
1.1 System modeling for normal prostate cells and PCa 

The x-th lncRNA is influenced by TFs, lncRNAs, and miRNAs. Hence, the x-th 

lncRNA in the candidate lncRNA regulatory network (LRN) model can be written in 

the following regulatory equation: 
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where [ ]xl n   refers to the expression level of the x-th lncRNA; 
xR  , 

xS  , and 
xU    

indicate total number of TFs binding to the x-th lncRNA, the total number of lncRNAs 

binding to the x-th lncRNA, and the total number of miRNAs impeding the x-th 

lncRNA respectively. [ ] rT n  , [ ]sL n  , and [ ]uM n   individually denote the expression 

level of the r-th TF, the s-th lncRNA, and the u-th miRNA for the n-th sample; 
xrd  and 

 respectively represent the transcriptional regulatory ability from the r-th TF and the 

s-th lncRNA to the x-th lncRNA; 0xuq−    demonstrates the post-transcriptional 

regulatory ability from the u-th miRNA to the x-th lncRNA; N  and X  respectively 

represent the total number of samples and lncRNAs; 
x  is the basal level of the x-th 

lncRNA owing to unknown regulations; [ ]x n  denotes the stochastic noise. 

 In the same way, the expression of the y-th miRNA is influenced by the TFs, 

lncRNAs, miRNAs as well. In addition, the y-th miRNA in the candidate miRNA 

regulatory network (MRN) model among candidate GWGENs can be explained by the 

following regulatory equations: 
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where [ ]ym n   denotes the expression level of the y-th miRNA; yr   and ys    

respectively represent the transcription regulatory ability from the r-th TF and the s-th 

lncRNA to the y-th miRNA; 0yu−   indicates the post-transcription regulatory ability 

by which the u-th miRNA inhibits the y-th miRNA; [ ]rT n  , [ ]sL n  , and [ ]uM n   are 

individually the expression of the r-th TF, the s-th lncRNA, and the y-th miRNA; yR    

denotes the total number of TFs binding to the y-th miRNA; yS   denotes the total 

xsf



number of lncRNAs binding to the y-th miRNA; yU  represents the total number of 

miRNAs restraining the y-th miRNA. N  and Y  are respectively the total number of 

data samples and miRNAs; y  denotes the basal level of the y-th miRNA expression 

due to unknown regulations; [ ]y n  represents the stochastic noise of gene expression 

in the y-th miRNA for the sample n. 

 

1.2 Utilizing system identification and system order detection methods to 

identify real GWGENs from the candidate GWGEN 

 After formulating lncRNA and miRNA in the candidate GWGEN by equations 

(S1) and (S2), we are going to estimate regulation parameters with the help of 

microarray data. Hence, firstly, we can rewrite equations (S1) and (S2) in the following 

equations: 
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For simplicity, the above equations can be represented by the following equations: 
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Where ,x L   and ,y M   individually represent the estimated parameters of post-

transcriptional regulation abilities from lncRNA and miRNA; , [ ]x L n   and , [ ]y M n  

separately denote expression vector of lncRNA and miRNA for the sample n. 

 Since we have N samples, the equations (S5) and (S6) could be augmented in the 

following forms: 
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Additionally, (S7) and (S8) are equal to the equations as below: 
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In order to obtain the estimated parameters in equations (S9) and (S10), we are going 

to solve the constrained linear least squares estimation problems in the following: 
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It is noted that the matrix inequality in the equations (S11) and (S12) could guarantee 

that the estimated post-transcriptional regulatory abilities of miRNA are negative. 

Further, the constrained linear least squares estimation problem could be solved via 

MATLAB optimization toolbox. 

 Building the candidate GWGEN from various database, there may exist false-

positive interactions. Therefore, we are going to do system order detection by 

computing the AIC. Based on the AIC theory, the real system would lead to the smallest 

AIC value. The AIC of the x-th lncRNA and the y-th miRNA are given as below: 
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where 2

,
ˆ

x L   and 2

,
ˆ

y M   individually denote the estimated residual error of the x-th 

lncRNA and the y-th miRNA; ,x L  and ,y M  are the number (order) of the parameters 

of the x-th lncRNA in the parameter estimation problem in (s11) and the number (order) 

of parameters of the y-th lncRNA in the parameter estimation problem in (S12). 

Moreover, the estimated regulation abilities ,
ˆ

x L   and ,
ˆ

y M   can be obtained after 



solving optimization problem in (S11) and (S12). The real system order, which are 

* * *, ,x x xR S U  for the x-th lncRNA and * * *, ,y y yR S U  for the y-th miRNA, can lead to the 

smallest AIC in (S13) and (S14), respectively. In other words, the insignificant 

interactions and regulations out of the real system order will be removed.  

