enhance the heparin recovery. Zeolite imidazolate
framework-8 (ZIF-8), as a metal–organic framework (MOF) with a high surface area, porosity, and
good stability at high temperatures, was selected to examine the heparin recovery. In this research,
we demonstrate that ZIF-8 can recover up to ~70% (37 mg g−1) of heparin from porcine intestinal
mucosa. A mechanistic study through kinetic and thermodynamic models on the adsorption revealed
appropriate surface conditions for the adsorption of heparin molecules. The effect of different
variables such as pH and temperature on heparin adsorption was also studied to optimize the
recovery. This study is the first to investigate the usage of MOFs for heparin uptake.

Keywords: heparin; metal–organic framework; zeolite imidazolate framework-8; kinetic; thermodynamic

1. Introduction

Heparin (Scheme 1) is a linear, sulfur-rich polysaccharide in the glycosaminoglycan
family with varying lengths and weights ranging from 2000–40,000 kDa; it is generally
procured from the bovine and porcine intestinal mucosa. Heparin is predominantly used as
an anticoagulant and antithrombotic agent to treat a variety of medical conditions, such as
systemic embolism syndrome and deep vein thrombosis; however, it also has applications
as an anti-inflammatory and antiviral drug. Furthermore, heparin has been demonstrated to
inhibit cancer cell growth and delay the onset of the detrimental symptoms of Alzheimer’s
disease [1–4].

Heparin is isolated from porcine intestinal mucosa through a multi-step adsorp-
tion/desorption process after digestion has occurred; numerous parameters, namely, ad-
sorbent surface properties, porosity, and thermodynamic and chemical stability, must be
considered to securely deliver the highest amount of adsorbed heparin in the final step
after elution [5–8]. In addition, the adsorbent needs to be easily packable (for continuous
systems) or easy to separate (for batch systems). To date, several resin beads, such as
Amberlite [5], Dowex [8], Lewatit [9], and DEAE [10], have been designed and commer-
cially utilized to recover heparin from porcine intestinal mucosa. Although effective, the
methods by which these materials are synthesized are expensive and, in some cases, not
environmentally friendly. Recent research has shown the high efficiency and effectiveness
of different nanomaterials in the adsorption/desorption of various pharmaceuticals from
different matrices [11–15]. Among these nanomaterials, quaternized chitosan/polystyrene
microbeads [16], magnetic clay nanotubes [17], cross-linked spherical polycationic [18],
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and quaternary ammonium-functionalized halloysite nanotubes [19] have especially been
designed for the recovery of heparin.
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Metal–organic frameworks (MOFs) are 3D nanoporous materials with an ultra-high
surface area (exceeding 6000 m2/g), porosity (up to 90% free volume), and thermody-
namic/chemical stability. Moreover, their fabrication methods are simple, inexpensive, and
environmentally friendly [20,21], making them suitable for commercial use [22–26]. Zeolite
imidazole frameworks (ZIFs) are a new class of MOFs consisting of imidazolate linkers and
metal ions. Due to their high surface area, pore volume, thermal and chemical stability, and
adaptable functionalization, ZIFs have found applications in various fields as sensors, drug
delivery agents, gas separation agents, and electronic device components [27–31].

In this research, we report the recovery of heparin from the porcine intestinal mucosa
using two types of ZIFs (ZIF-8 and ZIF-67) with different surface areas. Our results
demonstrated that the ZIF with a higher surface area (ZIF-8) showed a higher amount
of heparin recovery. We also evaluated the effects of several variables, such as pH and
temperature, to investigate the most optimal conditions for heparin recovery. Our results
further illustrated that the heparin recovery with ZIF-8 stabilized after five cycles. We
also utilized a sheep plasma test to measure and compare the anticoagulant potency of
ZIF-8 with commercial Amberlite FPA98 Cl, the results of which confirmed the significant
potential of MOFs in the heparin uptake industry.

