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Abstract: Tuberculosis (TB), caused by the Mycobacterium tuberculosis infection, continues to be
a leading cause of morbidity and mortality in developing countries. Resistance to the first-line
anti-TB drugs, isoniazid (INH) and rifampicin (RIF), is a major drawback to effective TB treatment.
Genetic mutations in the β-subunit of the DNA-directed RNA polymerase (rpoB) are reported to be
a major reason of RIF resistance. However, the structural basis and mechanisms of these resistant
mutations are insufficiently understood. In the present study, thirty drug-resistant mutants of rpoB
were initially modeled and screened against RIF via a comparative molecular docking analysis
with the wild-type (WT) model. These analyses prioritized six mutants (Asp441Val, Ser456Trp,
Ser456Gln, Arg454Gln, His451Gly, and His451Pro) that showed adverse binding affinities, molecular
interactions, and RIF binding hinderance properties, with respect to the WT. These mutant models
were subsequently analyzed by molecular dynamics (MD) simulations. One-hundred nanosecond
all-atom MD simulations, binding free energy calculations, and a dynamic residue network analysis
(DRN) were employed to exhaustively assess the impact of mutations on RIF binding dynamics.
Considering the global structural motions and protein–ligand binding affinities, the Asp441Val,
Ser456Gln, and His454Pro mutations generally yielded detrimental effects on RIF binding. Locally,
we found that the electrostatic contributions to binding, particularly by Arg454 and Glu487, might
be adjusted to counteract resistance. The DRN analysis revealed that all mutations mostly distorted
the communication values of the critical hubs and may, therefore, confer conformational changes in
rpoB to perturb RIF binding. In principle, the approach combined fundamental molecular modeling
tools for robust “global” and “local” level analyses of structural dynamics, making it well suited for
investigating other similar drug resistance cases.

Keywords: drug resistance; mutations; rifampicin; rpoB; molecular dynamics simulations; dynamic
residue network analysis

1. Introduction

Tuberculosis (TB) remains a major public health problem globally, with resistance to
rifampicin (RIF) and isoniazid (INH), the main anti-TB first-line drugs, varying according to
geographical location [1,2]. The number of TB patients diagnosed and treated for multidrug-
resistant tuberculosis (MDR-TB) is increasing worldwide, and treatment success rates in
patients with drug-resistant TB remain unacceptably low [1]. According to the World
Health Organization (WHO), 9.0–11.1 million new cases and 1.1–1.3 million TB-related
deaths were estimated in 2018 [1]. The global health problem due to tuberculosis has
worsened with the increasing emergence of Mycobacterium tuberculosis complex strains that
are resistant to RIF and INH. As recommended by the WHO, the timely detection of drug
resistance is essential for the appropriate treatment of patients with tuberculosis and for
limiting the further spread of MDR-TB [1,3]. The drug-resistant form of TB originates from
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the development of different mutations [4–6]. Drug resistance poses an immense threat and
presents new challenges in diagnostics, surveillance, and therapeutic methods employed in
treating TB. Reports of increasing drug-resistant TB cases have emphasized the need for
research to understand the basic mechanism of drug resistance [7–9].

RIF, a member of the rifamycin family of antibiotics, is a critical component of the
combination therapy regimen used to treat active TB [10]. Since its approval for clinical
use in late 1960s, RIF has made its mark as a core therapy for infections sustained by vari-
ous bacteria, including TB (Mycobacteria tuberculosis), osteomyelitis (Staphylococcus aureus),
meningococcal disease (Neisseria meningitidis), leprosy (Mycobacterium leprae), and gonor-
rhea (Neisseria gonorrhoeae) [11]. Regarding M. tuberculosis, RIF exerts its effect by inhibiting
DNA-dependent RNA polymerase (RNAP) [12]. RNAP is responsible for transcriptions
and gene expressions in all living organisms. Bacterial RNAP is a multi-subunit complex
consisting of five subunits (α2ββ

′ω) (Figure 1A). The two largest RNAP subunits, β and β′,
in coordination with Mg2+ ions, form the active center for the catalysis of nucleotide poly-
merization [13,14]. RIF binds to an adjacent pocket in the β-subunit encoded by the rpoB
gene (Figure S1) [15,16], sterically inhibiting the extension of nascent RNA, and eventually
blocking the bacterial proliferation [12].

It is estimated that 484,000 TB cases reported worldwide in 2018 were RIF-resistant [1].
More than 95% of the M. tuberculosis clinical strains resistant to RIF harbor mutations
in the 81 base pair region of the rpoB, known as the RIF resistance-determining region
(RRDR) (Figure 1B). The region spanning codons 433 to 458 (corresponding to 507 to 533
in the Escherichia coli numbering system, respectively) [7,17–19], which is a hotspot region,
mainly consists of single amino acid substitutions [20]. The substitutions at codons 441,
451, and 456 (corresponding to codons 516, 526, and 531 of the E. coli coordinates) occur
frequently and have often been used as excellent markers for the detection of resistance
in RIF-resistant M. tuberculosis isolates [7,21–23]. Mutations outside the RRDR region in
rpoB have also been reported in association with RIF resistance, but rarely [23–25]. Since
mutations are considered critical factors associated with the acquisition of drug resistance,
the elucidation of the mechanism(s) of action of the clinically important rpoB gene mutations
that cause RIF resistance have become increasingly important in the development of novel
anti-TB therapeutics. In this study, we seek to understand the structural implications of
resistance-conferring mutations, occurring in the rpoB subunit, on RIF binding.