Tables 

Table S1. The overall statistical table of nodes and edges in the candidate GWGEN and real 

GWGENs of normal prostate cells (including lean and obese groups), lean, and obese PCa after 

system identification. 

Node/edge candidate normal(lean) normal(obese) lean PCa obese PCa 

LncRNA-TF 59 1 1 1 1 

LncRNA-Receptor 2 1 2 2 1 

LncRNA-Protein 49 13 9 10 8 

LncRNA 151 126 103 107 106 

MiRNA- LncRNA 245 1 1 2 3 

MiRNA- MiRNA 6 6 6 6 5 

MiRNA-TF 16338 21 30 25 20 

MiRNA-Receptor 13638 43 35 34 43 

MiRNA-Protein 74055 211 186 173 189 

MiRNA 197 134 139 144 138 

TF- LncRNA 210 49 60 62 69 

TF-MiRNA 1422 118 139 120 124 

TF- TF 31274 231 204 223 199 

TF- Receptor 17071 1227 1062 1182 1223 

TF- Protein 86688 6695 5961 6229 6585 

TF 2049 180 207 210 217 

Receptor- LncRNA 30 90 29 28 83 

Receptor- MiRNA 147 128 124 138 146 

Receptor- TF 2380 288 270 281 278 

Receptor- Receptor 1756 1636 1527 1674 1715 

Receptor- Protein 8887 7972 8247 8477 8275 

Receptor 2129 2029 2113 2087 2087 

Protein 14218 13255 11995 11874 11874 

PPI edge 4237685 857190 840614 854637 856258 

Total node 18744 15724 14557 14422 14422 

Total edge 4491942 868695 858558 873377 876234 



Table S2. Enrichment analysis in core GWGEN of normal prostate cells (lean group) by the 

DAVID. 

Term Numbers p-value 

Adipocytokine signaling pathway 21 4.3×10-3 

Taste transduction 15 7.1×10-3 

Cell cycle 32 4.5×10-3 

HIF-1 signaling pathway 25 1.2×10-2 

PI3K-Akt signaling pathway 66 6.0×10-2 

 

Table S3. Enrichment analysis in core GWGEN of normal prostate cells (obese group) by the 

DAVID. 

Term Numbers p-value 

Oxidative phosphorylation 31 4.5×10-3 

Protein digestion and absorption 22 8.3×10-3 

cAMP signaling pathway 38 3.6×10-2 

HIF-1 signaling pathway 21 4.0×10-2 

Glutathione metabolism 13 4.5×10-2 

 

Table S4. Enrichment analysis in core GWGEN of lean PCa by the DAVID. 

Term Numbers p-value 

Pathways in cancer 71 5.0×10-2 

T-cell receptor signaling pathway 21 9.4×10-2 

MAPK signaling pathway 49 3.1×10-2 

mTOR signaling pathway 14 7.2×10-2 

Prostate cancer 19 8.3×10-2 

 

Table S5. Enrichment analysis in core GWGEN of obese PCa by the DAVID. 

Term Numbers p-value 

Pathways in cancer 67 9.4×10-2 

PI3K-Akt signaling pathway 60 8.4×10-2 

MAPK signaling pathway 46 7.3×10-2 

mTOR signaling pathway 14 6.5×10-2 

Prostate cancer 19 8.3×10-2 

 

 



Table S6. Model performance of DNN-based DTI model (10-fold cross validation). 

 

Table S7. The candidate drugs identified for target STAT1, FOXF2, SIM2, SMAD2, MYB, EGFR, 

CERK, STAT3 and TP53. 

STAT1 FOXF2 

Drug 

Toxicity 

(LD50, 

mol/kg) 

Regulation 

ability 

(CMap) 

Drug 

Toxicity 

(LD50, 

mol/kg) 

Regulation 

ability 

(CMap) 

Prochlorperazine 2.3496 -0.16563 Gliclazide 2.0016 0.02484 

Rosiglitazone 2.4515 -0.15607 Prilocaine 2.1374 0.00225 

Apigenin 2.6983 -0.22592 Orlistat 2.3363 0.46585 

Triflupromazine 3.2485 -0.17981 Bromocriptine 2.7499 0.07726 

Methotrexate 3.4955 -0.20734 Digoxin 4.4721 0.27600 

SIM2 SMAD2 

Drug 

Toxicity 

(LD50, 

mol/kg) 

Regulation 

ability 

(CMap) 

Drug 

Toxicity 

(LD50, 

mol/kg) 

Regulation 

ability 

(CMap) 