2. Result and Discussion
2.1. ZIF-8 and ZIF-67 Characterization

Scanning electron microscope (SEM) images of ZIF-8 and ZIF-67 were taken at the ACS
Materials Facility using a Hitachi S-4800 scanning electron microscope (SEM) at 10 kV. The
SEM images are shown in Figure 1. The infrared spectrum of ZIF-8 is shown in Figure 2.Molecules 2022, 27, x FOR PEER REVIEW 3 of 12 
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2.2. Heparin Adsorption Studies

Prior to optimization, it was important to evaluate the affinity of heparin toward
each absorbent in a pure heparin solution. The results (Figure 2a) demonstrated that
ZIF-8 could adsorb more than 2-fold more heparin compared to ZIF-67 in a pure aqueous
solution. The reported BET surface areas for ZIF-8 and ZIF-67 are >1300 and ~316 m2/g,
respectively [31,32], which are well correlated with their differences in adsorption efficiency.
Due to the superior adsorption capabilities of ZIF-8 over ZIF-67, ZIF-8 was selected for
further experiments to evaluate adsorption in real samples containing porcine intestinal
mucosa. The FTIR spectrum of ZIF-8 shows a band at 1712 cm−1, which confirms the
presence of C=N bond stretching. The bands at 1100 cm−1 and 990 cm−1 are attributed
to C-N stretching. Additionally, a preabsorbed sample of ZIF-8 was dried and analyzed
via FTIR spectroscopy so as to ensure that heparin adsorption occurred (Figure 2b). The
resulting spectrum was compared with the FTIR spectrum of pure sodium heparin salt
and the FTIR spectrum of ZIF-8 powder. The appearance of a band at 1712 cm−1 in the
ZIF-8–heparin mixture is attributed to the C=O group of heparin, and the appearance of a
band at 1222 cm−1 is attributed to the S=O group of heparin, which confirms the adsorption
of heparin on the surface of ZIF-8.

2.2.1. Effect of pH

One of the most important parameters to consider when studying any adsorption/
desorption system is pH, as pH fluctuations can have significant impacts on adsorption
efficiency. For this reason, the effect of pH on the adsorption of heparin onto ZIF-8 was
investigated by changing the pH of the real sample of the heparin solution from 3 to 11
in a series of experiments; adsorption efficiency and capacity were then evaluated. The
results (Figure 3a) indicate that heparin adsorption increases when increasing the pH from
3 to 8. The highest adsorption was observed at a pH of 8, where an efficiency of 57.8% and
a capacity of 30.4 mg g−1 were recorded; efficiency and capacity subsequently remained
constant as more alkaline conditions were induced. Notably, increasing pH slightly de-
protonates heparin, resulting in more negative charges that make it more receptive to the
positive active sites of ZIF-8. We selected pH = 8 as the optimal pH since the stability of
MOFs subsequently decreases at higher pH conditions.
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Figure 3. (a) Effect of pH (conditions: 50 mL of 1000 mg L−1 real sample, 0.5 g of ZIF-8, temperature
50 ◦C, and 240 min of contact time), (b) adsorbent dosage (conditions: 50 mL of 1000 mg L−1 real
sample at pH = 8, temperature 50 ◦C, and 240 min of contact time), (c) contact time (conditions: 50 mL
of 1000 mg L−1 real sample at pH = 8, 0.5 g of ZIF-8, and temperature 50 ◦C), and (d) temperature
(conditions: 50 mL of 1000 mg L−1 real sample at pH = 8, 0.5 g of ZIF-8, and 300 min of contact time)
of the adsorption efficiency of heparin over ZIF-8.

2.2.2. Effect of the Adsorption Dosage

ZIF-8 showed a remarkable capacity in the removal of contaminants. In this part of
the study, we investigated the effect of the adsorbent dosage of ZIF-8 on heparin uptake
by varying the amount of ZIF-8 from 100 to 1000 mg. The results (Figure 3b) indicated
that increasing the adsorbent dosage to 500 mg caused the adsorption efficiency and
capacity to increase to 58.2% and 30.6 mg g−1, respectively. Increasing the dosage of the
adsorbent further led to a slight decrease in the capacity while efficiency remained constant.
Notably, a higher adsorbent dosage increased the adsorption due to a higher surface
area and the presence of more active sites on ZIF-8 adsorbents; the adsorption capacity,
however, decreased at dosages higher than 500 mg. This phenomenon is attributed to the
interference of other components in the sample, namely, dermatan and chondroitin sulfate,
which compete with heparin and prevent it from being adsorbed onto the surface of ZIF-8.
Furthermore, the aggregation of ZIF-8 at a higher dosage may also serve to decrease the
active sites of the adsorbents for heparin molecules. In addition, the observed decrease in
the adsorption capacity from 35 to 15 mg g−1 is the result of increasing the mass (m) in
Equation (4) [17].