Previous computational studies have illustrated the structural consequences of amino
acid variations in the RNA polymerase protein on drug binding affinities and drug-target
stabilities [19,26–28]. The deterioration in electrostatic interactions and the rearrangement
of the binding pocket to alter its shape complementarity, leading to poor binding affinities
for mutations associated with positions 456 and 441 (Ser456Leu and Asp441Val), have been
cited [15,19]. Likewise, substitutions at position 451 (His451Ser/Met/Glut/Asp/Tyr/Arg)
induced detrimental effects on protein–ligand stability, as well as affinity [27,28]. While
these studies have extensively explored thermodynamic aspects of RIF binding and have
captured relevant biophysical interactions, less attention has been paid to conformation
selection and intraprotein communication regulation. For instance, it is not clear whether
residues within the RRDR region are key intermediaries in the intraprotein information flow,
nor is it clear how mutations within this hotspot region influence the protein conformation
freedom of the free energy landscape, ultimately dictating the drug binding kinetics. The
systematic approach of combining molecular modeling and network analysis techniques
has previously provided a versatile strategy of elucidating drug resistance mechanisms, and
to a greater scope, the mechanistic ramifications of the mutations to drug binding [29–31].
Here, we screen non-synonymous single nucleotide polymorphisms (SNPs) reported in
the mutation bioinformatics identification (MUBII-TB-DB) database [32], in order to unveil
their influence on RIF binding in mycobacterial RNAP. We employ molecular docking,
molecular dynamics (MD) simulations, and dynamic residue network (DRN) analysis
techniques to prioritize the database mutations based on their impact toward RIF binding
affinity. Here, the mutant-ligand stability, conformation selection, binding affinity, and
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intraprotein communications are inferred with respect to the bound wild-type (WT) model
to understand the structural insight and underlying mechanisms of RIF resistance.
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Figure 1. (A) Structural representation of the multiunit M. Tuberculosis RNAP catalytic core complex
(consisting of αI, αII, β, β′,ω subunits) bound to an σ initiation factor to form a holoenzyme, PDB ID:
5UHC [33,34]. (B) Focused image of mutations under investigation (shown as spheres) within the
rpoB model (residues 160 to 600). The RRDR region is mapped on the structure and colored cyan.
RIF is shown as sticks and colored blue.

2. Results
2.1. Rifampicin Resistant-Associated Mutations Were Prioritized

The MUBII-TB-DB database held 133 RIF-rpoB drug-resistant mutations cataloged
from the published literature (Supplementary_file S1, Supplementary_file S2) during the
planning of this study (as of 6th September 2018). The most common RIF-resistant muta-
tions in M. tuberculosis are reported in the RRDR region and are listed in the MUBII-TB-DB
according to the E. coli genome coordinate position. Some M. tuberculosis strains were found
to carry multiple point mutations. Therefore, the target region sequences were initially
aligned to the H37Rv reference strain, as well as E. coli, using ClustalW in MEGA7 [35], in
order to ascertain the position of target mutations [36,37]. Notably, the molecular interac-
tion patterns governing RIF resistance and sensitivity for most mutations have previously
been published in different in silico, and experimentally resolved, RIF-bound rpoB crys-
tallographic structural assessments [38,39]. For this reason, we prioritized 30 mutations
deposited to MUBII-TB-DB 5 years before the planning of the study, whose molecular
insights, with respect to RIF resistance, have barely/not been assessed so far. The majority
of these mutations were in the RRDR region of rpoB. Mutations occurring outside the
hotspot region have been reported to cause an abrupt change in the rpoB structure and
have been reported to influence the RIF binding efficiency [40]. About 30% of MDR-TB
presented RIF-resistant mutations located outside the RRDR region [40].



Molecules 2022, 27, 885 4 of 21

The post-docking analysis revealed varied binding patterns of RIF with the WT as
well as the mutated models in terms of docking scores, the formation of hydrogen bonds,
and their associated distances.

Generally, the mutated complexes yielded higher binding free energy values relative to
the WT rpoB-RIF complex (–13.8 kcal/mol), indicating that the mutations, regardless of their
positions within the RIF binding pocket, reasonably abolish protein–drug binding (Table S1).
Few mutations were found to completely abolish RIF binding, with substantially higher
ligand root-mean-square deviation (RMSD) scores (ligands in the mutant model compared
to ligands in the WT model) and poor docking scores. The intermolecular interactions were
also investigated. The results evidently indicated that the prime difference in the binding
affinity could be due to differences in binding pocket residues. The RIF-mutant interacting
residues were found to be largely different from those of the native complex and, thus,
could be responsible for the comparatively poor docking scores (Figure 2 and Figure S2).
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Figure 2. Post-docking analysis: The three-dimensional illustration of molecular interactions of
RIF with the WT and mutated forms of M. tuberculosis rpoB. RIF is shown as blue sticks colored by
heteroatom. Interacting atoms and associated residues are shown as spheres and sticks (colored
green), respectively. Hydrogen bonds are shown as dashed red lines.
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In the case of the WT rpoB protein, the RIF binding site residues, i.e., Arg454 and
Phe439, formed hydrogen bonds with RIF. An amino group of Arg454 formed two hydro-
gen bonds with a carbonyl oxygen and hydroxyl (-OH) side chain, whereas the amide
nitrogen of Phe439 formed one conventional hydrogen bond with an oxygen acceptor atom.
The Asp441Val, His451Gly, His451Pro, Arg454Gln, Ser456Gln, and Ser456Trp models were
found as the top mutants with respect to RIF binding hindrance and their poor ligand dock-
ing scores of −6.1 kcal/mol, −5.0 kcal/mol, −6.5 kcal/mol, −6.1 kcal/mol, −6.0 kcal/mol,
and −5.4 kcal/mol, respectively, compared to the WT complex (−13.7955 kcal/mol). The
visual inspection of the docked poses of the mutated rpoB complexes revealed that RIF
either developed few hydrogen bond interactions with the binding sites residues or abol-
ished them altogether (Figure 2). Likewise, high ligand RMSD scores were yielded during
the superimposition of the mutant models against the WT complex (Table S1).