Gliclazide 2.0016 -0.09183 Omeprazole 2.2254 0.15675 

Orlistat 2.3363 -0.00007 Cefotiam 2.4511 0.23653 

Apigenin 2.6983 -0.15210 Thiethylperazine 2.5624 0.13800 

Bromocriptine 2.7499 -0.22652 Alfuzosin 2.6826 0.17104 

 
Validation 

loss 

Validation accuracy 

(%) 

Testing 

loss 

Testing accuracy 

(%) 

1 0.148 95.23 0.159 94.87 

2 0.151 94.93 0.150 95.05 

3 0.159 94.58 0.155 94.69 

4 0.155 94.73 0.161 94.68 

5 0.154 94.75 0.156 94.91 

6 0.147 94.91 0.155 94.95 

7 0.164 94.74 0.157 94.96 

8 0.162 94.56 0.158 94.82 

9 0.151 95.18 0.155 95.06 

10 0.142 95.20 0.153 94.94 

Average 0.153 94.88 0.156 94.89 

Standard 

deviation 
0.007 0.252 0.003 0.131 



Tiratricol 3.8459 -0.12997 Digoxin 4.4721 0.25736 

MYB 

 

EGFR 

Drug 

Toxicity 

(LD50, 

mol/kg) 

Regulation 

ability 

(CMap) 

Drug 

Toxicity 

(LD50, 

mol/kg) 

Regulation 

ability 

(CMap) 

Rosiglitazone 2.4515 -0.05222 Riboflavin 1.6067 -0.11210 

Apigenin 2.6983 -0.19442 Gliclazide 2.0016 -0.17868 

Fluphenazine 2.8990 -0.70223 Betaxolol 2.1620 -0.07627 

Perphenazine 3.0725 -0.13066 Apigenin 2.6983 -0.32192 

Chlorpromazine 3.3196 -0.20530 Fluvoxamine 2.6997 -0.07871 

CERK STAT3 

Drug 

Toxicity 

(LD50, 

mol/kg) 

Regulation 

ability 

(CMap) 

Drug 

Toxicity 

(LD50, 

mol/kg) 

Regulation 

ability 

(CMap) 

Orlistat 2.3363 -0.00030 Fenoprofen 1.9985 -0.19561 

Apigenin 2.6983 -0.15082 Nizatidine 2.4350 -0.15898 

Bromocriptine 2.7499 -0.10850 Tridihexethyl 2.5261 -0.01752 

Indometacin 4.0722 -1.00000 Apigenin 2.6983 -0.23711 

Digoxin 4.4721 -0.00055 Lisuride 3.1801 -0.09357 

TP53 

Drug 

Toxicity 

(LD50, 

mol/kg) 

Regulation 

ability 

(CMap) 

Orciprenalin 1.8283 0.03048 

Prilocaine 2.1374 0.03838 

Orlistat 2.3363 0.46450 

Bromocriptine 2.7499 0.05684 

Digoxin 4.4721 0.21932 

 

 

 

 

 



Figures 

 

Figure S1. The real genome-wide genetic and epigenetic network (GWGEN) of normal prostate 

cells in the lean group. The lines in color of grey represent protein-protein interactions (PPIs); 

The lines in color of blue indicate transcriptional regulations by TFs and lncRNAs; The lines in 

color of orange refer to post-transcriptional regulations by miRNAs; The numbers of Proteins, 

Receptors, TFs, miRNAs and lncRNAs are 13255, 2029, 180, 134 and 126, respectively. 

 

 

Figure S2. The real genome-wide genetic and epigenetic network (GWGEN) of normal prostate 

cells in the obese group. The numbers of Proteins, Receptors, TFs, miRNAs and lncRNAs are 

11995, 2113, 207, 139 and 103, respectively. 

 

 

 



 

Figure S3. The real genome-wide genetic and epigenetic network (GWGEN) of lean PCa. The 

numbers of Proteins, Receptors, TFs, miRNAs and lncRNAs are 11874, 2087, 210, 144 and 107, 

respectively. 

 

 

Figure S4. The real genome-wide genetic and epigenetic network (GWGEN) of obese PCa. The 

numbers of Proteins, Receptors, TFs, miRNAs and lncRNAs are 11874, 2087, 217, 138 and 106, 

respectively. 

 



 

Figure S5. The core genome-wide genetic and epigenetic network (GWGEN) of normal 

prostate cells in the lean group. The numbers of Proteins, Receptors, TFs, miRNAs and 

lncRNAs are 2547, 384, 34, 18 and 17, respectively. 

 

 

Figure S6. The core genome-wide genetic and epigenetic network (GWGEN) of normal 

prostate cells in the obese group. The numbers of Proteins, Receptors, TFs, miRNAs and 

lncRNA are 2382, 379, 205, 28 and 6, respectively. 