2.2.3. Adsorption Time and Temperature Effects

The results from the contact time experiment (Figure 3c) indicated that when increasing
the contact time, the adsorption efficiency and capacity increased to 64.5% and 33.9 mg g−1,
respectively, after 300 min of contact time. This trend was anticipated due to the length
of time that it takes heparin molecules to diffuse from the solution and bond to ZIF-8
adsorbent surfaces. As observed in the experiment, adsorption approached stability after
that, revealing that ZIF-8 had reached its full capacity at these experimental conditions. In
addition to contact time, the solution temperature is another highly influential parameter in
adsorption systems. Therefore, to study its effect on heparin uptake, a series of experiments
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were performed by varying the temperature from 25 ◦C to 75 ◦C while keeping all other
parameters constant. The results (Figure 3d) demonstrated that by increasing the temper-
ature to 55 ◦C, the adsorption efficiency and capacity increased to 70% and 36.8 mg g−1,
respectively. By increasing the temperature, the heparin molecules can move more quickly
in the solution due to a decrease in the solution’s viscosity, which facilitates their interaction
with the adsorbent surface. The minimal decrease observed after 65 ◦C is likely due to the
decomposition of heparin molecules from temperatures that were too high to support its
structural stability.

2.2.4. Kinetic and Thermodynamic Studies

In order to better comprehend the observed adsorption phenomena of ZIF-8 and
its associated mechanisms, the collected data were analyzed via the following kinetic
models: pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich
(Equations (5)–(8); Figure 4 and Table 1). The obtained data, which are presented in Figure 4
and Table 1, show that the adsorption of heparin onto ZIF-8 best fits the pseudo-second-
order kinetic model since the R2 value is much closer to 1.0 and qe(cal) is closest to qe(exp)
out of all the examined models. Based upon this model, the rate-limiting step is the surface
adsorption that involves chemisorption; therefore, the adsorption process is not limited by
the concentration of heparin but rather the adsorption capacity of ZIF-8 [32]. This confirms
the decrease in heparin uptake with increasing adsorption dosages (Figure 3b). Further, the
Elovich model also exhibits a good fit, supporting the adsorption of heparin on the ZIF-8
heterogeneous surface since this model assumes that the rate of the adsorption of the solute
decreases exponentially as the amount of adsorption increases.
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Table 1. Calculated parameters from different kinetic study models of heparin adsorption over ZIF-8.

Model Parameter Value

Pseudo-first-order

K1

(
min−1

)
0.024

qe (cal)

(
mg
g

)
721.31

R2 0.8502

Pseudo-second-order

K2

(
g

mg min

)
1.34 × 10−5

qe (cal)

(
mg
g

)
672.22

R2 0.9556

Intraparticle Diffusion

Kdiff

(
mg

g min0.5

)
27.64

C
(

mg
g

)
12.61

R2 0.901

Elovich

β
(

g
mg

)
0.0076

α
(

mg
g min

)
1.58

R2 0.9724

qe (exp) 522.11

The thermodynamic parameters of heparin adsorption on ZIF-8, including entropy
change (∆S), enthalpy change (∆H), Gibbs free energy change (∆G; calculated from
∆G = ∆H − T∆S), and activation energy (Ea), were calculated by using Equations (1) and
(2) and plotting lnKc versus 1/T and ln(1 − θ) versus 1/T [33,34]. These data are presented
in Figure 5 and Table 2.

lnKc =
∆S
R

− ∆H
RT

(1)

ln(1 − θ) = ln S∗ +
Ea

RT
(2)
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Figure 5. Thermodynamic study of heparin adsorption over ZIF-8 via (a) lnK vs. 1/T and (b) ln(1 − θ)
versus 1/T.
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Table 2. Calculated thermodynamic parameters of heparin adsorption over ZIF-8.

∆H◦

(J/mol·K)
∆S◦

(KJ/mol)
Ea

(KJ/mol)
Temperature (K)

298 303 313 323 328 333 338

25.27 105.97 19.41
∆G◦ (KJ/mol)

−31.57 −32.10 −33.16 −34.22 −34.74 −35.27 −35.80

The positive values of ∆H and ∆S indicate the endothermic nature of the adsorption
process and the high affinity of heparin molecules toward ZIF-8. The positive value of Ea
also further confirms the endothermic nature of the adsorption process, while the negative
values of ∆G reflect the feasibility of the process and its spontaneous nature [35].