2.2. Mutations Variably Influenced the Protein and Ligand Stability

Six out of the thirty mutated rpoB models were identified as the top mutants possessing
unfavorable protein–ligand interactions. To elucidate the impact of mutations on the
dynamic behavior of ligand binding, 100ns MD simulation experiments were performed on
the WT and the six mutated models in the complex with RIF. Duplicate runs were carried
out for the WT (see Figures S3 and S4). MD simulations have been applied in various
studies to exhaustively highlight structural mechanisms for differences in ligand bindings
between the native protein and mutated targets [19,26–28,30,31]. Despite experimental
evidence showing that RIF effectively binds to the WT rpoB protein at a pH of 7.4 based
on physiological conditions [41,42], it remains unclear what the binding state of the drug
and its associated conditions are there with the RIF-resistant mutants. Mutations are
known to stimulate resistance by associating with the drugs at distinct pH levels [43–46]. It
should be noted that the results discussed here illustrate the binding behavior of RIF in
its neutral state, compared to the WT and the mutated proteins. To examine the general
conformational divergence from the baseline structure (at zero nanoseconds), the protein
and ligand RMSDs were computed. Calculations of the protein RMSD were based on the
backbone atom positions. Initially, based on the RMSDs, it was found that both WT runs
were in equilibrium. Moreover, the extent of divergence was small; therefore, dependable
conclusions could be drawn from both runs: the models acquired comparatively similar
conformational spaces considering the fair agreement in kernel density estimation plots,
and the dimension projections of conformational shifts on the free energy landscape were
lower (Figure S3). Protein RMSDs of both WT and the mutated models plateaued early to
values in the range of 0.4 to 0.6 nm, on average; this suggests that the overall structural
folds were fairly maintained (Figure S4). The average RMSD values acquired were below
0.53 nm, while the distribution median (interquartile range) recorded, in general, was
0.50 (0.09) nm (Table S2, Figure 3A,C(i)). The WT, Asp441Val, and Ser456Gln models
displayed multimodal RMSD distribution patterns and the largest standard deviation (sd)
values of 0.08 (on average), 0.1, and 0.09, respectively. This indicated that the systems
were in equilibrium between multiple conformers. Conversely, the Arg454Gln, His451Gly,
His451Pro, and Ser456Trp models showed normal RMSD distribution density curves and
recorded the lowest sd values: 0.05, 0.06, 0.04, and 0.07, respectively. This suggests that a
single, more stable equilibrium state was sampled.

The conformation adaptation of RIF during the simulation was assessed by mea-
suring its RMSD. The ligands displayed system-specific conformation variations; RIF
acquired normal (Arg456Gln and His451Pro), bimodal (WT (run 1 and run 2)), Ser456Gln,
Ser456Trp), and trimodal (Asp441Val, His451Gly) RMSD frequency distribution density
curves (Figure 3B,C(ii) and Figure S3A).
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Figure 3. Violin plots illustrating the kernel density distribution frequency of (A): Protein
RMSD, (B): Ligand RMSD. Color key: Red: bound WT, Blue: bound mutants. Embedded boxplots
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The latter possessed the largest sd values (Asp441Val: 0.07 and His451Gly: 0.06, respec-
tively) and exhibited a large RMSD variability. This suggests that the associated mutations
largely destabilized the RIF’s binding pose (Figure 3B and Figure S5). Taken together, (I) the
WT protein accessed alternative conformers, possibly due to dual binding orientations
acquired by RIF during simulation; and (II) mutated models displayed mixed (smaller and
larger) conformation proportions with respect to the WT, indicating that the changes in
binding site architecture can variably influence both protein and ligand stabilities.

Structural fluctuation at the residue level was monitored using root-mean-square
fluctuation (RMSF) calculations, which highlight the per residue mobility in relation to
its average position. Looking at the general layout of RMSF profiles, minimal differences
were observed between the WT and mutated models: overall, residues 284–286, 397–418,
and 595–600 were recorded with the largest fluctuation values (>0.34 nm, on average)
(Figures S6 and S7). All the mutated models exhibited lower RMSF values compared to the
WT, suggesting that the mutations favor the systemic relaxation.

The radius of gyration is a measure of compactness, with respect to the proteins’
center of mass. Large Rg values correspond to a less tight packing of atoms, and vice
versa. All models acquired average Rg values in the range of 2.58 to 2.61 nm, suggesting
that minimal changes in protein compaction occurred in mutated models, with respect
to the WT (Figure 4A,C(i), Figure S3B and S8). Based on Rg variability, the His451Gly
(0.04 nm), WT, Asp441Val, His451Pro, Ser456Gln (0.03 nm each), Arg454Gln, and Ser456Trp
(0.02 nm each) were found with large-to-small sd values, respectively. To investigate the
local effects of the mutations on the packing density of residues within the RIF binding
site, Rg calculations were performed on residues 166–181, 374–389, 430–440, 449–469,
473–475, and 488–501 (Figure 4B,C(ii) and Figure S3B). His451Pro, Ser456Gln, and Se456Trp
exhibited larger Rg variations (sd values of 0.02 each) relative to WT, Asp441Val, Arg454Gln,
and His451Gly. These results suggest that: (I) Asp441Val confers insignificant effects
on the protein packing density, both globally and locally (considering the RIF binding
region). (II) His451Pro and Ser456Gln remain mainly intact, except for looser packing
in the rifampicin binding region. (III) The His451Gly and Arg454Gln mutations majorly
influence (increase and decrease, respectively) the spatial packing of the entire structure.
(IV) While structural compaction is enhanced globally in Ser456Trp, structural expansion
is favored in the RIF binding region. The above results clearly show that mutations can
variably influence conformational compaction/expansion and, likewise, alter the shape of
the complementarity aspects with respect to the ligand binding site.

2.3. Mutations Favor Conformational Rigidity

The investigation of conformation redistribution, due to mutation/ligand binding,
is important for understanding resistance mechanisms. Essential dynamics were carried
out in order to examine how the single point mutations reorganize the conformation
populations in a reduced dimensional subspace. Often, principal components are sorted
in such a way that the top few retain the most variation; the first two (PC1 and PC2)
typically describe dominant systemic motions [47]. In general, PC1 and PC2 (from a
total of 3659 eigenvectors) captured more than 40% of the total variance (Table S3). Two-
dimensional projections suggested that the intrinsic motions were highly restricted, and
the conformational subspaces were relatively limited (Figure S9). Relative to the WT, most
mutants covered a restricted spatial area, suggesting an overall decrease in the accessible
degrees-of-freedom. The projections of the proteins’ free energy landscape (FEL), as a
function of significant (slow) modes, provided a robust representation of dominating
conformation ensembles and allowed a clear visual interpretation of the folding pathways.
The intermediate basins (labelled “t”) were best described as transitional conformations
equivalent to metastable states that lead to the bottom of the folding funnel (the native state,
labelled “C”) (Figure 5) [48,49]. The WT explores two global-wide energy minimas (C1 and
C2) separated by low lying energy barriers. This suggests that rpoB natively adopts two
conformations during the RIF binding, as previously highlighted in RMSD calculations.
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systems. Color ranges from white (energy maxima) to blue (energy minima). Labels: c: conformers, t:
transition substates.