 



 

Figure S7. The core genome-wide genetic and epigenetic network (GWGEN) of lean PCa. The 

numbers of Proteins, Receptors, TFs, miRNAs and lncRNA are 2492, 431, 58, 10 and 9, 

respectively. 

 

 

Figure S8. The core genome-wide genetic and epigenetic network (GWGEN) of obese PCa. The 

numbers of Proteins, Receptors, TFs, miRNAs and lncRNA are 2491, 431, 58, 10 and 10, 

respectively. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S9. The core signaling pathways to investigate the healthy mechanism of normal prostate cells in the lean group. The light purple region indicates core signaling 

pathways of normal prostate cells in the lean group; the black arrow head of solid lines denotes activation of TF, miRNA, target genes and cellular functions; the black 

circle head of solid lines refers to inhibition of TF, miRNA, target genes and cellular functions; the black up arrow means high expression of target genes; the black 

down arrow indicates low expression of target genes. 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S10. The core signaling pathways to investigate the healthy mechanism of normal prostate cells in the obese group. The light blue region indicates core signaling 

pathways of normal prostate cells in the obese group. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S11. The core signaling pathways to investigate the carcinogenic mechanism of lean PCa. The light green region indicates core signaling pathways of lean 

prostate cancer. 

 



 

Figure S12. The core signaling pathways to investigate the carcinogenic mechanism of obese PCa. The brown region indicates core signaling pathways of obese 

prostate cancer. 



 

Figure S13. The core signaling pathways integrated from core signaling pathways of normal prostate cells (lean group) in Figure S9 and lean PCa in Figure S11. This figure 

summarizes the genetic and epigenetic carcinogenic mechanism of normal prostate cells in the lean group and lean PCa. The signaling pathways in the deep blue color 

region are the common core signaling pathways of normal prostate cells in the lean group and lean PCa; The light purple region represents specific core signaling pathways 

of normal prostate cells in the lean group; The light green region denotes specific core signaling pathways of lean PCa; the black arrow head of solid lines denotes activation 

of TF, miRNA, target genes and cellular functions; the black circle head of solid lines refers to inhibition of TF, miRNA, target genes and cellular functions; the black up 

arrow means high expression of protein, receptor, TF, and target genes; the black down arrow indicates low expression of protein, receptor, TF, and target genes. 



 

Figure S14. The core signaling pathways integrated from core signaling pathways of normal prostate cells (obese group) in Figure S10 and obese PCa in Figure S12. This 

figure summarizes the genetic and epigenetic carcinogenic mechanism of normal prostate cells in the obese group and obese PCa. The signaling pathways in the deep blue 

color region are the common core signaling pathways of normal prostate cells in the obese group and obese PCa; The light blue region represents specific core signaling 

pathways of normal prostate cells in the obese group; The brown color region denotes specific core signaling pathways of obese PCa; the black arrow head of solid lines 

denotes activation of TF, miRNA, target genes and cellular functions; the black circle head of solid lines refers to inhibition of TF, miRNA, target genes and cellular functions; 

the black up arrow means high expression of protein, receptor, TF, and target genes; the black down arrow indicates low expression of protein, receptor, TF, and target 

genes.



 

Figure S15. The structure of DTI model. In order to predict the docking of drug-target pairs, we 

constructed a neural network of four hidden layers and a ReLU activation function layer. Compared 

with other activation functions, ReLU activation function owns advantages of preventing gradients 

from disappearing and converging faster. Although ReLU is not good enough to cover every aspect 

of DNN field, it is effective for us to employ it on classification issues. For the purpose of avoiding 

overfitting, we merged the dropout layer into the rear process between ReLU and each hidden layer. 

Moreover, there are sequentially 512, 256, 128, and 64 neurons in four hidden layers and the input 

layer has a dimension of 694, related to the features of each drug and target. Next, after adopting a 

sigmoid activation function in the output layer to display properties of binary classification, we 

could limit the probability value to the scope of 0 and 1. Consequently, the outcome means that the 

higher the probability value is, the stronger the interaction of drug-target pairs is. Based on the 

reliable drug-target docking prediction in DTI model, the candidate drugs were picked out to target 

selected biomarkers in core signaling pathways of PCa. 

 



 

Figure S16. The accuracy and loss for training and validation sets by 10-fold cross validation. a. The 

training and validation accuracy by 10-fold cross validation. b. The training and validation loss by 

10-fold cross validation. 

 

 



Figure S17. The ROC curves of different models for the drug-target interaction prediction. The dot 

line means the worst situation (AUC = 0.5) for models to make a distinction between positive and 

negative class. 

 

 

 