2.2.5. Sorbent Reusability

ZIF-8 showed impressive performance in heparin uptake in real biological samples,
with a ~70% adsorption rate and a 37 mg g−1 capacity under optimized conditions. In
order to evaluate the industrial potential of ZIF-8, we tested the stability and reusability of
ZIF-8 through five adsorption/desorption cycles and harsh regeneration conditions. The
results (Figure 6) indicate that the ZIF-8 adsorbent has high stability and reusability even
after five adsorption/desorption cycles and exposure to harsh regeneration conditions.
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Figure 6. Stability test of heparin recovery over ZIF-8.

2.2.6. Sheep Plasma Clotting Assay

The porcine intestinal mucosa solution used for the sheep plasma clotting assay was
prepared via a previously established and reported method [18]. The desired amount of
adsorbent was mixed with the mucosa, followed by the stirring of the mixture at 55 ◦C for
3 h. Lastly, the adsorbent was filtered and washed with Milli-Q water. The solid heparin
was then eluted from the adsorbent as described in a previous publication [18]. A similar
method was employed for the commercial Amberlite resin. The anticoagulant potency
of the recovered heparin from both ZIF-8 and the Amberlite resin was measured and
compared [19]. The results indicated that the total activity of the eluted heparin utilizing
the ZIF-8 adsorbent was 64 ± 1.8 U per gram of mucosa compared to 59 ± 2.6 U per gram
of mucosa from the commercial Amberlite FPA98 Cl resin. These results highlight the
promising potential of the ZIF-8 adsorbent in an industrial setting.
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3. Experimental Procedures
3.1. Materials

Heparin sodium salt of analytical grade was purchased from VWR, USA. Commer-
cially synthesized ZIF-8 and ZIF-67 were purchased from ACS Material, LLC (Pasadena,
CA, USA). Milli-Q water was used for the preparation of all solutions and the adsorption
experiments. Porcine intestinal mucosa (heparin content of ~1300 mg L−1) was purchased
from a local market. The subtilisin enzyme was purchased from STERM Company, New-
buryport, MA, USA. Commercial Amberlite FPA98 Cl resin was purchased from Dow
Chemical (Midland, MI, USA), USA. Sheep plasma, hydrochloric acid (37%), calcium chlo-
ride, analytical grade methanol, sodium hydroxide, and denatured ethanol were purchased
from VWR and used as received. Heparin ELISA kits were purchased from MyBiosource,
San Diego, CA, USA.

3.2. Instrumentation

A Spectrostar Nano microplate reader (BMG LABTECH, Cary, NC, USA) was used to
measure the heparin concentration in both pure and real samples. MOFs, heparin sodium
salt, and MOF–heparin were characterized by a Shimadzu IR Affinity FTIR instrument
(Shimadzu Scientific Instruments, Columbia, MD, USA).

3.3. Solutions and Methods

A heparin stock solution (1000 ppm) was prepared by adding the required amount
of heparin salt to Milli-Q water and used for standard experiments. This solution was
used to investigate the adsorption capacity of each adsorbent in the standard condition.
For this, 0.5 g of ZIF-8 and ZIF-67 were added to separate solutions, the two mixtures
were stirred for 5 h at 55 ◦C in an incubator, and the adsorbed heparin was calculated for
both mixtures by using the methylene blue method according to the previously published
procedure [18,19]. Specifically, to examine the material’s absorption capabilities, 250 mg
of the MOFs was added to a 25 mL aqueous solution of 1000 ppm heparin sodium. In
the incubator, the solution was stirred for 3 h at 55 ◦C. Five milliliters of the solution
was removed and filtered using a syringe filter, and the concentration of heparin in the
supernatant was measured using the methylene-blue-assisted spectrophotometric method.
Methylene blue (MB) is a cationic metachromatic dye that can bind to heparin. First, 1 mL
of the heparin solution was added to 1 mL of MB solution (10 mg L−1). Then, the solution
was mixed using a vortex mixer for 10 min, and the absorbance was measured by a plate
reader based on the intensity of the band at λmax = 663 nm, which is attributed to the free
MB. When MB forms a dimer with heparin, the intensity of the band at 663 nm decreases
due to the lower concentration of free MB. The concentration of heparin after adsorption
was calculated using the pre-plotted standard calibration curve.