All mutants adopted single global free energy minima; however, they were trapped
transiently in local energy minima wells towards the bottom of the funnel. Asp441Val,
Arg454Gln, His451Gly, His451Pro, and Ser456Trp each sampled a single metastable substate
(t1, t2, t3, t4, and t7, respectively), whereas Ser456Gln visited two metastable substates
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(t5 and t6). These observations agree with the RMSD kernel density estimations plots (see
Figure 3), which appropriately highlighted that Ser456Gln acquired large conformational
variability. Lower trace values were observed for all the mutants (when compared to
the WT), suggesting that the concerted atomic displacements yielded, due to mutations,
were generally reduced (Table S3). Thus, the mutations confer structural rigidity. The
projections of concerted motions using porcupine plots indicated that the major motions in
the mutated models were dominated by the distant loop region (outside the RIF binding
site) between residues 397–418. This region also exhibited large residual fluctuations,
as described in the RMSF calculations (Figure S10). Globally, the WT model displayed
larger atomic motions in general, whereas the mutated models showed reduced motions.
The comparisons of the structures occupying dominant energy wells (conformers of the
WT, versus the mutants) revealed large structural displacements across all mutants in the
entire model following the superposition with the WT (Figure S11). Relative to the WT,
mutated models recorded RMSD values in the range of 0.801 to 0.904 nm, emphasizing
that the mutations induced considerable structural rearrangements (Table S4). In summary,
mutations generally discouraged large atomic shifts relative to the WT, besides sizably
restricting the conformational freedom of rpoB during the RIF binding. These observations
could be considered a linchpin in the impairment of drug recognition in all mutants.

2.4. The Impact of Mutations on Protein-Ligand Binding Affinity

Intermolecular hydrogen bond numbers (H-bonds) play a key role in stabilizing
protein–ligand complexes. Compared to the WT (three H-bonds), Arg454Gln (four H-
bonds), and Ser456Trp (four H-bonds), which generally recorded higher intermolecular
hydrogen numbers, Asp441Val (two H-bonds), His451Gly (two H-bonds), His451Pro (two
H-bonds), and Ser456Gln (one H-bond) yielded lower numbers, on average (Figure S12).
These results suggest that the latter’s mutations largely destabilized the RIF–rpoB inter-
actions. Protein–ligand interactions were examined by considering representative struc-
tures occupying energy minimas (dominant conformers) (Figure S13). Comparable to
the WT, Arg454Gln, Ser456Trp, and Arg454Gln generally formed higher (four or more)
conventional hydrogen bonds with RIF. The WT residues Arg465, Ser456, Gln435, Gln438,
and Phe439 formed conventional hydrogen bonds with RIF. Notably, interactions with
residue Phe439 were present across all mutations, except His451Gly and His451Pro. Both
models (His451Gly and His451Pro) displayed diminished molecular interactions in gen-
eral, suggesting that the mutations at position 451 conferred large detrimental effects on
binding contacts.

Single point mutations occurring at ligand binding sites have been shown, in the
past, to influence the binding thermodynamics of ligands [30,50]. Binding free energy
(BFE) calculations provide a quantitative overview of drug–receptor affinities. MM/PBSA
functions have been employed in previous works to estimate the total relative binding
free energy, as well as the contribution of individual residues to binding through the per
residue decomposition method, with promising accuracy [30,51–53]. Table 1 displays a
summary of the results obtained. In general, the van der Waals interaction (∆EvdW) is the
driving force for the RIF–rpoB interaction, whereas polar energy (∆Gpolar) is detrimental to
binding. Relative to the WT (approximately−128.6 kJ/mol on average), RIF bound, with an
increased affinity, to Arg454Gln (approximately −213.4 kJ/mol), His451Gly (approximately
−138.2 kJ/mol), and Ser456Trp (approximately −216.3 kJ/mol) mutants, while its binding
to Asp441Val (approximately −25.0 kJ/mol), His451Pro (approximately −90.2 kJ/mol),
and Ser456Gln (approximately −71.5 kJ/mol) was not favored. While the computed total
binding free energy values were expected to be nearly similar, with respect to the duplicate
runs of the same system, the WT run 1 and run 2 recorded large variations. The electrostatic
energy term (∆Eelec) was the predominant factor dictating the observed fluctuations. This
was not only evident within the duplicate runs of the WT protein, but also across the
mutants. It should be pointed out that resultant binding free energy values are as accurate
as the scoring functions. Additionally, MMPBSA computed the relative binding free energy,
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which does not equal the real binding free energy, since we did not estimate the entropy
contribution to binding. Despite these shortcomings, both WT runs showed remarkable
consistencies in their per residue energy decomposition profiles (see Figure S14), giving
us confidence in the obtained results. The residue decomposition of the BFE revealed
three key residues in the WT model: Leu458, Pro489, and Ile497, contributing substantially
to favorable ligand binding (Figure S14, Table S5). Interestingly, mutations arbitrarily
disrupted the per residue thermodynamic profiles across all mutated models (Figure S14).
Moreover, it is likely that the mutations induced far-reaching allosteric effects that strongly
influenced the thermodynamic balance of binding. As such, the models yielded mutant-
specific patterns of residues that contributed substantially to the total BFE (Figure S14,
Table S5). The interactions with residue 454 (Arg454) did not favor ligand binding across
all models (including WT), except the Asp441Val and Arg454Gln mutants. Markedly, the
interactions with Glu487 that were identified as detrimental to binding in the WT system,
contrarily, yielded favorable binding energy values in all mutants except Asp441Val.

Table 1. Summary of binding free energy values acquired for each protein–ligand complex.

Systems ∆EvdW ∆Eelec ∆Gpolar ∆Gnonpolar ∆Gbinding (kJmol−1)

WT-RIF run1 −195.7 ± 0.4 −34.6 ± 0.3 140.1 ± 0.2 −20.8 ± 0.0 −111.1 ± 0.5

WT-RIF run2 −218.3 ± 0.3 −62.6 ± 0.3 155.6 ± 0.9 −20.9 ± 0.0 −146.2 ± 0.9

Asp441Val-RIF −190.1 ± 0.5 77.7 ± 0.5 106.8 ± 1.4 −19.4 ± 0.0 −25.0 ± 1.4

Arg454Gln-RIF −210.9 ± 0.5 −204.5 ± 1.3 223.5 ± 1.7 −21.5 ± 0.0 −213.4 ± 0.6

His451Gly-RIF −144.8 ± 0.6 −79.7 ± 0.9 101.7 ± 1.2 −15.4 ± 0.0 −138.2 ± 1.1

His451Pro-RIF −160.4 ± 0.4 −59.7 ± 0.9 148.3 ± 1.1 −18.5 ± 0.0 −90.2 ± 0.8

Ser456Gln-RIF −155.0 ± 0.3 11.7 ± 0.6 89.5 ± 0.7 −17.6 ± 0.0 −71.5 ± 0.7

Ser456Trp-RIF −182.1 ± 0.3 −251.1± 1.2 236.9 ± 1.4 −19.9 ± 0.0 −216.3 ± 0.9

Previous computational studies on systems with mutations at positions 456 and 441
(i.e., Ser456Leu and Asp441Val) yielded concordant results with those of Ser456Gln and
Asp441Val, considering the total binding free energy. Relative to the WT, Ser456Leu
and Asp441Val exhibited a decrease in their total binding affinity in that order, which
could be attributed to weakened electrostatic interactions [19]. Particularly, the weakened
electrostatic interactions with Arg454 were highlighted as key to the development of
resistance. Zhang et al. reported weakened binding affinities for complexes with various
residue substitutions at position 451 (His451Asp, His451Tyr, H451Arg) [28]. However, our
models yielded mixed results for this position. His451Gly (−138.2 kJ/mol) and His451Pro
(−90.2 kJ/mol) were recorded with increased and decreased binding affinities, respectively.
Taken together, the Arg454Gln and Ser456Trp mutations leveraged the drug–receptor
complex stability, as demonstrated by higher hydrogen bond numbers larger binding
affinity values, while the Asp441Val, His451Pro, and Ser456Gln mutations generally did
not favored the drug binding and interactions.

2.5. Mutations Conferred Common Disparaging Effects on Critical Communication Hubs

Graphs of the residue interaction network have been widely employed in the identifica-
tion of key amino acids involved in the regulation of protein functions [30,52–54]. Analyses
of network graphs were conducted based on the average shortest path (L) and betweenness
centrality (BC) metrics. When computed over a trajectory, the average L highlights how
easily accessible a residue is for communication. In principle, regions with low average
L values are better disposed to transmit information. Generally, both the WT and mutated
models exhibited minimal differences in regard to residues possessing low average L values.
The 1Xsd from the mean value was used as a threshold to identify low average L regions
(dips) (Figure S15). Considering the WT model (native representation), the residues 177–188,
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203–208, 213–214, 309–320, 338, 342, 369–385, 437, 455–458, 463, 474–484, 499, 505–514, and
532–535 yielded low average L values in general, signifying highly accessible communica-
tion hubs. Relative to the WT, all mutated models were found with lower threshold values,
indicating an overall decrease in average shortest path lengths (Figure S15).

BC provides a hierarchical arrangement of highly influential residues in a social
network by considering their ratios of participation in all pairs of the shortest paths.
Residues possessing high average BC indexes are associated with signal propagation
and are deemed critical intermediaries for intraprotein communication. Generally, both
WT and the mutated models displayed largely similar average BC profiles and were
strongly correlated, as exhibited by high pairwise Pearson’s correlation values (Table S6,
Figure 6A,C and Figure S16). The 2Xsd value was used to identify residues that yielded
large average BC values (peaks) with respect to the WT model (the native representation).
Generally, most residues that yielded high BC values were located within the ligand
binding region (for instance, residues 179–182, 374–380, 384–387, and 456), indicating their
importance in achieving native protein–drug interactions (Table S7). Among these, the
residue 456 was placed within the RRDR [23,55,56], suggesting that the residue plays a
key role in achieving standard drug potency. Moreover, residue 376, located outside the
RRDR region, has previously been shown to confer drug resistance upon its mutation [23].
Interestingly, changes in average BC values, due to mutations, mostly occurred in these
signaling hubs across all mutated models in general, including residues 181–182, 204–206,
375–380, 384–386, and 512, as shown in Figure 6B and Table S8. This is indicative of
the common derogatory effects of mutations on critical communication hubs and could
serve as molecular signatures distinguishing drug-susceptible WTs from drug-resistant
mutants [30]. Residues unique to each model, with respect to our dataset, were also
identified, including: 179, 379 (Asp441Val); 370, 379, 477, and 478 (Ser456Trp); 365, 366, 510,
539, and 540 (Arg454Gln); and 387, 390, 187, 209, 371, 388, 391, 392, and 461 (His451Gly)
(Table S8). These residues might be useful in explaining the differences in phenotypic
characteristics, or, perhaps, the severity of resistance exhibited by each mutant. Despite the
pairwise Pearson’s correlation showing the strong correlated arrangement of the network
layout among the models (r range: 0.80–0.94) with respect to the average BC (Figure 6C,
Table S6), the comparisons suggested that the mutated models might be distant from
the WT in the order of His451Pro > Ser456Trp > Asp441Val > Arg454Gln > Ser456Gln >
His451Gly > WT.

In summary, the mutations investigated here altered the native information flow
network, characterizing the drug-susceptible WT system by increasing and decreasing
the overall reachability and connectivity, respectively, of most residues charged with
adjudicating intraprotein communications in their bound state. While these residues may
not be directly associated with the RRDR region, their proximity to this area, as well as
residues within the RIF binding pocket, could explain the associated detrimental impact of
mutations on ligand binding.