The adsorption efficiency of heparin on the ZIFs and the anticoagulant potency of
the eluted heparin were evaluated in porcine intestinal mucosa by using sheep plasma
and heparin ELISA kits. The detailed adsorption process can be found in our previous
publication [18].

The adsorption efficiency and capacity were calculated via Equations (3) and (4):

Adsorption efficiency (%) =
(C0 − Ce)

C0
× 100 (3)

Adsorption capacity
(
qe
)
=

(C0 − Ce)

m
× V (4)

where C0 and Ce (mg L−1) are the initial and equilibrium heparin concentrations (measured
with the ELISA kit), V (L) is the volume of the mucosa solution that was used for heparin
adsorption, and m is the mass of the adsorbent used (g). The experimental conditions
of the adsorption were optimized through different influential parameters, such as pH,
contact time, and temperature. Furthermore, in order to understand the mechanism of
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adsorption and also the commercial viability of the adsorbent, other parameters such
as adsorbent dosage, kinetic and thermodynamic properties, and the reusability of the
absorbent material were investigated. All experiments were carried out in triplicate, and
the error bars in the figures indicate the standard deviation of each experiment.

Pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich mod-
els were calculated to have a better understanding of the adsorption phenomena. The
linearized equation of each model is given in Equations (3)–(6), respectively. The pseudo-
first-order model (Equation (5)) considers a proportional relation between the occupation
of adsorption sites and the number of unoccupied sites.

log
(
qe − qt

)
= log qe −

K1

2.303
× t (5)

In Equation (5), the value of K1 (min−1; the rate constant of the second-order equation)
and qe can be obtained from the slope and intercept of the linear plot of log

(
qe − qt

)
versus

t, respectively, where qe (mg g−1) and qt (mg g−1) are the adsorbed heparin at equilibrium
and at any time t, respectively [36].

The pseudo-second-order kinetic model assumes that the adsorption rate is not depen-
dent on the heparin adsorption but the adsorption capacity of ZIF-8.

t
qt

=
1

K2 × qe
2 +

t
qe

(6)

In Equation (6), K2 (g mg−1 min−1) and qe (mg g−1) are the rate constant of the
second-order equation and the maximum adsorption capacity, respectively, which can be
calculated from the slope and intercept of the plot of t/qt vs. t [37–39].

In the intraparticle diffusion model (Equation (7)), the limiting steps are considered to
be mass transport.

qt = Kdiff × t1/2 + C (7)

In this model (Equation (8)), the values of Kdiff (the rate constant of intraparticle
diffusion (mg g−1 min−1)) and C (thickness of boundary) are calculated from the slope and
intercept of the plot of qt versus t1/2 [40].

The Elovich kinetic model (Equation (4)) considers the sorbent to have heterogeneous
active sites with varying active energies during the adsorption process.

qt =
1

β ln(αβ)
+

1
β ln(t)

(8)

In this model (Equation (8)), the values of α and β (Elovich constants) can be calculated
from the slope and intercept of the plot of qt versus ln(t) [41].

To evaluate the stability of the ZIF-8 adsorbent, after the first adsorption/desorption
cycle, ZIF-8 adsorbent was regenerated by washing with a saturated NaCl solution for 3 h
at 50 ◦C following the wash with Milli-Q water. The solution was tested with absorption
spectroscopy to ensure that no heparin was carried to the next cycle. The same process was
repeated across all five cycles [17].

4. Conclusions

Here, we report the use of ZIFs for heparin recovery, which is the first example of
heparin recovery utilizing an MOF. To the best of our knowledge, these MOFs have been
extensively used for various applications but not for heparin recovery. We employed two
different MOFs with different surface areas, and the results met our expectations. ZIF-8, an
MOF with a larger surface area than that of ZIF-67, proved to be more effective at adsorbing
heparin, with approximately 70% adsorption capacity. Furthermore, our results revealed
that the heparin recovered from ZIF-8 had higher total anticoagulant activity compared to
the heparin recovered from the commercially available Amberlite FPA98 CI resin (sheep
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plasma clotting assay). The mechanistic adsorption study demonstrated that the adsorption
process adheres to the pseudo-second-order kinetic model and is both thermodynamically
endothermic and feasible. We also observed the effects of different variables, such as
pH, temperature, and adsorbent dosage, on heparin recovery so as to determine the most
optimal conditions for heparin uptake.
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