Residue contact maps have been used in the past to analyze differences in residue
interactions and as a tool for general protein structure comparisons [57,58]. We employed
contact maps to scan through the trajectories and to identify shared and unique contacts
between the WT and mutated models. Pairwise comparisons of the WT and mutants
were carried out with respect to the mutated residue positions. Generally, the WT and
all mutants were glued by numerous mutual molecular contacts (Figure 6, Figure S17).
We hypothesized that the differential contacts, due to mutations, could be responsible for
modulating the local thermodynamic changes and, hence, RIF stability. Specifically, we
focused our analysis on the lost/emerging contacts that contributed substantially to the total
binding free energy. Compared to the contacts exhibited in the WT model, residues Thr450
(Asp441Val), Gln438 (Arg454Gln), Thr380, Val381, Leu455; Ser177, Val175 (Ser456Gln),
Gln435 (Ser456Trp), Phe439, and Gln442 (His451Pro) either emerged or lost contacts due
to their associated mutations. Among these, Gln438, Gln435, Leu436, and Phe439 directly
contributed to the total binding free energy in the WT (See Table S5). Other residues,
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including Thr450, Leu455, Val175, and Ser177, as well as the neighbor residues His451,
Arg454, Arg173, and Val176, were also charged with maintaining protein–ligand affinities.
Based on the per residue binding free energy contribution values, these interactions might
be categorized either as stabilizing (associated with positive energy values) or destabilizing
(associated negative energy values).

Molecules 2022, 27, x FOR PEER REVIEW 14 of 22 
 

 

 
Figure 6. Analysis of average BC results: (A) Per residue average BC values illustrated using a 
heatmap. (B) The residue changes in average BC index (Δ BC) because of mutations (WT model and 
less mutated model). (C) Pairwise Pearson’s correlation among models with respect to average BC 
profiles: comparison of linear relationships between the WT and the six mutated models in this 
dataset. The color ranges from yellow: the smallest correlation value, to black: the largest correlation 
value. (D) Per residue weighted contact heatmap. Color range is from white (0% frequency of oc-
currence) to violet (100% frequency of occurrence). Per residue contact network map representation 
is shown in Figure S17. 

Figure 6. Analysis of average BC results: (A) Per residue average BC values illustrated using a
heatmap. (B) The residue changes in average BC index (∆BC) because of mutations (WT model and
less mutated model). (C) Pairwise Pearson’s correlation among models with respect to average BC
profiles: comparison of linear relationships between the WT and the six mutated models in this
dataset. The color ranges from yellow: the smallest correlation value, to black: the largest correlation
value. (D) Per residue weighted contact heatmap. Color range is from white (0% frequency of
occurrence) to violet (100% frequency of occurrence). Per residue contact network map representation
is shown in Figure S17.



Molecules 2022, 27, 885 14 of 21

In summary, the above results provide evidence that the mutations confer resistance
by losing/making novel contacts, particularly with residues participating in protein–ligand
binding. While how the degree of association (weights) contributes to inefficiency in bind-
ing may not yet be established, it will certainly be exciting to investigate the consequences
of fine-tuning these associations in order to counteract resistance.

3. Materials and Methods
3.1. Data Retrieval
3.1.1. Protein Preparation

The crystal structure of the DNA-directed rpoB chain was retrieved from the protein
data bank (PDB) under the ID, 5UHC [33]. Before docking, the structure was checked
for missing atoms, bonds, and contacts. The energy of the retrieved protein molecule
was minimized after 3D-protonation using the default parameters of the MOE energy
minimization algorithm (gradient: 0.05, force field: MMFF94X) [59].

3.1.2. Ligand Preparation

The ligand RIF used in this study against rpoB was retrieved from the crystal structure
of the complex rpoB protein. The ligand was energy minimized using the default parame-
ters of the MOE energy minimization algorithm (gradient: 0.05, force field: MMFF94X) [59].
The minimized molecule was saved in the mdb file format as a ligand input file.

3.1.3. The Retrieval of Mycobacterium tuberculosis rpoB Clinical Mutations

The MUBII-TB-DB repository holds M. tuberculosis mutations at seven loci associated
with its resistance to first- and second-line antibiotics [32]. The database includes 133 RIF-
rpoB drug-resistant mutations cataloged from the published studies (Supplementary_file S1,
Supplementary_file S2). The repository holds mutations in the hotspot region (RRDR), as
well as outside the hotspot region, within the rpoB [60,61]. The drug-resistant mutations,
which have previously been evaluated with respect to RIF binding in an experimental
layout, as well as via molecular docking and MD simulation approaches, were excluded.

3.2. Mutant Model Generation and RMSD Calculation

The 3D structures of rpoB mutant models were constructed using MOE software
(MOE-2016). The established rpoB protein structure deposited in PDB under the ID, 5UHC,
was used as template. All the mutants were 3D-protonated and energy-minimized using
the default parameters of the MOE. The native (WT) structure was superimposed on the
various mutant models and the root-mean-square deviation values (RMSD) of each pair
(WT against mutant) were calculated using the MOE. The docked complexes were analyzed
and the interactions between RIF and WT, as well as mutant proteins, were visualized
using PyMOL [62].

3.3. Molecular Docking of Wild-Type and Mutant Protein Structures with RIF

Molecular docking simulations of RIF, into the binding pocket of the WT and the
mutated rpoB models, were performed using the MOE [59]. The triangle matcher docking
algorithm was implemented. All the ions were deleted, and the hydrogen atoms were
added to the protein by 3D-protonation using the MOE software. The models were then
energy-minimized using the default MOE parameters. The structure of the RIF compound
was built in the MOE and was energy-minimized using the MMFF94x force field with
a gradient value of 0.05. The inhibitor was re-docked into the RIF binding site of the
target enzymes while applying the default parameters of the MOE (placement: triangle
matcher, rescoring function: London dG) [59]. Ten conformations were generated for the
ligand. The selection of the best docking solutions for further analyses were based on
consensus-ranking by considering the following criteria: (I) How solid the affinity of RIF
and rpoB was, while looking at the binding free energy values, and (II) how similar the
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docked conformation of rifampicin in mutants, relative to that in the WT, was by looking at
the RMSD deviation values.

3.4. All Atom Molecular Dynamics Simulations of the rpoB–RIF Complexes

The top effective mutants were prioritized for downstream MD simulation analyses
based on the docking scores, RMSD calculations, and receptor–ligand chemical interac-
tions perturbation. Molecular dynamics simulations were performed using GROMACS
2016.4 [63]. The AMBER03 force field was employed [64]. ACPYPE software was used
to assign appropriate atomic partial charges and to generate RIF topologies. ACPYPE
combines the general amber force field (GAFF) method and the semi-empirical quantum
chemistry program, SQM [65]. Default options were applied. Mg2+ ions were excluded
from all simulation systems [66]. A cubic simulation box with 2 Å space from the edge of
the complex was defined and filled with TIP3 (SPC126) explicit water molecules. System
charges were neutralized using a 0.15 M NaCl concentration. The final systems were com-
posed of approximately 200,000 particles. While applying the steepest descent algorithm,
the models were energy-minimized up to a gradient limit of ≤1000 kJ/mol/nm. One
hundred thousand cycles of NVT equilibration, at 300 K as the initial temperature, and
NPT equilibration at 1 bar of pressure, ensued. Temperature and pressure coupling at the
0.1 ps and 2.0 ps time constants were managed using the Berendsen thermostat and the
Parrinello–Rahman barostat, respectively. All bonds were constrained using the LINCS
solver. Non-bonded interactions were allowed a maximum distance of 1.4 nm. Long-range
electrostatic interactions were treated using the particle mesh Ewald method, while the van
der Waals interactions were evaluated using the Lennard Jones potential. Finally, 100 ns
production runs (with a 2 fs timestep) were performed while applying periodic boundary
conditions in all directions. Trajectory snapshots were written out every 2 ps.

3.5. Preliminary Trajectory Analysis

Systemic conditions including temperature, potential energy, kinetic energy, and
pressure were initially checked to assess the quality of experiments (data not shown).
Trajectories were analyzed using the GROMACS built-in utilities. gmx rms, gmx rmsf, gmx
gyration, and gmx hbond were employed to calculate the RMSD, RMSF, Rg, and intermolecu-
lar hydrogen bond numbers, respectively.

3.6. Essential Dynamics

The principal component analysis (PCA) is a dimension reduction method that has
been widely used to characterize important collective motions of proteins [30,52,53]. A
detailed theoretical description of PCA is given by Amadei et al. [67]. The gmx_covar
module of GROMACS was used to pre-align snapshots from the entire trajectory length
and immediately after, generating the covariance matrix (C) associated with the C-α atomic
positions. The C is a (3 × 3)m matrix where m is the number of residues considered.
The Eigenvalue decomposition of the C-matrix and the pre-sorting from the highest to
the lowest variance was carried out using the gmx_anaeig tool. Typically, biologically
relevant motions can be captured by the combination of top orthogonal modes/principal
components (PCs) [68]. Once the functionally relevant motions have been captured, the
converged equilibrium probabilities (∆G(X)) equivalent to the free energy landscape can
be expressed as a function of the Boltzmann constant (KB) and the absolute temperature (T):

∆G(X) = −KBTlnP(X) (1)

where P(X) is the probability distribution of the protein conformations along the PCs.

3.7. Binding Free Energy Computations

The effects of mutations on the protein–ligand binding affinity were determined by
calculations of binding free energy. The binding free energy computations were carried out
on 7500 trajectory snapshots spanning the equilibrated trajectory phase of 85 ns to 100 ns



Molecules 2022, 27, 885 16 of 21

and were sampled at 10 ps time intervals by following the molecular mechanics Poisson–
Boltzmann surface area (MM/PBSA) method [69]. The g_mmpbsa tool of GROMACS was
employed [64]. Briefly, the total binding free energy ∆Gbinding of a protein–ligand complex
can be computed as follows:

∆Gbinding = ∆Gcomplex −
(

∆GrpoB − ∆Gri f ampicin

)
(2)

∆Gx ≈ Emm− (TS + Gsolv) (3)

where ∆Gcomplex, ∆GrpoB, and ∆Gri f ampicin denote the Gibbs free energy values of the com-
plex (bound protein), the receptor (free protein), and the ligand, respectively. The g_mmpbsa
calculates the relative binding free energy; the Gibbs free energy of each component (∆Gx)
is equivalent to the sum of molecular mechanical energy (Emm), the solvent accessible area
(Gsolv), and the entropic potential (TS). The module utilizes the single trajectory approach,
which follows the assumption that the receptor and the ligand endpoint states (bound and
free) occupy identical conformations.

3.8. Dynamic Residue Network Analysis

The dynamic residue interaction network was performed using MD-TASK [70]. MD-
TASK employs the NetworkX algorithm to construct residue interaction network (RIN)
graphs. In RIN, amino acid residues represent nodes (in this case, the Cβ atom of amino
acids (Cα for Glycine)), and the non-covalent interactions defined by a threshold distance
of ≤6.7 Å between residues represents the existing links/edges [71]. The protein RIN was
assessed based on the average shortest path (L) and the betweenness centrality (BC) metrics.
L highlights the accessibility of a residue for communication. The average shortest path can
be constructed using the following equation:

L = ∑
i,j∈M

d(i, j)
n(n− 1)

(4)

where M is the set of nodes (residues) in the protein, and i and j are elements of set M.
d(i, j) represents the shortest path from residue i to j, whereas n is the total number of
residues in the system. BC resolves the degree of connectivity of a residue by looking at
its magnitude of participation along the shortest communication paths constructed by all
residues, hence its importance as an intermediary for communication. The BC index of a
residue m in a network can be computed as follows:

BC(m) = ∑
i,j∈M

σ(i, j|m)

σ(i, j)
(5)

where σ(i,j) is the total number of the different shortest paths between i and j, and σ(i,j|m)
is the count of these i-j paths that pass through residue m. Calculations were performed
on 7500 snapshots sampled at 10 ps intervals spanning the equilibrated last 15 ns of the
trajectories. The overall accessibility and connectivity indices were represented by the
average value, namely, the average L and the average BC. In order to make comparisons,
the values were initially normalized, as described before [52]. A weighted residue contact
map analysis was performed using the MD-TASK webserver (unpublished). Likewise,
covalent contacts between a target amino acid and a neighboring residue were considered
to be formed if the residue was placed within a radius distance of 6.7 Å or less.

4. Conclusions

Tuberculosis is a major health problem that is further exacerbated by the emergence of
MDR-TB. Mutations in the chemotherapeutic target, rpoB, play important roles in deter-
mining the cellular sensitivity and resistance to RIF, the associated first-line anti-TB drug.
This work presents a comprehensive examination of molecular mechanisms underlying
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RIF resistance in selected mutants. At first, six mutated models were prioritized following
comparative docking simulations. Relative to the WT, the mutated models Asp441Val,
Ser456Trp, Ser456Gln, Arg454Gln, His451Gly, and His451Pro yielded the least favorable
protein–ligand binding energies, molecular interactions, and RIF binding pose similarity
characteristics. Next, MD simulations, coupled with BFE calculations and DRN, were
performed on the seven (six mutants and one WT) protein–ligand complexes to unravel
the dynamic effects of mutations on RIF binding. The following testable assertions were
demonstrated: (I) Asp441Val and His451Gly largely destabilized the binding orientation
of RIF; (II) His451Gly favored structural expansion, whereas Arg454Gln and Ser456Trp
favored structural compaction; (III) all mutations induced opposing concerted atomic
motions with respect to the WT, while altogether restraining the conformational freedom,
where the most significant conformational changes were represented by the motions of
loop 397–418; (IV) Asp441Val, Ser456Gln, and His454Pro were detrimental to RIF binding
affinity; and (V) all mutations conferred common derogatory effects on critical intraprotein
communication hubs, whose impact on ligand binding could be linked to the immediate
proximity to the RRDR region and the RIF binding pocket. Lastly, we should consider the
contribution of electrostatic interactions for their role in stabilizing protein–ligand affinities
and, generally, the molecular interactions with Arg454 and Glu487 might be modified in
order to re-sensitize the resistant mutants.

Finally, the experimental verification of the effects of the mutants mentioned here is
crucial, and we hope that this study will inspire wet-lab investigation.

Supplementary Materials: The data presented in this study are available in supplementary material.
Table S1: Docking scores, RMSD, and post-docking interactions (hydrogen bonds) of rifampicin (RIF)
in WT and mutated models of rpoB. Figure S1: A: Graphical representation of the crystal structure
of Mycobacterium tuberculosis transcription initiation complex, PDB ID: 5UHC [1], containing 3nt
RNA in a complex with rifampicin. The structure is superimposed to the wild-type and mutated
models. Color code: green: multiunit RNA polymerase complex; brown: 3nt RNA strand; yellow:
modeled wild-type structure of the β-subunit; grey: modeled mutated structures of the β-subunit.
Rifampicin ligands docked to the structures are shown in sticks. B: 5UHC structure without the RNA
strand: Depiction of the rifampicin binding pocket adjacent to the active center [2,3]. C: Zoomed-in
image of the rifampicin binding pocket depicting all residues within 3.7 A distance from the ligand
atoms. Color code: red: co-crystallized rifampicin bound to 5UHC; blue: rifampicin docked to the
wild-type protein. Figure S2: Post-docking analysis: 2D binding modes of RIF with the WT and
mutated forms of M. tuberculosis rpoB. Molecular interactions were visualized using Discovery Studio
Visualizer 4 (DS Visualizer) [72]. Figure S3: Post MD results: Preliminary assessment of the wild-type
model runs 1 and 2. (A) The protein and ligand RMSDs represented as time evolution (i), kernel
density estimation violin plots (ii), and frequency histograms. (B) The radius of gyration calculated
for the entire protein, as well as residues within rifampicin binding pocket. Figure S4: 100ns protein
RMSD evolution computed with respect to backbone atom positions. Color key: black: WT, red:
mutants. Table S2: tabulated summary of average RMSD values acquired for each model. Figure S5:
time-dependent RMSD evolution of rifampicin for each system. Color key: black: WT, red: mutant.
Figure S6: Average per residue RMS fluctuation of rpoB computed based on C-α atom positions.
Ligand binding regions are shaded grey. Blue bar indicates the position of associated mutation. Color
code: black: WT, red: mutants. Figure S7: Structural mapping of the average per residue RMSF
(calculated across all models). The color ranges from blue (low RMSF values) to red (high RMSF
values). Figure S8: Time (ns) dependent Rg evolution of rpoB computed based on backbone atom
positions. Color code: black: WT, red: mutants. Table S3: The proportion of variance captured by the
top four principal components (PC1, PC2, PC3, and PC4). Generally, the first four PCs accounted
for >60% of the variance. Trace values obtained following the diagonalization of the covariance
are also tabulated. Figure S9: 2D projections of PC1 and PC2 as a function of time. Figure S10:
Porcupine plots displaying concerted atomic motion acquired during simulation. Arrows represent
the general direction of dominant motion, whereas the porcupine length represents the magnitude of
motion. Figure S11: Structural comparison of dominant protein conformers extracted from low energy
minimas on the conformational landscape (see Figure 5): WT (C1) versus mutants (C3, C4, C5, C6, C8,
and C9). Color Key: WT: deep salmon, mutants: green. Table S4: Structural comparison of dominant
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protein conformers: WT (conformer: C1) versus mutants. Figure S12: Time-dependent hydrogen
bond numbers formed between rpoB and rifampicin during simulation. Figure S13: Protein–ligand
interactions visualized using Discovery Studio Visualizer 4 (DS Visualizer) [72]. The representative
structures were extracted from low energy minimas representing dominant protein conformations.
Figure S14: Bar plots showing per residue contribution to the total binding free energy for each model.
Shaded regions indicate areas located within the ligand binding pocket. Table S5: Tabulated summary
of residues contributing substantially (> ± 3Xsd) to the total binding free energy in each model. -ve
indicates the negative binding free energy value, while +ve indicates that a positive energy value
was recorded. Figure S15: Per residue average L plots. Table S6: Average BC pairwise Pearson’s
correlation values computed among models. The WT–RIF input is computed from per residue
average values of run 1 and run 2. Figure S16: Plots of per residue average BC. Table S7: Residues
possessing large average BC values (peaks) with respect to the WT systems (native representation).
Table S8: Tabulated summary of residues that yielded large changes in average BC (∆BC) due to
mutations. Residues that yielded high average BC values are shown in bold. Residues unique to
each model are underlined. Figure S17: Ensemble averaged residue contact map of the WT and
mutated models. Supplementary_file S1: rpoB mutations retrieved from MUBII-TB-DB database.
Supplementary_file S2: rpoB mutations prioritized in this study.
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